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Estimates for Green’s Function
in Terms of Asymmetry

Tilak Bhattacharya and Allen Weitsman

Abstract

Let Ω be a bounded plane region containing the origin, and
having area π. If G(z) denotes the Green’s function for Ω, with
pole at 0, and G∗(r) its decreasing rearrangement, then it is
shown that G∗(r) < log(1/r) − Cα2 for an interval of r, where
α is the asymmetry of Ω.

1 Introduction

In this work we continue our study of obtaining bounds on various
domain quantities, in terms of asymmetry. For a compact set Ω, in
IRn, let V (Ω) denote the volume of Ω and B(x, ρ) be the ball of radius
ρ, centered at x. Let ρ be such that V (B(0, ρ)) = V (Ω); then we define
the asymmetry α = α(Ω) by

α = inf
x

V (Ω\B(x, ρ))

V (Ω)
, ρ = (V (Ω)/V (B(x, 1)))1/n.(1.1)

It is clear that α = 0 when Ω is a ball. In IR2, we shall use A(Ω) to
denote the area of Ω.

The works, in [2], [6], [7], [8], and [9] relate asymmetry to various
quantities such as the isoperimetric constant, capacity and the first
eigenvalue of the Laplacian. In [8], a sharp lower bound for logarithmic
capacity, in terms of asymmetry, was deduced by relating capacity to
moment of inertia. Such a lower bound was also shown to hold for p-
capacities of condensers in [2] by very different methods. The analysis
in [2] was based on estimates for subcondensers, possessing special
geometry, and was also shown to yield a lower bound for logarithmic
capacity similar to the one in [8]. For a detailed survey of the field
regarding capacity and asymmetry, and the work done in [7], [8] and
[9], see [2]. Our effort in this work will be to deduce upper bounds,
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in terms of asymmetry, for Green’s function of a bounded domain in
IR2. The connection between this and conformal mapping of simply
connected regions is obvious, since the Green’s function for such an
Ω can be written as − log |f |, where f is the conformal mapping of Ω
onto the unit disk. On the other hand, the estimates on the Green’s
function are intimately connected to the eigenvalue problem which is
still open. We shall give a brief discussion of this in §8

2 Notations and the main result

Given a Borel set S ∈ IR2, let A(S) denote its area and L(∂S) the
perimeter of its boundary ∂S. Throughout this work, Ω ⊂ IR2 will
be a bounded domain with boundary ∂Ω a finite union of rectifiable
curves. We will also assume that the origin 0 ∈ Ω. Let R > 0 be such
that A(Ω) = πR2; and G(x), x ∈ Ω, denote Green’s function of Ω with
pole at 0. That is

G(x) = log
R

|x| + h(x), x ∈ Ω,(2.1)

where h(x) is harmonic in Ω and is such that G(x) vanishes continu-
ously on ∂Ω.

Also, let Ω∗ be the disk, centered at the origin 0, having the same
area as Ω. Clearly, the radius of Ω∗ is R. For t > 0, we set

F (t) = {x ∈ Ω : G(x) > t} and A(t) = A(F (t)).(2.2)

For x ∈ Ω∗, the radial functionG∗(x) = G∗(|x|) will denote the sym-
metric decreasing rearrangement (Schwarz symmetrization) of G(x). It
is defined as

G∗(x) = G∗(|x|) = inf{t ≥ 0 : A(t) < π|x|2} 0 < |x| ≤ R.(2.3)

It is well known that [1; p 60],

0 ≤ G∗(x) ≤ log
R

|x| , 0 < |x| ≤ R, x ∈ Ω∗.(2.4)

In this work we determine the effect of asymmetry on (2.4). More
precisely, we prove
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Theorem 1 : Let Ω ⊂ IR2 be a bounded domain with 0 ∈ Ω, and
α = α(Ω) its asymmetry. Let R > 0 be such that A(Ω) = πR2 . Then,
for every 0 < δ < 1, exists a constant C = Cδ > 0, depending only on
δ, such that

G∗(x) ≤ log
R

|x| − C α2, 0 < |x| <
√

(1− δ)R.(2.5)

We adapt the method developed in [2] to prove Theorem 1. In what
follows, k will stand for a small positive constant to be determined in
Sections 3 and 6. We will assume that

0 < k < δ/500 < 10−3.(2.6)

Let ∂F (t) denote the boundary of the set F (t), and L(∂F (t)) be its
length . Since G is real analytic in Ω\{0}, the gradient DG vanishes
only on a discrete set. Thus ∂F (t) is an analytic curve except possibly
for countably many t’s, and A(t) is decreasing and continuous.

