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structure of a complementary cone in a cone LCP.

We show that closedness of all complementary cones

is a necessary condition for the compactness of the

solution set of a cone LCP(L, q) for all q ∈ V . Fi-

nally, we generalize the earlier results on the finiteness

of the solution set of a LCP over specialized cones,

see [10,5,8,14], to LCP over a closed convex cone

in V.

The set SOL(L, q) denotes the solution set of

the LCP(L, q). Orthogonal projection onto the sub-

space S is denoted by ProjS and span E represents

the linear span of a subset E of a linear space V. A

nonempty subset F of a closed convex cone K in V

is a face, denoted by FEK , if F is a convex cone

and

x ∈ K, y − x ∈ K and y ∈ F ⇒ x ∈ F .

The complementary face of F is defined as

F4 := {y ∈ K∗ : 〈x, y〉 = 0 ∀x ∈ F }.

The smallest face of K containing x ∈ K is defined as

the intersection of all the faces of K containing x. It is

known that FEK is the smallest face of K containing

x ∈ K if and only if x lies in the relative interior (ri)

of F, see [1]. It is easy to see that for any x ∈ ri F ,

F4 can equivalently be represented as F4 := {y ∈

K∗ : 〈x, y〉=0}. Also for any face F of K , F ⊆ (F4)4.

Definition 1. A linear transformation L : V → V has

the R0-property if LCP(L, 0) over K has a unique

(zero) solution.

Proposition 1. L has the R0-property if and only if

the set SOL(L, q) is compact (may be empty) for all

q ∈ V .

Proof. Note that SOL(L, q) is always closed. Let

{xn} ⊂ SOL(L, q) be an unbounded sequence of

nonzero terms. Consider the subsequence {xm} of

{xn} such that xm/‖xm‖ converges to some x ∈

K . Then the sequence L(xm/‖xm‖) + q/‖xm‖

converges to L(x) ∈ K∗ with 〈x, L(x)〉 = 0,

contradicting the R0-property. The converse is

obvious. �

2. Complementary cones and nondegenerate

linear transformations

The notion of a complementary cone has been in-

troduced by Murty [10] in relation to a LCP over Rn
+.

This notion is well studied in the literature on the LCP

theory, see [2]. It has been found useful in studying the

existence and multiplicity of solutions to LCP over Rn
+

and in studying a geometric interpretation of Lemke’s

complementary pivoting algorithm to solve the LCP

[2]. The notion of a complementary cone has been

extended to the semidefinite linear complementarity

problems in [9]. It is further studied in the context of

a LCP over a Lorentz cone in [14] and LCP over a

symmetric cone in a Euclidean Jordan algebra [8].

Motivated by the above we present the following

generalization of the concept of a complementary

cone. Subsequently, we show how complementary

cones explain the geometry and the solution proper-

ties of a cone LCP.

Definition 2. Given a linear transformation L : V →

V a complementary cone of L corresponding to the

face F of K is defined as

CF := {y − L(x) : x ∈ F, y ∈ F4}.

Remark 1. The faces of Rn
+ are {0}, Rn

+ and any set

of the form

F :=P {(x1, x2, . . . , xk, 0, . . . , 0)T : xi >0, 16 i6k},

where P is a permutation matrix and k ∈ {1, . . . , n}.

The complementary face of F is given by

F4 = P {(0, . . . , 0, xk+1, . . . , xn)
T : xi >0,

k + 16 i6n}.

The complementary face of {0} is Rn
+ and Rn

+ is {0}.

Thus, in case of K = Rn
+, Definition 2 reduces to

Murty’s definition of a complementary cone, see [10].

Observation 1. The linear complementarity problem

LCP(L, q) has a solution if and only if there exists a

face F of K such that q ∈ CF .

