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Kolmogorov’s existence theorem for Markov processes in C* algebras
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Abstract, Given a family of transition probability functions betwesn measure spaces and an
initia] distribution Kolmogorov's existenice theorem associates a unique Markoy process on
the product space. Here a canonical non-commutative analogue of this result is established
for families of completely positive maps betwesn C* algebras satisfying the Chapman-
Kolmogorov equations, This could be the starting point for a theory of quantum Markov
PrOCESEEs.
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1. Introduction

Let (X, %), i=0, ],2,.... be Polish measurable spaces and let P,(x,dx,  } be a
transition probability from (X, ) to (X, ,,#,,,) for each i Given a probability
measure u on (X, F ) it follows from Kolmogorov's extension theorem that there

o
exists a unique probability measure P, on the infinite product space ((, #) = ®(X F)

i=D
such that, for every finite n, its projection or marginal distribution P* in (X, %)
i=0

is given by _
PE,xE % xE)=

'[ pldxg ) Py(xy, dx, )P, (%, d%,) P (x, _ 1, d%,) (1.1)
E ®E % E

for all Eje#,,i=0,1,2,...,n The probability space ({, #, P,} describes the Markov
process with initial distribution p and transition probability P,(-,'} for transition from
a state at time  to a new state at time i + 1. This can be described in a * algebraic
language as follows. Denote by &, the commutative * algebra of all complex valued
bounded measurable functions on (X;, ;). Introduce the poesitive unital operator
TG,i+ 1) o,y = by

(T 1+ Dgl(x;) = -I‘g(xi+1}Pi[xI!dxi+1]-

For any i<k define T(i, k): o/, — o by

T ]_{ identity if i=F,
’ THi+ DTG+ 1,i+2) Th—=1,k il i<k
253
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The family {T(,k),i <k} of transition operators obeys the Chapman-Kolmogorov
equations:

T(,k) T(k,¢) = T(i,¢) fori<k<¢.

Let 5 be the Hilbert space L*(P,) and F(i) denote the Hilbert space projection on
the subspace of functions depending only on the first i + 1 coordinates (xq,Xy,...,X;)
of @ =(xg,X1,%3,...,) in (. Then {F(j)} is an increasing sequence of projections in
. For any ges#; define the operator j;(g) in # by

(i) ) (@) = g(x)(FD)P) @), ©=({x0,X15-..,).

Then j; is a * homomorphism from «; into the * algebra #(#’) of all bounded

operatois in . The Markov property of the stochastic process (Q,&,P,) is
encapsulated in the operator relations

Jr(1) = F(k), | \ (1.2)
F()ju (@) F(@) =j(TGK)g), gest,, i<k (L3)

The relations (1.1) can be expressed as
< Jo(@0)is (91) +1algn)v
= J(ﬁvgo)(xo)gl(xl)'--gn(xn)dPu(w) (1.4) |

for all u, vin the range of F(0) and g;es#;,i =0, 1,2,...,n. Here o denotes the sequence
(%05 %1,-..). We may call the triple (¢, F,ji, k=0, 1 2 ..) consisting of the Hilbert
space ¢, the filtration of projections F (k) increasing in k and the family {ji. k=
0,1,2,...} of * (but nonunital) homomorphisms, a Markov process with transition
operators {T(i,j),i <j}. A similar description of a Markov process in continuous
time is also possible.

In the context of quantum or non-commutative probablllty theory there have been
several partial attempts (for example, by Accardi, Frigerio and Lewis [AFL], Emch
[E], Sauvageot [S] and Vincent-Smith [Vi-S]) to construct Markov processes when
transition. probabilities between measurable spaces, or equivalently, the transition
operators between the corresponding commutative * algebras of bounded measurable
functions are replaced by unital and completely positive linear maps between unital
* algebras of operators in Hilbert spaces. In the present paper we shall start with a
family of completely positive maps between C* algebras which obey the Chapman-—
Kolmogorov equations and build a unique canonical minimal Markov process, using
the GNS principle. Rather remarkably, this minimal process, when restricted to the
centres of the different C* algebras that are involved, can be obtained as a conditional
expectation of a completely commutative process. The definition of a Markov process
that we shall adopt is inspired by the equations (1.2)-(1.4).