As in [2], we will consider the following two possibilities.

Case 1 : For all t such that

(1− δ)πR2 ≤ A(t) ≤ (1− δ/2)πR2.(2.7)

we have
L(∂F (t))2 ≥ 4π(1 + kα2)A(t),(2.8)

that is, asymmetry propagates inwards.

Case 2 : There exists a value T such that

(1− δ)πR2 ≤ A(T ) ≤ (1− δ/2)πR2.(2.9)

and
L(∂F (T ))2 < 4π(1 + kα2)A(T ).(2.10)

When this situation occurs, we will say that asymmetry fails to prop-
agate. We may take ∂F (T ) to be analytic.

We will also have occassion to use the Bonnesen formulas [11; pp 3-
4]. LetD be a simply connected planar domain bounded by a rectifiable
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Jordan curve. Let Ro and Ri denote the outradius and inradius of D
respectively. Then

L(∂D)2 − 4πA(D) ≥ π2(Ro − Ri)
2,(2.11)

2πRo ≤ {L(∂D) +
√
L(∂D)2 − 4πA(D)},(2.12)

and
2πRi ≥ {L(∂D)−

√
L(∂D)2 − 4πA(D)}.(2.13)

Our strategy will consist in proving the estimate (2.5) in Cases 1 and
2. We will make considerable use of the coarea formula and the isoperi-
metric inequality. Our proof in Case 2 will also employ a perturbation
result for capacities of condensers. A version was first proven in [2].

Remark 2.1: We will prove Theorem 1 for R = 1 and δ = 0.2.
The proof undergoes only minor modifications for δ < 0.2 and the full
strength of the result in (2.5) for R 6= 1 may be recovered by scaling.

We have divided our work as follows. In Section 3, we prove The-
orem 1 in Case 1. The proof in Case 2, when Ω is simply connected,
is spread over Sections 4, 5 and 6. In Section 7, we fill in the details
of the proof of Theorem 1 when Ω is multiply connected. Finally, in
Section 8, we present a brief discussion regarding the connections of
this work to the eigenvalue problem for the Laplacian.

3 Proof of Theorem 1 in Case 1

As noted above, for the rest of this work, we take R = 1 and δ = 0.2
in (2.6), (2.7), (2.8) and (2.9).

We now prove Theorem 1, i.e., when asymmetry propagates inwards
in the sense of (2.7) and (2.8). By applying the divergence theorem, the
coarea formula, and Hölder’s inequality we may conclude that outside
a set of at most countably many t′s,∫

∂F (t)
|DG| = 2π, and

dA

dt
= −

∫
∂F (t)

1

|DG| , (t <∞),(3.1)

and

L(∂F (t))2 =

(∫
∂F (t)

1

)2

≤
(∫

∂F (t)
|DG|

)(∫
∂F (t)

1

|DG|

)
(3.2)
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= −2π
dA

dt
,

where A = A(t). From (2.7), (2.8), (3.1) and (3.2), it follows that for
all t’s such that 0.8π ≤ A(t) ≤ 0.9π,

4π(1 + kα2)A(t) ≤ −2π
dA

dt
.

Thus

− 1

2(1 + kα2)A

dA

dt
≥ 1.(3.3)

Since A(t) is decreasing and continuous, − log A(t) is increasing. Thus
integrating (3.3), over the interval [A, 0.9π] with A ≥ 0.8π, we get

t(A)− t(0.9π) ≤ 1

2(1 + kα2)
log

0.9π

A
.(3.4)

Employing the usual isoperimetric inequality (instead of (2.8)) in (3.2),
we obtain that

(i) whenever 0 < A(t) < 0.8π,

t(A)− t(0.8π) ≤ 1

2
log

0.8π

A(t)
(3.5)

and

(ii) when 0.9π ≤ A(t) < π,

t(A)− t(π) ≤ 1

2
log

π

A(t)
.(3.6)