Proof. Suppose x ∈ K solves the LCP(L, q). Then

y := L(x) + q ∈ K∗ and 〈x, y〉 = 0. Let F be the
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smallest face of K containing x. Then x ∈ ri F and

y = L(x)+ q ∈ F4. Hence q ∈ CF . The converse is

obvious. �

By the above observation, the union of all comple-

mentary cones is the set of all vectors q, for which

the LCP(L, q) has a solution. The following exam-

ple shows that complementary cones are not closed in

general. However, it is easy to see that complementary

cones are closed when K is a polyhedral cone.

Example 1. Let K
3
+, a Lorentz cone in R3, be defined

as K
3
+ := {(x0, x1, x2)

T ∈ R3 : (x2
1 + x2

2 )
1
2 6x0}. Let

M : R3 → R3 be a matrix defined as

M(x)=

(
x0 + x1

0

x2

)
.

Then M




1
2
(e+ 1

e
)

1
2
(e− 1

e
)

−1


→

(
0

0

−1

)
as e→ 0. However,

there exists no x ∈ K
3
+ such that M(x) =

(
0

0

−1

)
.

Thus the complementary cone of M corresponding to

the face K
3
+ is not closed.

In our next proposition we give a sufficient condi-

tion for the closedness of a complementary cone of a

given linear transformation L and corresponding to a

given face F . For this we shall specialize and restate

Theorem 9.1, [12], in the context of a closed convex

cone.

Lemma 1. Let K be a closed convex cone in Rn and

A : Rn → Rm be a m×n real matrix. If Az=0, z ∈ K

implies z= 0, then A(K) is closed.

Proposition 2. Given a linear transformation

L : V → V and FEK , the complementary cone CF

is closed if

x ∈ F, L(x) ∈ F4 implies x = 0.

Proof. By Lemma 1 and the condition described

above, it is apparent that L(F) is closed. Let

L̃ : V × V → V be defined as L̃(x, y) = x + y. Let

CF={y−L(x) : x ∈ F , y ∈ F4} be a complementary

cone corresponding to the face F . Let

K1 := {y : y ∈ F4} and K2 := {−L(x) : x ∈

F }. Then L̃(K1 × K2) = K1 + K2 = CF . Now,

L̃(y,−L(x))=0 for some x ∈ F and y ∈ F4 implies

that y −L(x)= 0 ⇒ L(x) ∈ F4, which by the given

condition gives x = 0. Thus we have y = L(x) = 0.

Appealing to Lemma 1 again, we get CF is closed.

�

Definition 3. (a) A complementary cone CF corre-

sponding to the face F is called nondegenerate if

x ∈ span F, L(x) ∈ span F4 ⇒ x = 0.

A complementary cone which is not nondegenerate is

called degenerate.

(b) A linear transformation L is nondegenerate if

CF is nondegenerate for every FEK .

Remark 2. (i) Note that L is R0 if and only if for

every FEK the following relation holds:

x ∈ F, L(x) ∈ F4 ⇒ x = 0.

Thus, by Proposition 1 and 2, closedness of all com-

plementary cones is a necessary condition for the com-

pactness of the solution set of an LCP(L, q) for all

q ∈ V . Also, by Proposition 2, every nondegenerate

complementary cone is closed.

(ii) For any FEK , det LFF 6= 0 implies that CF

is nondegenerate, where LFF : span F → span F is

defined as LFF (x) = Proj span F L(x). Moreover, if

L(span F) ⊆ span F + span F4 ∀ FEK , then L is

nondegenerate if and only if det LFF 6= 0 ∀ {0} 6=

FEK . In particular, when K = Rn
+ and M is a real

square matrix, det MFF for {0} 6= FERn
+ corresponds

to one and only one principal minor of M. Hence, we

obtain that a matrix M is nondegenerate if and only if

all the principal minors of M are nonzero.