2. The basic construction

Let </, be a unital C* algebra of bounded operators in a complex Hilbert space ",
for every t > 0. The time index t here may be discrete or continuous. It is useful to
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imagine any hermitian element xe.«/, as a real valued observable concerning a system
at time t. Forevery 0 < s <t < oo let T(s, t): &/, — &/, be a linear, unital and completely
positive map (hereafter called simply a c.p. map) satisfying the following: (i) T{s, s) is
the identity map on &,; (ii) T(r,t) = T(r,s) T(s,t) for all 0<r <s <t < oo. When (i)
and (ii) hold we say that the family {T(s,#)} of c.p. maps obeys the Chapman-
Kolmogorov equations and call it a family of transition operators. Complete positivity
is equivalent to the condition

for all bounded operators X; in o, and elements Y;e,, the summation being over
any finite index set. Another equivalent description of complete positivity is that, for
every finite n, the matrix ((T'(s, t)(Y;;))); <i,j<n viewed as an operator in the n-fold
direct sum X" @ --- @ A ,, is positive whenever ((Y, Ni<ij<n 18 positive in the n-fold
direct sum X", @ - @ X", with Y;;e, for each i,j.

Denote by I'y(R ) =T, the set {slc =R, Oeo, #0 < o0}, where #oc denotes the
cardinality of . When #0 =n and t;e0, i=1,2,...,n are distinct we always express
itaso={ty,ty,...,t,} witht; >t, > .- > t,=0. When X, e/, foreachi=1,2,...,n
we denote the n-length sequence {X,,X,,....,X, } by X(o). Suppose that o=
{51,828} 6={ty,ts,...,t,} and U = {r,,7,,...,r,} are in T'y. For any X (o)
with X eof, we write X“(o L ) for the sequence Y(o U d) defined by

Yr; = {ij if ri = SJfOI‘SOInej: 1’2?"’3’1,

I,, otherwise,

where I, is the identity element in =/,. Denote by A the set of all sequences of the
form X (o) with ¢ varying in I'y and write

M=AxH, E | (2.1)
= {{(X(a),u)e./{,a=(t,t2,~...,t,,),n=2,3,...,} Tft>0 22)
doxfo . 1ft=0

To the family {T'(s,)} of transition operators we now associate a function Ly on the
set M x M as follows:

Lp((X(0),u),(Y(0),v)) = <u, XF{T(O,2,. JX¥_ {T(t,_,,t,_,)

(X5 (T, )XE Y} Y, )} Y, ) Y)o)
if o={ty,ts,...sta} (2.3)
and ‘ .
Lr((X(0),w),(Y(8),v)) = Lr((X "(0 W 9), u),( Y%L d),v)). (2.4)

PROPOSITION 2.1.
Ly is a positive definite kernel on M x M, i.e., for any n=1,2,..., complex scalars c;

and elements (X (0;),u;)e M, i=1,2,...,n the following inequality holds:

Y. ey Le((Xi(o:), wy), Xi(o;),u;)) =0 (2.5)

1<i'f<’|
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Proof. We claim that for a pair of elements of the form (X (o), u), (Y(0),v) in 4 and
oel’,

Lr((X(0),u), (Y(0), 1)) = L1((X* (0.0 8), u), (Y*(c L b), 1)), (2.6)

It suffices to prove this relation when 6 = {t,0}, o = {t;,t,,...,t,— 1,0}, t #1; for every
i, since the more general case would follow by induction. In this special case (2.6)
follows easily from (2.3) with ¢ replaced by 66 and the Chapman-Kolmogorov
equations. In view of (2.4) it is enough to prove (2.5) when g; =0 for each i, for

otherwise, we may replace all the o, sbya-—Ua Leto = {tl,tz, tm—1,tm=0}and -

i

X(0) =X, , X, X, ) i=1L2,.,n

ity? m

Define inductively the following operators:

Z,(t)=X} X,
Zij(tr) = Xirr T(,.t,_ 1)(Zij(tr— 1))Xj:,-’
r=23..m
Clearly, the matrix ((Z,(t,)) is a positive operator in the n-fold direct sum
A, D@, . If ((Zi](tr 1))) is a positive operator in A", @ @A, the

-1

complete pos1t1v1ty of T(z,,t,_,) implies that ((Z,,(z,))) is posmve in A, D @ A, .
Thus by induction, ((Z,(t,, ))) is a positive operator inA,®- GDJi’ o- If we wrlte