Recall that t(π) = 0; taking A = 0.9π in (3.6) and then adding (3.4)
to the resulting inequality in (3.6) we find that for 0.8π ≤ A ≤ 0.9π,

t(A) ≤ 1

2
log

1

0.9
+

1

2

1

1 + kα2
log

0.9π

A

=
1

2

(
log

π

A
− kα2

1 + kα2
log

0.9π

A

)
.(3.7)

Now take A = 0.8π in (3.7). This gives

t(0.8π) ≤ 1

2

(
log

1

0.8
− kα2

1 + kα2
log

0.9

0.8

)
.
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Employing this estimate for t(0.8π) in (3.5) results in

t(A) ≤ 1

2

(
log

0.8π

A
+ log

1

0.8
− kα2

1 + kα2
log

0.9

0.8

)

=
1

2

(
log

π

A
− kα2

1 + kα2
log

0.9

0.8

)
,(3.8)

for 0 < A < 0.8π.

For 0 < A < 0.85π we may then deduce the following estimate from
(3.7) and (3.8), namely,

t(A) ≤ 1

2

(
log

π

A
− kα2

1 + kα2
log

0.9

0.85

)
.(3.9)

Let B(0, r) denote the disk with πr2 = A(t). Noting that t(A) = G∗(r),
we have

G∗(r) ≤ log
1

r
− kα2

1 + kα2
log

0.9

0.85
,(3.10)

for 0 < r <
√

0.85. Theorem 1 will follow once a value for k is chosen.

The remainder of the proof is devoted to Theorem 1 in Case 2, i.e.,
when (2.9) and (2.10) hold. We will make some preliminary reductions
before presenting the proof. A part of the effort will be invested in
describing the geometry of the level sets F (t) involved in this case. The
proof will follow from a perturbation result for capacities of condensers.

4 Preliminary Reductions

We will first assume that Ω is simply connected. The analysis contin-
ues to apply with minor modifications in the event that Ω is multiply
connected. These details are presented in Section 7 .

The following lemma, though not difficult to prove, is essential for
the construction of a condenser with special geometry. A lower bound
for its 2-capacity will be key to the proof of Theorem 1 in Case 2.

Lemma 4.1 : Either there exists a t = t0 > 0 with

A(t0) > π(1− kα2)(4.1)
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and
L(∂F (t0))

2 < 4π(1.01)A(t0)(4.2)

or Theorem 1 holds.

Proof : Suppose that (4.2) were false for all t’s such that (4.1) holds,
i.e.,

L(∂F (t))2 ≥ 4π(1.01)A(t), whenever π(1− kα2) < A(t) < π.

Then using the above mentioned inequality, in (3.2), we get for
π(1− kα2) ≤ A(t) ≤ π,

− 1

2(1.01)A

dA

dt
≥ 1.(4.3)

Integrating (4.3) over the interval [π(1− kα2), π] we get that

t(π(1− kα2)) ≤ 1

2(1.01)
log

1

1− kα2
.(4.4)

Now employing the usual isoperimetric inequality in (3.2) and integrat-
ing over the interval [A, π(1 − kα2)] ( for example, see (3.5)) we find
that

t(A)− t(π(1− kα2)) ≤ 1

2
log

π(1− kα2)

A
.(4.5)

Adding (4.4) and (4.5) and recalling (2.6) we get that for 0 < A <
0.85π,

t(A) ≤ 1

2

(
log

π

A
− 0.01

1.01
log

1

1− kα2

)
,

which again implies Theorem 1.

We now continue the proof of Theorem 1 under the assumption that
there exists a value of t such that both (4.1) and (4.2) hold. In what
follows, we take t0 to always denote such a value and this will stay fixed
throughout. Let T be as in (2.9) and (2.10). It readily follows from
(2.6) and (2.9) that

T > t0.(4.6)

We now describe the geometry of the set F (T ). Since G(x) has only
one singularity, the level sets F (t), for all t, are simply connected by
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the maximum principle. With A(t) = A(F (t)), set R =
√
A(t0)/π and

ρ =
√
A(T )/π; it is easily seen from (2.6), (2.9) and (4.1) that

√
0.8 ≤ ρ ≤

√
0.9 and

√
0.999 < R < 1.

