Short Communications 635

SHORT COMMUNICATIONS

ZAMM - Z. Angew. Math. Mech. 78 (1998) 9, 635—640

DanpApPAT, B. S.; Ray, P. C.

Effect of Thermocapillarity on the Production
of a Conducting Thin Film in the Presence
of a Transverse Magnetic Field

The gradual development of a thin liquid film on the surface of a rotating disk is studied analytically when the thermo-
capillary force is in action in the presence of a transverse magnetic field. It is found thot the acting thermocapillary force
has a profound effect in enhancing the thinning rate of the film even in the presence of large Hartmann number M.
A physical explanation of this result is provided. Large amounts of fluid are depleted in a small span of time when the
Hartmann number M is small.

1. Introduction

Coating with a very thin and uniform film of photoresist on silicon wafers for integrated circuits, or the production of a
layer of very thin magnetic paint on the substrates which are placed in the grooves of a spinning disk, is known in the
literature as spin coating. This technique has also found its application in the production of optical and magnetic
recording media. A sizeable amount of works [1—7] has so far been published in the literature by assuming the coating
liquids to be either Newtonian or non-Newtonian fluids with or without the admixture of different volatile solvents. Tt
is well known from these studies that the rate of film thinning slows down beyond a specific height (depending on the
rotational speed) of the film. In general, the final stage of film thickness is proportional to 7/2, for T — oc, where 7 is
the spining time. So, to obtain the desired thinness of the film, one has to operate the spinner for a quite long time.
This is so because the removal of liquid continues in the radial direction from the surface of the disk by the action of
the centrifugal force. As a result, the film thins progressively and, at the same time, the outward radial velocity
decreases continuously due to the increase of viscous resistance with thinning. After a sufficient lapse of time, the
radial flow practically ceases and during this period the chief mechanism of mass loss is due to evaporation only. Tt is
well known that the evaporation starts from the surface layer of the film. During the process of evaporation the latent
heat is extracted from the film and as a result, a solid skin is formed on the surface layer which puts greater resistance
to the remaining liquid for evaporation. Therefore, coating defects may occur if the convective flow does not com-
pletely cease before this skin hardens sufficiently. Recently, DANDAPAT and Roy [8] have tried to accelerate the rate of
thinning such that one can obtain the desired thinning before the hardening of the skin. According to them it is always
possible to create an external tangential stress on the film surface in the form of a surface tension gradient by imposing
either temperature or concentration differences between the centre of the disk and its periphery. They have shown
in [8] that by imposing a specified axisymmetric temperature distribution on the disk it is possible to obtain the film
thickness proportional to (m’:)f1 for T — oo, where « is a new nondimensional thermocapillary parameter. MIDDLE-
MAN [9] and REGH and HIGGINS [10] have also noticed that the rate of film thinning increases due to the shear
induced by air flow over the surface of the film. In connection with the development of a conducting thin film in
the presence of a transverse magnetic field, RAY and DANDAPAT [11] have recently shown that the magnetic field
puts greater resistance on film thinning right from the beginning of the rotation. Hence it may be interesting to
study the joint effects of thermocapillarity and of a uniform magnetic field on the production of a conducting thin
film on a rotating disk.

In other words, the motivation of this study is to answer the question “does the thermocapillarity force overcome
the magnetic resistance?”
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2. Mathematical formulation and its solution

Consider a uniform film of viscous, electrically conducting fluid on a disk whose radius is large compared with the film
thickness hy. A uniform transverse parallel magnetic field By permeates through the disk which can rotate with a
uniform angular velocity £ about an axis normal to the plane of the disk as depicted in Fig. 1. Initially the system is
at room temperature 7. An axisymmetric temperature distribution which can decrease/increase radially outward from
the axis of rotation is imposed simultaneously with the start of the uniform angular rotation of the disk. The origin is
fixed at the centre of the disk, and the z-axis is the axis of rotation.

B, By
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Y

Fig. 1. Schematic drawing of the geometry

For axisymmetric motion, the governing equations in cylindrical coordinates (r, 6, z) become
)
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ty + (u/r) +w, =0,

w, + ut, — (V1) +wu, = —(1/0) pr + V[t + (u/r), +u..] — (0B /o) u,
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where w, v, w, p, @, v, and ¢ denote, respectively the velocity components along the radial, circumferential and axial
directions, pressure, density, kinematic viscosity, and electrical conductivity of the fluid. Further, a subscript denotes
the derivative with respect to the indicated variable. Due to the thinness of the film (TAKASHIMA [12] and DANDAPAT
and KuMAR [13]) the buoyancy effects can be neglected in the present problem.