&= @clu, in A @ @A, we have
i=1

Y & Le((Xi(o) w), (X ;(0),u;)) = <& ((Zyy(tm)))S) 2 0. L

1<i,j<n

PROPOSITION 2.2

There exists a Hilbert space 3 and a map A:. M — K satisfying the following:

(@) <AX(0),u), A(Y(0),v)) = L ((X(0),u),(Y(3),v));

(i) The set {A(X (o), w)|(X (o), u)e M} is total in H; '

(i) If #' is another Hilbert space and A': M — ' satisfying (i) and (i) with (¥, 1)
replaced by (o', X') then there exists a unitary operator W:# — A’ such that Wol = A’;
(iv) M(X(0),u)) = A(X (aud)u) for all (X(o),u)e# and 5T . ’

Proof. (i), (ii) and (iii) are immediate from Proposition 2.1 and the G.N.S. principle.
(See, for example, Proposition 15.4, [P]). By (2.3) and (2.4) we have

L ((X(0),u),(X(0),w)) = Lr((X (o), u), (X" (5 é), u)
= Lr((X? (0 é),u),(X"(a L), u))
and hence by (i) in the proposition |
1A(X (o), ) — AX°(a L d),u) || = | A(X (0), ) |* + | A(X°(cLd),w)|?
— 2Re{A(X (o), u), A(X7(c L), w))=0. M
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Remark. When o = {t;,t,,...,t,} is fixed it is a consequence of (i) in Proposition 2.2
that l((Xu,X,z,...,th),u) is multilinear on &, X -+ X o, XH .
PROPOSITION 2.3.

In Proposition 2.2 let 3, be the closed linear span of the set {A(X (o), w)|(X (o), u)e.A o}
where M, is defined by (2.1) and (2.2). Then {#,,t =0} is an increasing family of
subspaces of # and the map V:u— A(I o, u) is a unitary operator from A to Hy.

Proof. Let 0<s<t<o0o. Suppose o= {5,53,+--,8n}. Then by property (iv) in
Proposition 2.2 we have

‘/l((Xs,st,...,Xsm),u) =T X5 Xgpo oo X5, ) 1)

and the right hand side belongs to 5, By definition. This proves the first part. To
prove the second part we first observe that

<'1(IO’ u)’ A(IO’ U)>.}£" = <u9 v>.7(o'
Thus V is an isometry from X", into 5. Furthermore (2.3) implies
| A(Xo,u) — Ao, X ou) 12
= L((Xo,u),(Xo,1)) + Ly((Io, X ou), (1o, X o%))
—ZRGLT((XO,u)s(IO)XOu)) |
= (U, XEX jud + (X ot X o 14)
—2Re{u, X¥(X u)) =0. ]
For any Hilbert space S we denote by B(A') the C* algebra of all bounded
operators on .
PROPOSITION 24.

Let #, #,, A, V be as in Proposition 2.3. Then there exists a unique * unital
homomorphism j°:sf ,— B(H ) for every t 2> 0 satisfying the relations:

POME X, X)) = MK X o0 X, )W) 2.7

In

for all Yest,, t>1t,>>1,=0, ueX o. Furthermore

V*dX)V=X foradl Xesd,.

Proof. Let YesZ, be unitary. By (2.3) and the fact that { T'(s, )} is a family of transition
operators it follows immediately that

Y Xy Xpyso o os X, ) U AM(YZ,, 2,5, 2, ), 0))
=Lo((YX,;, X1ps oo, X ) (Y21, Zy - Z,),v)
=Li((Xs X1y oo s X W, (21, 21555 Z4,), v))
= M(X Xpgs oo Xi s W, A(Zs Zyys e 2y )5 0)D
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forallX,, Yes/,, X,,, Y, es,,u,0eX ;. This together with property (iv) of Proposition
2.2 implies that

<l(YXt,th,...,X,n),u),/l(YZt,Zti,Zt,z,...,Zt,n,), v)>
= (/I(Xt,th,...,th),u),A(Z,,Z,,l,Ztrz,...,Zt/",),v)>