It follows from the Bonnesen formulas in (2.11) - (2.13) that ∂F (T ) is
contained between two circles C1 = {x : |x− xo| = Ro} and C2 = {x :
|x− xi| = Ri}, where Ro and Ri are the outradius and the inradius of
F (T ) respectively. Thus,

0 ≤ Ro −Ri ≤ 2

√
kA(T )

π
α = 2

√
kαρ ≤ 2

√
kα,(4.7)

Ro ≤
L(∂F (T ))

2π
+

√
kA(T )

π
α ≤ (

√
1 + kα2 +

√
kα)

√
A(T )

π

≤ (1 + 2
√
kα)

√
A(T )

π
= (1 + 2

√
kα)ρ

Ri ≥
L(∂F (T ))

2π
−
√
kA(T )

π
α ≥ (1−

√
kα)

√
A(T )

π
= (1−

√
kα)ρ,

where we have used (2.10) to calculate Ro and the usual isoperimetric
inequality to estimate Ri. Also, from (4.7),

|xo − xi| ≤ Ro −Ri ≤ 2

√
kA(T )

π
α = 2

√
kρα ≤ 2

√
kα.(4.8)

We set
ε = 6

√
k α.(4.9)

Now, from (4.7), (4.8), (2.6) and (2.9), it follows that |xo−xi| < Ri.
Since xi ∈ F (T ), we have that xo ∈ F (T ). Thus it is easily reasoned
from (4.7) that F (T ) ⊂ B(xi, R̄o) with

R̄o ≤ 2Ro −Ri ≤ (1 + 5
√
kα)ρ ≤ 1.11.(4.10)

We will now use (2.12) to estimate the outradius R̂o of F (t0). It follows
from (4.1) and (4.2) that

R̂o ≤ (
√

1.01 +
√

0.01)

√
A(t0)

π
≤ 1.11R.
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If we use (2.6), (2.9), (4.1) and (4.7), we find that F (t0) ⊂ B(xi, R̃o)
where

R̃o ≤ 2R̂o − Ri ≤ 2.22R− (1−
√
kα)ρ ≤ 1.40.(4.11)

The estimate in (4.11) follows quite easily from the observation that

B(xi, Ri) ⊂ F (T ) ⊂ F (t0) ⊂ B(xi, R̃o). Again, with xi as in (4.8), it
follows from (4.1), (2.6) and (1.1) that if

β =
A(F (t0)\B(xi, R))

A(t0)
, R =

√
A(t0)/π,(4.12)

then

β ≥ A(Ω\B(xi, R))−A(Ω\F (t0))

π

≥ A(Ω\B(xi, 1))− A(Ω\F (t0))

π
≥ α− kα2

≥ α/2(4.13)

Let Γ denote the condenser Γ(F̄ (T ), IR2\F (t0)) whose inner set is
F̄ (T ) and whose outer set is IR2\F (t0). Here S̄ stands for the closure of
a set S. The following then summarizes the description of the geometry
of the condenser Γ. From (2.6), (2.9) and (4.7) - (4.11), we see that

(i) B(xi, Ri) ⊂ F (T ) ⊂ B(xi, R̄o),

(ii) F (t0) ⊂ B(xi, R̃o),

(iii) R̄o −Ri ≤ 4
√
kαρ ≤ 4

√
kα ≤ ε, where ε = 6

√
kα,

(iv) 4/5 ≤ 1− 6
√
kα ≤ Ri/R̄o ≤ ρ/R̄o,(4.14)

(v) 4/7 ≤ (1−
√
kα)ρ/1.40 ≤ Ri/R̃o

≤ ρ/R̃o ≤ ρ/R ≤
√

100

111
,

(vi) β = A(F (t0)\B(xi, R))/A(t0) ≥ α/2.

(vii) Ri ≤ ρ ≤ R̄oand R ≤ R̂o ≤ R̃o.