(iii) In the semidefinite setting, Gowda and Song

[5] define a nondegenerate linear transformation

L : Sn → Sn as follows:

X ∈ Sn, XL(X)= 0 ⇒ X = 0. (1)

Equivalence of (1) with our Definition 3(b) is an easy

consequence of Theorem 3.6 [7], on the characteriza-

tion of faces of the positive semidefinite cone Sn
+.
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Definition 3(b) of a nondegenerate linear transfor-

mation is motivated by the uniqueness of a solution to

a LCP on a given face and has been explained in the

following proposition.

Proposition 3. Given a linear transformation

L : V → V and FEK , CF is a nondegenerate com-

plementary cone if and only if for each q ∈ CF

there exist a unique x ∈ F and y ∈ F4 such that

q = y − L(x).

Proof. Suppose that there exist x1, x2 ∈ F and

y1, y2 ∈ F4 such that q = y1 −L(x1)= y2 −L(x2),

which implies that y1 − y2 = L(x1 − x2), where

x1−x2 ∈ span F and y1−y2 ∈ span F4. By the non-

degeneracy of CF , x1 = x2 and y1 = y2. Conversely,

suppose that there exists an x ∈ span F such that

L(x) ∈ span F4. Writing x=x1−x2 with x1, x2 ∈ F

and L(x)= y1 − y2 with y1, y2 ∈ F4 we get

q := y1 − L(x1)= y2 − L(x2).

Since each q ∈ CF has a unique representation in CF ,

we get x1 = x2 and hence x = 0. �

Corollary 1. Given L : V → V and q ∈ V ,

LCP(L, q) has infinitely many solutions only if either

q is contained in a degenerate complementary cone

or q lies in infinitely many complementary cones.

Proof. Suppose q does not belong to a degenerate

complementary cone and lies only in a finite num-

ber of nondegenerate complementary cones. Then

LCP(L, q) can have only finitely many solutions,

contradicting our hypothesis. �

Proposition 4. Let CF be a nondegenerate comple-

mentary cone. Then

(i) q ∈ riCF if and only if there exist x ∈ ri F and

y ∈ ri F4 such that q = y − L(x).

(ii) Any face G of CF can be represented as

G= {y − L(x) : x ∈ H, y ∈ H
′

},

where HEF and H
′
EF4. Also, any set of the

above form is a face of CF .

Proof. The proof of (i) is easy and is left to the reader.

For the proof of (ii) let G be a face of CF for some face

F . Then G can be represented as G= {y−L(x) : x ∈

H, y ∈ H
′
}, where H ⊆ F and H

′
⊆ F4. We shall

show that HEF and H
′
EF4. Since 0 ∈ GECF and

CF is nondegenerate, 0 ∈ H ∩H
′
, and H and H

′
are

convex cones. Let x ∈ F , z − x ∈ F and z ∈ H .

Then −L(x) ∈ CF , −L(z − x) ∈ CF and −L(z) ∈

G. Since GECF we get −L(x) ∈ G, which by the

nondegeneracy of CF gives x ∈ H . Similarly, we can

show that H
′

is a face of F4. Conversely, let N be

defined as N := {y −L(x) : x ∈ H, y ∈ H
′
}, where

HEF and H
′
EF4. Then N is a nonempty convex

cone. Let y−L(x) ∈ CF , (y0−y)−L(x0−x) ∈ CF ,

and y0−L(x0) ∈N, where x0 ∈ H , x ∈ F , y0 ∈ H
′

and y ∈ F4. Since CF is nondegenerate, x0 − x ∈ F

and y0 − y ∈ F4. Thus,

x ∈ F, x0 − x ∈ F, and x0 ∈ H ,

y ∈ F4, y0 − y ∈ F4, and y0 ∈ H
′

.

Since HEF and H
′
EF4, we get x ∈ H and y ∈ H

′
.

Hence y − L(x) ∈N and N is a face of CF . �

Remark 3. In a private communication [13], Dr.

Richard E. Stone has pointed out that any face G of

CF can be represented as G = {y − L(x) : x ∈ H ,

y ∈ H
′
}, where HEF and H

′
EF4, without assum-

ing that CF is nondegenerate.