The energy equation becomes

Ty +ul, +uwl, = KT + T, /r+ T..], (5)

where K is the thermal diffusivity.
The initial conditions are

w(r, z,0) =v(r, 2, 0) = w(r, z,0) =0; (6a)
T(r, z,0)=Tp, h(0) = hy, h(0)=0. (6b)
The boundary conditions are
(i) at the disk z=0
u(r, 0,1) =0, v(r, 0, t) = Qr, w(r, 0,£) =0, (7a)
and the imposed temperature distribution
T(r, 0,t) =To — A(r*/2) T, (7h)

where Ty and T are positive constants. A may take either —1 or +1 depending on heating or cooling the disk from
below. Here heating (cooling) refers to a situation where the temperature of the rotating substrate increases (decreases)
with the distance from the axis of rotation;
(i) at the free surface z = h(t)
—p+ 2uw, =0, (8a)
p(u: +wy) = —(or) Tr (8b)
uv; = —(or) T, (8¢c)
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where u is the dynamic viscosity and ¢ denotes surface tension. It changes with temperature according to
o=0)—y(T-T).
Here gy is the surface tension at temperature Ty and y (= —07) is positive for most common liquids [8, 12].
Assuming a planar interface, equations (8a)—(8c) are derived from the free surface conditions, i.e., the jump in
the normal stress across the interface is balanced by surface tension times curvature, and the shear stress equals the
thermal stress along the interface.
The thermal boundary condition at z = h(t) is given by the Newton’s law of cooling
TA-L(T=1,) =0, (8d)

where L and T}, denote the heat transfer coefficient at the free surface and temperature in the gas phase respectively.
The kinematic condition at the free surface becomes

hy = w(r, h, t). (9)
Following DANDAPAT and RAY [6] we can seek the similarity solutions in the form

u=rf(zt), v=rg(zt), w=w(zi), (10a)

p=—(r*/2) A(z, ) + B'(2, 1), (10D)

T=Ty—A(r*/2) 0(z, t) — Ap(2, t). (10c)

It should he noted here that the similarity solution (10¢) is compatible with the boundary condition (7b) and as
r is agsumed to be large but finite so T never tend to F co.
The following dimensionless variables

r:t/tﬂj ‘SZZ/}L(]: th‘/hﬂ', F:h’(].f/U—U: GZQ/Q? W=1U/U()?

0= (h2/AT)6, @=¢/AT, A=A/Q*, B=DB/(hQ) (11)

are used in those equations which are obtained after using (10) in (1—9) and equating the different order of r. The set
of dimensionless equations thus obtained are:

2F + W =0,
Re(F; + F? + WF;) = Fge + G* — M*F,

Re(G; — GW: + WGe) = Ge: — MG,

Re(W; + (1/2) W}) — W + B; =0, (12)
A=,

PrRe(0; + W8 — W:6) = 0,

PrRe(gp, + Weg) = @z +20.

As explained earlier that, during the course of rotation a situation will arise when viscous shear and the centrifu-
gal force across the film are of comparable magnitude. The characteristic time scale t, (= v/ hﬁQz) used in equation
(11) represents that time when a balance is reached between the above stated forces. At this stage radial characteristic
velocity Uy becomes very small as a result Re (= Uyhg/v) the Reynolds number is also very small. The dimensional
parameters M (= Boho(o/gv)lfz) and Pr (= v/K) are defined as Hartmann number and the Prandtl number respec-
tively. We have assumed AT = |Ah3T1|.

Corresponding boundary and initial conditions become

F(0,7)=W(0,7)=0,  G(0, 17)—1} at E—U. (13)
00, 7)=1, @0, 7)=0
F:(H, 1) = aldf(H, 1), Ge(H, 1) =0
0:(H, 7) = e(H, 1) =0 at E—1. (14)
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where a (= y AT/0,h2€2?) is a parameter due to thermocapillarity. Tt is clear from equations (12e) and (14f) that
A =0. Now, B(z, t) can be evaluated by integrating the equation (12d) with respect to & from & to & = H(7) and
finally pressure can be obtained from the equation (10h).