Let Cap(Γ) be the 2-capacity of Γ, i.e.,

Cap(Γ) = Cap2(Γ) = infw

∫
IR2
|Dw|2dxdy,(4.15)
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where w is absolutely continuous on IR2 and takes the value 1 on F̄ (T )
and 0 on IR2\F (t0). The minimizer v is harmonic, in F (t0)\F̄ (T ),
and is given by (G − t0)/(T − t0). With ε, xi, β as above, and v =
(G− t0)/(T − t0) we now prove a perturbation result for the 2-capacity
of the condenser Γ.

5 A general perturbation result.

Before proving the perturbation result for 2-capacities of condensers,
we will first describe a new type of symmetrization first introduced in
[2]. The version, we use in this work, differs from the one in [2] in
that it is designed to handle inward propagation of asymmetry. In the
current situation we redistribute the outer set instead of the inner set
as was done in [2]. We first describe this symmetrization in a general
setting and then apply this to obtain a perturbation type result for the
2-capacity of condensers with special geometry ( see the last paragraph
of §4).

Let O and Q be two bounded open sets in IR2. We assume that (i)
the origin 0 lies in O, (ii) Ō ⊂ Q, and (iii) ∂O and ∂Q are unions of
finitely many Lipschitz curves. The requirement in (i) is purely for the
ease of presentation of details and bears no relation to the assumption

in Theorem 1. Let ρ =
√
A(O)/π and R =

√
A(Q)/π.

For each θ ∈ (−π, π], let J(θ) = {reiθ : 0 ≤ r} be the ray from the
origin making an angle θ with the positive x-axis. For a given value of
θ, let

J(θ) ∩Q = [r0, r1(θ)) ∪j≥1 (r2j(θ), r2j+1(θ)), (r0 = 0),

the intervals being pairwise disjoint. We now introduce the following
quantities necessary to give a redistribution of the area of Q relative
to B(0, R).

Set

s(θ) = sup{r : reiθ ∈ J(θ) ∩O}
t(θ) = inf{r : reiθ ∈ J(θ) ∩ ∂Q}

= sup{r : [0, r) ⊂ J(θ) ∩Q},
ŝ(θ) = sup{r : reiθ ∈ J(θ) ∩O, r < t(θ)},(5.1)

t̂(θ) = inf{r : reiθ ∈ J(θ) ∩ ∂Q, r > s(θ)}
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= sup{r : [s(θ), r) ⊂ Q},
N = {reiθ ∈ Qc : s(θ) > t(θ), t(θ) < r < s(θ)}
E = {θ : J(θ) ∩N 6= ∅} = {θ : s(θ) > t(θ)}.

Here Qc stands for the complement of Q. It is useful to observe that
s(θ) ≥ ŝ(θ), t̂(θ) ≥ t(θ) with equality iff s(θ) < t(θ). We now distin-
guish two possibilities in the redistribution of Q.

Case A: Suppose first that t̂(θ) ≥ R. Define ξ(θ) ≥ t̂(θ) by

ξ(θ)2 = t̂(θ)2 +
∑
i∈I

(r2i+1(θ)
2 − r2i(θ)

2),(5.2)

where I = {i : r2i(θ) ≥ t̂(θ)}. Then ξ(θ) ≥ R.

Case B: If t̂(θ) < R, we distinguish two subcases to define ξ(θ) ≥ t̂(θ)
and λ(θ) ≥ R.

(i) If Reiθ ∈ J(θ) ∩Q, i.e., r2j(θ) < R < r2j+1(θ) for some j, then

ξ(θ)2 = t̂(θ)2 +R2 − r2j(θ)
2 +

∑
i∈L

(r2i+1(θ)
2 − r2i(θ)

2),(5.3)

where L = {i : t̂(θ) ≤ r2i(θ) < r2i+1(θ) ≤ r2j(θ)}, and

λ(θ)2 = r2j+1(θ)
2 +

∑
i∈M

(r2i+1(θ)
2 − r2i(θ)

2),(5.4)

where M = {i : r2i(θ) ≥ r2j+1(θ)}. Then ξ(θ) ≤ R and λ(θ) > R.