Thus for any unitary Y in A, there exists a unitary operator J2(Y) in £, satisfying
(2.7). If Y,, Y, are unitary elements in 4, it follows from the definitions that Jo(Yy)
Jo(Y,)=j2(Y, Y,). Since MX, X, ..., X, ),u) is linear in the variable X, and any
element in .7, is a linear combination of at most four unitary elements in o, it follows
that j°() defined for unitary elements extends linearly to o7, as a * unital homomorphism
from «, into #(,). The uniqueness part is obvious. To prove the last part we have
to only note that by the definition of V in Proposition 2.3 and the last part of its proof

JoX) Vu=j3(X) ALy, u) = A(X, )

= A(l,,Xu)=VXu

for all uext’,. [ |

Theorem 2.5. Let o/, be a unital C* algebra of operators in a Hilbert space A, for
every t 20 and let T(s,t): o/, A, s<t be a family of transition operators. Then
there exists a Hilbert space 5, an increasing family {F(¢),t >0} of projection operators
on H, a family of contractive * homomorphisms j,:of,— B(H#), t =0 and a unitary
isomorphism V from X", onto the range of F(0) satisfying the following:

(i) j(I,) = F(t), I, being the identity operator in A" o
(ii) for any 0 <s<t< oo, Xeo,

F(8)j(X)F (s) = j(T(s,1)(X));

(ii1) the set {j, (X)--j, (X,) Vi ty>t, > - > t,=0, X;eo,, foreachi,n= 1,2,...,
ued 'y} is total in H#,

(i) jo(X) V=VX for all Xed, and for any u, veX,, o={s;>8,> 5s,,,=0},
d={t;>t;> - >t,=0},

Xedd, Yjedtj,i= L2,...mj=12...n
U X 1)iea(X2) 5 (X m) Vib jo, (Y1)jiy(F) 4 (X,) V)
= Ly((X (o), u),(Y(5), ),
where L is given by (2.3) and (2.4).

Proof. Let o, 5, A, V and j be as in Proposition 2.4. Define F(t) to be the projection
on the subspace 5#,. By Proposition 2.3, F(t) is increasing in t. Define, for any X e<,,

the operator j,(X) in & by
X)=j(X)F(t) for anyt>0.

_Since J? is a * unital homomorphism from &, into #B(#,) and F(t) is a projection
it follows that |j,(X)|l < | X|| and j,(I,) = F(¢). To check that J(X)j(Y)=j,(XY) it is

y
‘\‘v"'
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enough to verify this on vectors of the form A((X,, X,,5..., X ..)» w). This is immediate
from (2.7). Since jO(X)F(t) = F(£)j?(X)F (¢) it follows that J(X)* =j,(X*).
To prove (ii) it is enough to check that, for s <t,

QUK Xy s Xg bt JOX)A(Y, Yoo, Y 1 0)> =
(X X s X ) AT )(X) Yy, Voo, ¥, 00000

for all Xeo/,. By definitions the left hand side is equal to
<'1((It’Xs5 Xs;’ cers Xsm)’ u)’ A‘((X! Ys’ Ysz’ et Ys,,.)9 U)>

which, by property (i) in Proposition 2.2 and 2.3, is equal to the right hand side.
(iii) is just a restatement of property (ii) in Proposition 2.2 because

G (X 1)+ Je (X)) V= UX (o), u)

with o = {t;,%5,...,L,}.
The first part of (iv) is contained in the last part of Proposition 2.4. The remaining
part of (iv) follows from property (i) in Proposition 2.2. [ ]

Remark. Tt is interesting to compare the properties of {F(?)} and (j,} in Theorem
2.5 with (1.2)~(1.4) in the case of classical Markov processes. This motivates the
following definition: suppose ,, A", and T(s,t), s <t are as in Theorem 2.5. Then
any quadruple (5, F, {j,}, V) consisting of a Hilbert space ), an increasing family
{F(f)} of projections in >, contractive * homomorphisms j, from &, into # () and
a unitary isomorphism V from X', onto the range of F(0) is called a conservative

- Markov flow with transition operators T(,") if

jlI)=F@®, F©)iX)F(s)=j,(T(s1)(X)) for 0<s<t < o0

and jo(X) V= VX for all X e/, the flow is said to be minimal if, in addition, property

(iii) of Theorem 2.5 holds. Two such minimal conservative Markov flows (o, F, {j; }, V)
and (o', F',{j,}, V') with the same transition operators T(-,") are called equivalent if
there exists a unitary isomorphism W:3# — "' such that

WFW™'=F @), WiXW'=jX), Wv=V

for all t >0, Xes, [BP], [M]. .
We shall establish soon that upto equivalence the minimal Markov flow constructed
in Theorem 2.5 is unique.