Expanding the dependent variables in power of Re in the form

V(&)= 3 Rey(E7) (162)
and A
H(@r) = 3 R Hy(x). (16b)

i=0

Using (16) in the system of equations (12)—(15) we can obtain different sets of equations by equating the differ-
ent powers of Re. Avoiding details, the solutions to the zeroth-order set satisfying the zeroth-order boundary condi-
tions are

7 al sinh ME  cosh(M[H — &]) [cosh(2MH) — 3] — cosh(MH) [cosh(2M[H — &]) — 3]
0 3

~ M cosh MH 6M?2 cosh? (MH)
_cosh[M(H — §)]
0 cosh(MH)
‘ (17)
oy _ M sinh®(ME/2) _ sinh[2M(H — £)] - sinh(2MH) + 6M§
0= —

M? cosh(MH) 6M3 cosh? (MH)

cosh(ZMH) - 31 | . '
COSMERD) 2 | [sinh[M(H — &)] — sinh(MH)],
{3;;,{3 cos]ﬁ(jL{H)] [sinh[M(H — &)] — sinh(MH)],

60211 (pﬂ:QHé:*é:‘Z

It should be pointed out here that the zero-order solution (17) which we have obtained does not satisfy the initial
condition (15). This is due to the fact that our characteristic time #, is considered to be large. To satisfy the initial
condition one should stretch the time and follow the procedure as described in [6]. This detail is avoided here since our
object is the final film thickness for T — oo, and the joint effects on it due to thermocapillarity and magnetic force.

The leading order film thickness equation can be obtained from (14e) after using (16) and (17c¢) as

42a sinh*(MH,/2) 1 [
M? cosh(MH,)  3M3

Hy = — tanh® MHy + 3sech? MHy(MH, — tanh MH,)|. (18)

It is clear from (18) that Hy, < 0 for all times irrespective of the values of M or a provided 4 = +1, i.e., the disk is
cooled from below. To obtain the leading-order film thickness, one has to integrate (18) subject to the initial condition
Hy(0)=1. (19)

Condition (19) is obtained from the small-time solution of (14e) and (15) (details in (6)).

Fig. 2. Variation of film thickness Hy with time 7 for differ-

ent values of (o and M).

For A=1: (0,0), ——— (4,0), —x—x (0,3), —-—-
r (43
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3. Result and discussion

The numerical solution to the equation (18—19) is obtained by using Gill’s modified method [14]. Figure 2 depicts the
variation of film height with time for various values of @ and M when the disk is allowed to cool. It is clear from the
figure that e has a strong effect in producing a thin film even in the presence of a magnetic field. The thinning effect
of a may be explained as follows: The thermocapillary parameter ¢ is a measure of the variation of surface tension
with temperature. Since the disk is allowed to cool axisymmetrically, the surface tension is low at the centre of the disk
and hence the thermocapillary force acts as a tangential stress on the surface of the film along the favourable flow
direction. This leads e to enhance the film thinning when the disk is cooled from below. The role of a will be adverse if
the disk is heated axisymmetrically from below. This can be seen from equation (18) for 2 = —1 in that the first term
on the right hand side is now positive which implies a slow rate of thinning. In this case, the temperature of the disk
will be higher at the periphery than at the centre and a will act along the adverse flow direction. It is further clear
from the figure that the magnetic parameter M slows down the rate of thinning. This is so because, as M increases,
the strength of the lines of force will also increase. This, in turn, will put more resistance to the flow for thinning. The
trend may be envisaged from the asymptotic solution of Hy for large time (7 — oc) as

Hy ~ (2/M) tanh (M /2Aar) . (20)

Equation (20) shows that Hj depends on both a and M even for extremely thin films. For an ultra thin film, one
may expect that the effects of intermolecular forces, like van der Waals force of attraction etc., will come into play,
and that also film rupture may occur. These questions will be delt in a future communication.

For different conditions one can obtain the applicable asymptotic forms of Hy for large 7 as follows:

Case I  In the absence of a we get

Hy ~ (1/M) tanh '[(3M?/47)"?]. (21)
Case I When M — 0
Hy ~ (dat) ™", (22)

Case ITI For a =0 and M — 0, we have
Hy ot 12, (23)

This shows that the solution (20) is a general asymptotic form since other forms can be obtained as a particular case.

From Figure 3, it is clear that the maximum amount of fluid flows out of the disk in a small span of time as 7
increases, and ultimately attains an asymptotic value. Here Q(r) is the rate of liquid depleted in time 7 at a fixed
radial distance r = ¢ (say).