(ii) If Reiθ ∈ J(θ)\Q, we set

ξ(θ)2 = t̂(θ)2 +
∑
i∈L′

(r2i+1(θ)
2 − r2i(θ)

2),(5.5)

where L′ = {i : t̂(θ) ≤ r2i(θ) < r2i+1(θ) < R}, and

λ(θ)2 = R2 +
∑
i∈M ′

(r2i+1(θ)
2 − r2i(θ)

2),(5.6)

where M ′ = {i : r2i(θ) ≥ R}. Then ξ(θ) ≤ R and λ(θ) ≥ R.

Now suppose that 0 < Ri ≤ ρ ≤ R̄o, and 0 < R ≤ R̃o are such that
B(0, Ri) ⊂ O ⊂ Ō ⊂ B(0, R̄o) and Q̄ ⊂ B(0, R̃o). Then (5.1)-(5.6)
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imply

(i) Ri ≤ ŝ(θ) ≤ s(θ) ≤ R̄o,

(ii) Ri ≤ t(θ) ≤ t̂(θ) ≤ ξ(θ) ≤ R̃o,

(iii) s(θ) < t̂(θ) ≤ ξ(θ),

(iv) Ri ≤ ŝ(θ) < t(θ) < s(θ) ≤ R̄o, θ ∈ E,(5.7)

(v) if t̂(θ) < R then ξ(θ) < R and λ(θ) ≥ R,

(vi) if t̂(θ) ≥ R then ξ(θ) ≥ R,

(vii) Ri ≤ ρ ≤ min(R, R̄o) and R ≤ R̃o.

(viii) ŝ(θ) ≤ s(θ) and t(θ) ≤ t̂(θ) with equality iff s(θ) < t(θ).

It is helpful to note that Ri ≤ infθ{sup{r : [0, r) ⊂ J(θ) ∩ O}} and
R̄o ≥ supθs(θ).

Based on (5.1)-(5.7), we now make some easy but useful observa-
tions. Suppose that β = A(Q\B(0, R))/A(Q). Then by consideration
of B(0, R)\Q, (5.7) (v) and (vi),

0 < 2πR2

(
β − A(N ∩B(0, R))

πR2

)
≤

∫
{ξ(θ)≤R}

R2 − ξ(θ)2dθ

≤ 2πR2β.(5.8)

By consideration of Q\B(0, R), (5.7) (v) and (vi),

2πR2β ≤
∫
{ξ(θ)≥R}

ξ(θ)2 −R2dθ +
∫
{t̂(θ)<R}

λ(θ)2 −R2dθ

≤ 2πR2

(
β +

A(N\B(0, R))

πR2

)
.(5.9)

Subtracting (5.8) from (5.9), we get

0 ≤
∫ π

−π
ξ(θ)2 − R2dθ +

∫
{t̂(θ)<R}

λ(θ)2 −R2dθ ≤ 2A(N).(5.10)

By adding (5.8) and (5.9), and employing (5.7) (v), we get∫ π

−π
|ξ(θ)2 − R2|dθ ≤ 4πR2

(
β +

A(N)

πR2

)
.(5.11)

Also define µ and µ̄ by

2πR2µ =
∫ π

−π
ξ(θ)2 −R2dθ, 2πR2µ̄ =

∫ π

−π
s(θ)2 − ρ2dθ.(5.12)
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By (5.1), (5.7) (v) and (5.10),

µ ≤ A(N)

πR2
and µ̄ ≥ 0.(5.13)

We now prove a perturbation result for 2-capacity.

Let O and Q be as before, satisfying B(0, Ri) ⊂ O ⊂ Ō ⊂ B(0, R̄o),
and
O ⊂ Ō ⊂ Q ⊂ Q̄ ⊂ B(0, R̃o). Let ρ =

√
A(O)/π and R =

√
A(Q)/π.

Then
0 < Ri ≤ ρ ≤ R̄o and R ≤ R̃o. Assume further that

(i) for a fixed ε, 0 < ε ≤ 1/2, (1− ε)R̄o < Ri ≤ ρ ≤ R̄o,

(ii) 1/2 ≤ min{Ri/R̃o, Ri/R̄o, ρ/R}
≤ max{Ri/R̃o, Ri/R̄o, ρ/R} ≤ 1,(5.14)

(iii) for a fixed δ, 0 < δ ≤ 1/2, 1/4 ≤ (ρ/R)2 ≤ 1/(1 + δ) < 1.