PROPOSITION 2.6.

Let (o, F,{j.}, V) be a minimal conservative Markoy flow with transition operators
T(-,") then the following hold:

(i) Let 0<t, <t,>ty<oco. Then for any X;esd,,i=1,2,3

Jo (X g T, 1) (X2 )i (X3) U £ 215

'nX .th -tsx—_-_ . .
I X)X (Xs) 0 (X )i (T, )X ) X35) if £y <ty
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(i) Let A" be the set of all pairsof sequences of the form (ty,t,,..., t X1, X5,..,X,)
where 0<ty, t,,...,t,< 0, X;esd,,i=1,2,...,n,n=1,2,... Then there exists a map
a: N — . independent of the Markov flow such that

F(0)j:, (X 1)j1,(X 2) -+, (X,) F (0) = jo (a(t, X)) (2.8)
Jor all (£,X)=(t1,t5,...,t,; X1, X,,..., X, )EN.

Proof. Let ty,t,,t; be as in (i) and ¢, > t,. Then

Ju (X 1)) (X 2)Ji5 (X 5)
=Ju (X 1)F(t1))0,(X2) F(£1)j,, (X 5)
=3 (T (11,62) (X)) (X )
=Ju, (X1 T(t1, 2)(X2))jis(X3),

which proves the first part of (i). Its second part is proved in the same manner.
To prove (ii) observe that

F(0)j, (X 1)j,(X2)-++j, (X, ) F(0)
=jo(Io)jr,(Xi )jtz(XZ) "'jt,.(Xn)jO (Io ). (2.9)

Without loss of generality assume that 0 <t, <t, <. < -1 > t,. Then by (i) the
product j, _(Xy_3)j_,(Xe-1)j,(X) can be reduced to a product of size 2 of the
formj, . (X;_,)j (X,)or Joso- (X~ 3)7, (X;) where the primed operators depend only
on (t,X) and T(,") and not on the particular flow under consideration. Thus the
n-fold product between the two Jo(o)'s on the right hand side of (2.9) can be reduced
to an (n — 1)-fold product. A successive reduction of the sequence (0,t,,15,...,1,,0;
Iy, X,,X,,...,X,,1,) applying (i) yields in the end an element a(t, X) satisfying (2.8).

- |

Theorem 2.7. Let o, ,, T(s,t), 0<s<t < oo be as in Theorem 2.5. Then any two
minimal conservative Markov flows with transition operators T(,") are equivalent.

Proof. Let (#,F,{j,},V) and (¢, F, {j:}, V') be two Markov flows satisfying the
- conditions of the theorem. Suppose that $1 >8>+ >5,=0,t;>t,>-.>1,=0,

Xied,, Yied,, i=1,2,....,mj=1,2,...,n Consider (r,Z)e#" (where A is as in
Proposition 2.6} defined by

r=(snusm—lsu-aslstlatZa“',tn)g

Z=(X%X%_ ... X%Y,Y,.. )

‘Since s,, = t, = 0it follows from Proposition 2.6 that there exists a(r, Z)e o/, such
that

Jin &) (X5 1) J (X (X)), (Y,) =, (0(r, Z)),
Jan Xl g K1), XD (X)) - (F,) = alr, Z).



|
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Thus for any u,vef , we have

(X ) 4 (X) Vit (Y1), (,) Vo)
&) (K) Vit (X)), (Y,) V')
= {u, a(r, Z)v).