Corollary 2. Given a linear transformation L : V →

V and q ∈ V , the LCP(L, q) has infinitely many solu-

tions if q lies in the relative interior of infinitely many

nondegenerate complementary cones.

Proof. Let q ∈ ∩ riCFa
, where Fa is a family of dis-

tinct faces of K indexed by a and CFa
is nondegener-

ate for each a. Then q=ya−L(xa) for xa ∈ ri Fa and

ya ∈ ri F
4
a . Since each CFa

is a nondegenerate com-

plementary cone, xa, for every a, are infinitely many

distinct solutions to LCP(L, q). �

3. Finiteness of the solution set of a cone LCP

In the context of a LCP over Rn
+, nondegenerate

matrices characterize the finiteness of the solution set

of a LCP(M, q) for all q ∈ Rn, see [10]. A similar

study is made by Gowda and Song [5] where they in-

troduce and study the notion of a nondegenerate linear
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transformation in the context of a SDLCP. They have

shown that when K = Sn
+, nondegeneracy of a linear

transformation L need not be a sufficient condition for

the finiteness of the solution set of SDLCP(L, Q) for

all Q ∈ Sn
+. The example below throws more light on

the preceding discussion.

Example 2. Let M : R3 → R3 be defined as M(x)=

−x, K = {(x0, x1, x2)
T : x0 >0,

x2
0
4

>x2
1 + x2

2 } and

q := ( 5
8
, 0, 0)T. It is easy to check that M is nonde-

generate, K is closed and convex (but not self-dual)

and any point x = (x0, x1, x2)
T lies on the boundary

of K if and only if x0 >0 and
x2

0
4
= x2

1 + x2
2 . Any com-

plementary cone corresponding to a face F is of the

form CF = {y + x : x ∈ F, y ∈ F4}. Except two

3-dimensional complementary cones, namely K∗ and

K, every other complementary cone is of dimension

2. The infinite set of solutions to LCP(L, q) is given

by {( 1
2
, x1

2
, x2

2
)T : x2

1 + x2
2 =

1
4
}.

Definition 4. (a) A solution x0 of LCP(L, q) is locally

unique if it is the only solution in a neighborhood of

x0.

(b) A solution x0 is locally-star-like if there exists

a sphere S(x0, r) such that

x ∈S(x0, r) ∩ SOL(L, q)

⇒ [x0, x] ⊆ SOL(L, q).

The following theorem generalizes the earlier results

on the finiteness of the solution set of a LCP over spe-

cialized cones, see [10,5,8,14], to LCP over a closed

convex cone in V.

Theorem 1. Given a linear transformation L : V →

V , the following statements are equivalent.

(i) SOL(L, q) is finite for all q ∈ V .

(ii) Every solution of LCP(L, q) over K is locally

unique for all q ∈ V .

(iii) L is nondegenerate, and for all q ∈ V , each

solution of LCP(L, q) is locally-star-like.

Proof. The assertion (i) ⇒ (ii) is obvious. For the

reverse implication, note that (ii) implies that L has

the R0- property. Thus SOL(L, q) is compact for all

q and hence (in view of (ii)) is finite for all q.

(ii) ⇒ (iii): First we shall show that L is nondegen-

erate. Let x ∈ V be nonzero such that x ∈ span F ,

L(x) ∈ span F4 for some face F of K. Since x ∈

span F , we can write x = x1 − x2 with x1, x2 ∈ F .

Similarly, L(x)=L(x)1−L(x)2 with L(x)1, L(x)2 ∈

F4. Defining q := L(x)1−L(x1)=L(x)2−L(x2) it

is observed that LCP(L, q) has two distinct solutions

x1 and x2 with

〈tx1 + (1− t)x2, tL(x)1

+ (1− t)L(x)2〉 = 0 ∀ t ∈ [0, 1],

i.e., [x1, x2] ⊆ SOL(L, q) which contradicts (ii).

