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The effect of ion and electron drifts on the existence of arbitrary amplitude solitary waves is studied
using Sagdeev’s pseudopotential method. It is found that if the electron drift velocity u, is finite,
solitary waves may exist for relatively large values of v /c, where v is the ion drift velocity and

¢ is the velocity of light.

I. INTRODUCTION

When the speeds of particles are comparable to those of
light, relativistic effects play an important part in the forma-
tion of solitary waves. For example, ions with very high
speed are frequently observed in the solar atmosphere and
interplanetary space. High energy ion beams also occur in
the plasma sheet boundary layers of the Earth’s atmosphere
and in the Van Allen radiation belts.'* Although there have
been some experimental’™® and numerical”® studies in this
field, comparatively few theoretical works exist on this sub-
ject. During the last two decades or so, some authors have
studied ion acoustic solitary waves in relativistic
plasmas.” " It was Roychoudhury and Bhattacharyya'* who
first found the exact pseudopotential for a relativistic plasma.
They, however, neglected the electron inertia. Later Kuehl
and Zhang'® showed that electron inertia restricts the region
for existence of solitary waves, and because of this restric-
tion relativistic effects on solitary waves are negligible. Re-
cently, Chatterjee and Roychoudhury'® extended their results
in the case of warm ions and found that finite ion tempera-
ture further restricts the region of existence of solitary waves.
They, however, like Kuehl and Zhang,'® neglected electron
drift. Relativistic effects on formation of solitons were stud-
ied by several authors using the reduction perturbation tech-
nique. Unfortunately, as pointed out by Kuehl and Zhang,"
most of these authors considered values of vy /c too large to
be permitted by analytical constraints if one neglects electron
drift effect. Very recently Kalita et al.'” studied weakly rela-
tivistic solitons in a cold plasma with electron inertia. Unfor-
tunately, their work also has some serious shortcomings.
They are:

(1) Their analysis is valid for low amplitude solitons only,
yet they give results for amplitudes of order unity or
more.

(2) They considered only weak relativistic effects, but val-
ues taken for vy /c (0.2—-0.5) are rather too large to be
weakly relativistic. Also, they have normalized the ve-
locities twice. This means ¢, the velocity of light, is
normalized to ¢, , the ion acoustic speed. So any numeri-
cal value of ¢ is related to the electron temperature,
which is not mentioned in their work. When neglecting
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terms of order higher than (v,/c)? it is not proper to
take into account the extremely small difference u,/c
—vole~107".

(3) In the limit #y—0 and v,—0 their results do not repro-
duce the well-known nonrelativistic results. In fact, even
in the limit u#y— 0, their results do not reproduce the
small amplitude relativistic results of Kuehl and
Zhang."

To overcome these drawbacks and to study large ampli-
tude solitary waves, we use here Sagdeev’s pseudopotential
approach to study the effects of ion and electron drifts on the
ion acoustic solitary waves.

We found, somewhat surprisingly, that it was easier to
deal with the exact relativistic terms than to use weak rela-
tivistic assumptions. Our work can be considered an exten-
sion of the work of Kuehl and Zhang'® and reproduces their
result (apart from a misprint in their paper) in the limit
uy—0. However, our conclusion is very much different from
that of Ref. 15. We found that the presence of the u term
allows rather large values of vy/c and uy/c for solitary
waves. We found an analytic constraint on the soliton veloc-
ity in terms of the electron inertia parameter u(=m,/m;).
The plan of the paper is as follows.

In Sec. Il we write down the basic equations and derive
the pseudopotential . In Sec. III we discuss the conditions
for existence of solitons. In Sec. IV a small amplitude ex-
pansion of ¢ is given. Our results are also compared with
those of Ref. 15, in the limit #,—0. Section V contains
discussion and conclusion.

Il. BASIC EQUATIONS AND PSEUDOPOTENTIAL
APPROACH

The system of equations governing the plasma in unidi-
rectional motion is given by
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Here, n, n, are the ion and electron densities, respectively,
normalized to #,,, the unperturbed electron density.

Also, p=m,/m;, m,,m; being the electron and ion
masses, respectively, v, «, and ¢ are the ion electron fluid
velocities and the velocity of light, respectively.

The velocities are normalized to the ion acoustic speed
c.=(kT,/m;)"?, where k is the Boltzmann’s constant and
T, is the electron temperature. The potential ¢ is normalized
to kT, , e being the electron charge. The spatial coordinate x
is normalized to the Debye length, while time ¢ is normalized
to the ion plasma period.

To obtain a solitary wave solution, one makes the depen-
dent variables depend on a single independent variable, say
E=x—Vt, where V is the velocity of the solitary waves.

After writing Eqs. (1)—(5) in terms of £, one gets ordi-
nary differential equations, which can be solved easily. The
integration of the above equations yield the following:

n=(V—v)/(V—uo), (6)

d=Vu—c*)y—(Vuy—c?)y’, (7)

n,=(V—uy)/(V—u), (8)
_—
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where Y'=(1-v,y/c?) ™" and y2=(1—ue/c?) "2
In deriving Egs. (6)—(9), we have used the following
boundary conditions:

v—vg, u—uy, ¢p—0, n—1, n,—1as E—oo.