From the minimality of the two flows it follows that 2 and ' are spanned by
vectors of the form j, (Y,)---j, (Y,) Vu and Ji,(¥))-j; (Y,) V'u respectively. Hence
there exists a unitary isomorphism W:3¢ — 5" such that

Wi, (Yy)-j, (Y,) Vu=j; (Y})--j, (Y,) V'u

for all uex'y, t; >t,>-->t,=0, Yesd,, i=1,2,...,n. That W is the required
isomorphism implementing the equivalence of the two flows is immediate. |

Remark. Let (5, F,{j,},V) be a minimal conservative Markov flow with transition
operators T(,°). Denote by %# and %, respectively the C* algebras generated by
{j(X), Xest,,0< s < o0} and {j,(X), Xe,,0 < s <t}. By the same arguments as in
the proof of Proposition 2.6 it is easy to see that for ;> s,i=1,2,...,n an expression
of the form F(s)ji,(X 1)+, (X,) F(s) can be expressed as j,(a,(t, X)) where a,(t, X)e..
In particular the map [ defined by

E,(Z)=F()ZF(s), Ze®

maps # onto %&,. We may call E; the conditional expectation map from # onto &,.
If p, is a state on o/, then a state p on & is uniquely determined by

p@)=po(V*FO)ZF(O) V), ZeZ.

It is legitimate to call the filtered quantum probability space (%, 4,, p) the Markov
process with initial state p, and transition operators T'(-,*).

Let Z, denote the centre of o, for each t. It is possible that T'(s,z) may not map
%, into %,. In the minimal flow with transition operators T(,"), the operators
{j,(2), ZeZ,,t > 0} need not be a commutative family. However, by following an idea
in Bhat [B], we shall modify the construction in Proposition 2.4 in order to arrive
at a family of * unital homomorphisms k,:Z, — #() so that {k,(Z), ZeZ,,t >0} is
a commutative family and j,(Z) is obtained from k,(Z) by a conditional expectation.

Theorem 2.8. Let (#,F,{j,},V) be as in Theorem 2.5. Then there exists a unique
*unital homomorphism k,:Z,— #() satisfying the following:

() for any t; >t,>--->t,=0, X, ed,,i=12,...,n, ZeZ, and ueX’,

(MK Xy s Xy ZX i Koy, X ) 1)
ift=t,; for somei
k,(Z)l((X,l,X,z,...,X,"),u)=ﬁ‘A((Z,X,I,...,X,n),u) if t>t,,

' A’((Xn’thﬁ""Xti—L’Z’Xh,"'9Xt,.)9u)

\ ¥ ti-y >t >t for somei; ‘ (2.10)
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(ii) the family {k(Z),ZeZ,,t =0} is commutative;
(i) j,(Z2)=F@)k(Z2)F(t) forallt 20, ZeZ,.

Proof. As in the proof of Proposition 2.4 consider a unitary element ZeZ',. Suppose
t=t; for some i=1,2,...,n. Forany X,,Y,eZ%,,i=1,2,...,n we have

X Xy s Xy 02X X, e X ) 1),
MY Yoo s Y b ZY Y s Y )00 =
QU XFE(-XEZ*T (et ) (X T, t,)(X Y,) Y, )+ ) 2Y, ) ¥, v).
Since Z and Z*e %, and Z*Z =1 it follows that the right hand side is independent

of Z. The same argument in the remaining cases together with the Chapman—

Kolmogorov equations for T'(,*) and (iv) in Proposition 2.2 imply that k,(Z) defined
by (2.10) on elements of the form A(X (o), u) is scalar product preserving. Hence k,(Z)
extends to a unitary operator on J#. Furthermore for any two unitary elements Z,
Z'eZ,, we have k,(Z)k,(Z') = k,(ZZ'"). Once again by (iv) in Proposition 2.2, k,(I,) is
the identity operator in J#. Exactly as in the proof of Proposition 2.4 we extend k(")
to a * unital homomorphism from %, into #(5#). This proves (i).

Ift#£t, ZeZ,, Z'e%,, it follows from (2.10) by straightforward verification that

k(2)k. (2"} (X (0), u) =k (Z')k(Z) A(X (o), u)

where o = {ty > t, > --- > t, =0}. This proves (ii).
When t =1ty >t,> .- >t,, X,, Y, e, u, vex", we have -

Xy Xy s X )8y kfZ)A((Y,, Yoo, Y, ), 0)
= <A'((XnX!z’ ceey Xt,.)a u)’ l((ZYn Ytp cae 9‘Yt.,)ﬁ U)>
= UK Xy s X ), F(DM(Y, Y., X, ) 0).

Since vectors of the form A(X,, X, ..., X}, ), u) span the range 5, of F(t), property
(iii) is 1mmed1ate Uniqueness of {k, } follows from the mlmmallty of {j.} and property
). B
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