Also, for any q ∈ V , since the solution x0 ∈

SOL(L, q) is locally unique, it is locally-star-like.

(iii) ⇒ (ii): Let for some fixed q ∈ V , the solution x0

of LCP(L, q) be not locally unique. Then there exist

a sequence {xk} ⊆ SOL(L, q) converging to x0 with

xk 6= x0 for all k. By the locally-star-like property

we have [x0, xk] ⊆ SOL(L, q) for all large k. Let Fi

be the smallest face of K containing xi (xi ∈ ri Fi)

where i = 0, 1, 2, . . . From the complementarity of

solutions we have for all large k

x0 ∈ riF0 and L(x0)+ q ∈ F
4
0 ,

xk ∈ riFk and L(xk)+ q ∈ F
4
k .

Also from the fact that [x0, xk] ⊆ SOL(L, q) for large

k we get

〈x0, L(xk)+ q〉 = 0 and 〈xk, L(x0)+ q〉 = 0.

Since x0 ∈ ri F0 and xk ∈ ri Fk we get L(xk)+q ∈ F
4
0

and L(x0)+ q ∈ F
4
k . Defining a face G := F

4
0 ∩F

4
k

of K∗ we get x0, xk ∈ G4 and L(x0) + q, L(xk) +

q ∈ G. Thus there exists a face F = G4 of K such

that a nonzero x := x0 − xk ∈ span F with L(x) ∈

span F4, which contradicts our assumption that L is

nondegenerate. �

Corollary 3. When K is polyhedral LCP(L, q) has a

finite number of solutions for all q ∈ V if and only if

det LFF 6= 0 for all nonzero FEK , or equivalently L

is nondegenerate.

In our next proposition we extend the result, re-

cently observed for a LCP over the Lorentz cone by

Tao [14], to any closed convex cone in V .
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Definition 5. A linear transformation L : V → V is

said to be monotone (copositive on K) if 〈x, L(x)〉>0

∀x ∈ V (x ∈ K).

Proposition 5. If L is a monotone linear transfor-

mation on V, then L is nondegenerate if and only if

LCP(L, q) has a unique solution for all q ∈ V .

Proof. Suppose L is nondegenerate. Then by Theorem

2.5.10 in [3], LCP(L, q) has a solution for all q ∈ V .

Let x1 and x2 with x1 6= x2 be the two solutions of

LCP(L, q) for some q ∈ V . Let x1 ∈ ri F1 and x2 ∈

ri F2 where F1, F2 are the two faces of K . By the

monotonicity of L we have

06〈x1 − x2, L(x1 − x2)〉

= 〈x1 − x2, y1 − y2〉 = −〈x1, y2〉 − 〈x2, y1〉60,

where yi =L(xi)+ q for i= {1, 2}. Thus 〈x1, y2〉 = 0

and 〈x2, y1〉=0. Since x1 ∈ ri F1 and x2 ∈ ri F2, y1 ∈

F
4
2 and y2 ∈ F

4
1 . Defining a face G := F

4
1 ∩ F

4
2 of

K∗ we get x1, x2 ∈ G4 and L(x1)+q, L(x2)+q ∈ G.

Thus for a face F =G4 of K we have a nonzero x :=

x1 − x2 ∈ span F , such that L(x) ∈ span F4, which

contradicts that L is nondegenerate. The converse is

obvious. �

Proposition 6. Let L be copositive on K. Then L is

nondegenerate only if LCP(L, q) has a unique solu-

tion for all q ∈ K∗.

The proof is similar to that of Proposition 5 above

and is omitted.

An open problem

We have shown that if LCP(L, q) has a compact

solution set for all q ∈ V then all the complementary

cones are closed. However, we do not know whether

closedness of all complementary cones is a necessary

condition for SOL(L, q) to be nonempty for all q ∈ V .
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