Fig. 3. Variation of Q(r) with time 7 for differ-
ent values of (a and M).

(070)1 - = (5*0)1 - (0*1)
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BOOK REVIEW

Ablowitz, M. J.; Fokas, A. S.: Complex Variables:
Introduction and Applications. Cambridge, Cambridge Univer-
sity Press 1997. XII, 647 pp. £ 55.00, US$ 80.00; ISBN 0-521-
48058-2 (hardback); £ 19.95, US$ 34.95; ISBN 0-521-48523-1
(paperback) (Cambridge Texts in Applied Mathematics)

Das vorliegende Buch besteht aus zwei Teilen. Im Teil I (ca.
300 Seiten) werden die gingigen Grundlagen der klassischen
Funktionentheorie bis zum Residuenkalkiil und der Auswertung
komplexer Integrale entwickelt. Einige iiber den Standardstoff
hinausgehende Themen sind: Verallgemeinerte Cauchy-Formel
fiir nicht-analytische Funktionen, Satz von Mittag-Leftler, Einfiih-
rung in die Fourier- und Laplace-Transformation mit Anwendun-
gen auf partielle Differentialgleichungen. Teil I endet mit dem
Argumentprinzip und dem Satz von Rouché. Die Darstellung ist
direkt, ohne unnétige Finessen und stets von zahlreichen Beispie-
len begleitet. Wo moglich, werden Ergebnisse physikalisch inter-
pretiert. Tm Teil IT (ca. 315 Seiten) werden in drei unabhingig
voneinander lesbaren Kapiteln von je ca. 100 Seiten spezielle an-
wendungsorientierte Themen behandelt. Kap. 5 ist den konfor-
men Abbildungen und ihrer Bedeutung fiir praktische Fragen ge-
widmet. Polygone und Kreishogenpolygone treten auf und eine
kurze Einfiilhrung in die Stromungstheorie. Der konforme Modul
eines Vierecks wird eingefithrt und physikalisch interpretiert. Die
Integralgleichung von Theodorsen wird abgeleitet und ihre nume-
rische Losung skizziert. Kap. 6 bringt die asymptotische Auswer-
tung von Integralen. Es beginnt mit illustrierenden Beispielen,

behandelt sodann das asymptotische Verhalten von Laplace-Inte-
gralen, Watsons Lemma und die Methode der stationdren Phase.
Die Methode des steilsten Abstiegs samt Anwendungen auf par-
tielle Differentialgleichungen werden eingehend geschildert.
Schliefllich werden in Kap. 7 Riemann-Hilbert-Probleme (RH)
eingehend theoretisch sowie in praktischer Anwendung behan-
delt. Zuniichst werden die Plemeljschen Formeln fiir Integrale
vom Cauchy-Typ abgeleitet, sodann ihre Anwendung auf RH-
Probleme fiir geschlossene Kurven und Bogen behandelt. Die
Losung singuldrer Integralgleichungen via RH-Problemen wird
diskutiert. Wertvoll sind die zahlreichen Anwendungen in der
Stromungstheorie, auf die Radon-Transformation und die Losung
von Integralgleichungen vom Abelschen Typ oder mit logarithmi-
schem Kern. Schliefllich werden einige Probleme fiir verallgemei-
nerte analytische Funktionen behandelt, das sind Funktionen,
welche (x) 0@/0z = A(z, 2) @ + B(z, ) @ in einem Gebiet genii-
gen. Die allgemeine Losung von (x) 148t sich in Integralform ge-
schlossen darstellen. Auch in Teil II ist die Darstellung erfreulich
straightforward®, theoretisch gut fundiert, aber immer mit Blick
auf praktische Anwendungen und mit vielen Beispielen und
Ubungsaufgaben versehen.

So eignet sich das Buch hervorragend fiir Studierende der An-
gewandten Mathematik, aber auch fiir Freunde der Funktionen-
theorie, die Anwendungen ihrer Disziplin kennenlernen wollen.
Da das Buch von LAWRENTIEW und SCHABAT (Methoden der
komplexen Funktionentheorie, Berlin 1967), obwohl im Inhalt
und in der Zielgruppe vergleichbar, nun schon 30 Jahre alt ist, so
ist das Erscheinen des vorliegenden Werkes sehr zu begriifien,
und es ist ihm eine weite Verbreitung zu wiinschen.

Gieflen D. GAIER
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