To obtain the pseudopotential ¢, we notice that Eq. (5) can
be written as

¢ oy

w i 1
where ( ¢), the pseudopotential, can be written as

P(P)= (b)) + h(b). (1)
From Eq. (5) it follows that

¢f(¢)=fnd¢, (12)

dfg(eﬁ):—jngdcﬁ- (13)

Since n and n, are explicit functions of v and u, respec-
tively, integrations (12) and (13) are evaluated with respect
to u and v, using the functional form of ¢ as given in Eq. (7)
and (9). After a few algebraic steps we obtain:

P =(V=vo)(vy—v07"), (14)
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(V—uyp)
V—u

+ 1= (V=ug) puugy.
(15)

In the limit #y—0, our results completely agree with those
of Ref. 7.

o= (V—ug)puy.—

lll. SOLITARY WAVE SOLUTION

Existence of soliton-like solutions of Eq. (10) will be
determined by the form of the pseudopotential ¢ The con-
ditions for the existence of soliton are

2
a—f <0 (16)
¢ $=0
and
i hy)=>0, (16b)

where ¢, is the value of ¢, beyond which (¢) becomes
complex. Condition (16) is the condition for existence of a
potential well. Condition (16b) ensures that a particle mov-
ing in a pseudopotential well will be reflected back at ¢
=¢,., where ¢, is the value at which ¢(¢) cuts the ¢ axis
from below.

Now Eq. (7) can be inverted and v, u can be written in
terms of ¢. The expression for v is

V= (¢’ = AP =TF (@A)
v:

V2P + (¢! —4,)? ’ )

where

Ay=9"(1—Vuy/c?) (18)
and

¢'=dlc. (19)
It is seen from Eq. (17) that

dp=(c*—Vuy)y’—c*(1 - V?/c?) e (20)
Again, using the results
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and
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one finds that
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Hence, condition (16) reduces to

(V=00)*>(¥) (1= () (V=u0)?) - (24)
If one takes vy~u, then Eq. (24) can be simplified to give

(V=v0)> ol (25)
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FIG. 1. Plot of 4 against ¢b. The solid line is for F'=51.47 and the broken
line is for '=51.48. In both cases v,=uy=50.

If one neglects relativistic effects, then one gets from Eq.
(25)

1
V—vy)>—F—. 26
( 0) N (26)
Hence, for finite w one gets solitary waves even for V—u,
<1 but

1
> .
v+

Also the poles of Eq. (23) occur at

1
V—u0=i\/——# ; (27)
Hence
V_UU——T#"'(HO_UU)- (28)

This shows that if uy=v,, there is no restriction on v,/c
and u,/c for occurrence of solitary waves (apart from the
obvious restrictions that v,/c<<1, u,/c<C). This result dif-
fers from that of Ref. 7 and is due to the presence of electron
drift. To show the limiting value of V' for relatively large
values of v, and u,, we have plotted in Fig. 1 (¢) against
¢ for vo=uy=50 and V=51.47 and 51.48, taking c/c,
= 1000, which corresponds to vy /c=0.05, vy, /c(=(kT,/
m,)""%)=0.043,

It is seen that for v<<51.48, a compressive soliton solu-
tion exists even for vy/c>vy,/c. In fact a soliton solution
exists for higher values of v /¢ also. But we emphasize here
that for such large values of v /c the weak relativistic effect
assumption breaks down and one must find the exact pseudo-
potential, without the weak relativistic assumption, to study
the effects of large ion and electron drifts.

To test the inequality ¢ ¢,,)>0 numerically, we have
plotted ¢, against V'—u in Fig. 2. The solid line is for line
vo=1u,=40 and the dotted line is for vy,=uy=50.
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FIG. 2. Plot of ¢(¢,,) against V'—u,. Here o, is the value of ¢ beyond
which () becomes complex. The solid line is for u,=40, the broken line
is for uy=>50.

This shows that there exist critical values of V' —u, be-
yond which ¢4 ¢,,) becomes negative. The solitary wave so-
lution would not exist if ¥—u, exceeds these values.

IV. SMALL AMPLITUDE SOLITARY WAVES

To obtain small amplitude solitary waves that can be
compared to the solution of the KdV equation, we expand
/() in power series. Neglecting terms of order 0( %), and
noting that

__ _
i/f(ff’)—%—o at ¢=0
we can write
¢ o :
E*_Q*“¢_b¢’ 29
where
2 ly ] 3
a:—ai and b= 61!: (30)
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From Eq.(23) we have
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=— + e (31)
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Also
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To compare with the result of the reduction perturbation

technique, we put =N +dV, where dV is small compared
to .

(32)
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Then a can be written as

a=agta;,
where
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and
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If A is the linear ion acoustic velocity,'™'” then a, is identi-

cally zero. This value of a agrees with that of Ref. 15. Fi-
nally, the soliton solution for small amplitude soliton is
given by

22 h*(3/8
qsi Zb sec ( )1
where 8=2/\a is the width and 3a/2b is the amplitude of
the soliton.

V. DISCUSSION AND CONCLUSION

In this paper we have studied the effect of ion and elec-
tron drifts on the existence of solitary waves using Sagdeev’s
pseudopotential approach. It is found that, with finite elec-
tron drift, the restriction on the value of v, /¢ for the exis-
tence of solitary wave solutions, as found in Ref. 15, goes
away. However, for u,—0, our results reduce to the results
of Ref. 15. But, our results for small ¢ disagree with the
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small amplitude results of Kalita et al.'” Qur approach is
valid for arbitrary amplitude solitary waves and for relatively
large values of v /c.
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