Let Γ denote the condenser Γ(Ō, IR2\Q); set

I = Cap2(Γ) = inf
u

∫
Q\Ō
|Du|2dxdy,

where u is absolutely continuous and takes the value 1 on IR2\Q and 0
on Ō. Let v denote the minimizer. Then v is harmonic in Q\Ō and as-
sumes the appropriate boundary values. Let β = A(Q\B(0, R))/A(Q),

where R =
√
A(Q)/π (see line preceding (5.8)). We prove

Lemma 5.1: Let O, Q, ρ, R, Ri, R̄o, R̃o, β, ε and v be as described
above. Assume that (5.14) holds. Then for all sufficiently small ε > 0,
we have

I = Cap2(Γ) =
∫
Q\Ō
|Dv|2dxdy ≥ 2π

logR/ρ
+K0β

2 −K1ε
2 −K2εβ,

where K0, K1 and K2 are positive constants depending only on δ.

Proof: Throughout this proof Cj ’s will denote positive constants which
are either absolute or depend only on δ. We shall employ the sym-
metrization described above with the same notations as in (5.1)-(5.6).
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From (5.7) and (5.14) we see that

(i) 0 < t(θ)− ŝ(θ) ≤ R̄o − Ri ≤ εR̄o, θ ∈ E,
(ii) (1/e)2 < 1/4 ≤ min(s(θ)2/ξ(θ)2, ρ2/R2, R2

i /R̄
2
o, R

2
i /R̃

2
o),(5.15)

(iii) |ρ2 − s(θ)2| ≤ 2εR̄2
o,

(iv) 1− ε ≤ Ri/R̄o ≤ s(θ)/R̄o ≤ 1.

Now

I =
∫
Q\Ō

v2
r +

1

r2
v2
θ rdrdθ

≥
∫
Q\Ō

v2
r rdrdθ

≥
∫ π

−π

(
inf
z

∫
J(θ)∩{Q\Ō}

z2
r rdr

)
dθ,(5.16)

where the infimum is taken over z = z(r, θ) such that z = 1 on J(θ) ∩
(IR2\Q) and z = 0 on J(θ) ∩ Ō. The minimizer z̄ satisfies the one
variable Euler equation (rz̄′)′ = 0 in J(θ) ∩ {Q\Ō}. We will estimate
I by employing the symmetrization described above and obtaining a
lower bound for the inner integral on the right hand side of (5.16). We
do this by first solving for z̄ from the o.d.e. over the disjoint intervals
(s(θ), t̂(θ)) and (ŝ(θ), t(θ)), the latter occuring whenever s(θ) > t(θ),
i. e., when θ ∈ E (see (5.1)). Note that z̄ vanishes on the left end
points of these intervals and takes the value 1 on the right end points.
Also see (5.7). Thus a lower bound for I is obtained by calculating the
inner integral for this function z̄ over the above mentioned intervals.
Recalling the definition of E from (5.1), it follows from (5.16), (5.7)
and (5.1) that

I ≥
∫ π

−π

1

log(t̂(θ)/s(θ))
dθ +

∫
E

1

log(t(θ)/ŝ(θ))
dθ

≥
∫ π

−π

1

log(ξ(θ)/s(θ))
dθ +

∫
E

1

log(t(θ)/ŝ(θ))
dθ.(5.17)

If the second integral, on the right hand side of (5.17), is larger
than 4π/ log(R/ρ), then Lemma 5.1 follows trivially from (5.15) (ii).
Otherwise, ∫

E

1

log(t(θ)/ŝ(θ))
dθ ≤ 4π

log(R/ρ)
.
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But log(t(θ)/ŝ(θ)) ≤ (t(θ)/ŝ(θ)− 1); it then follows from (5.15) (i),
(5.7) (iv), (5.15) (ii), (5.14) (iii) that

measθE ≤
16πε

log(1 + δ)
= C1ε.

Recalling the definition of N from (5.1), (5.7) (iv) and (5.14) (i) yield

A(N) ≤ 32πε2

log(1 + δ)
R̄2
o = C2ε

2R̄2
o.(5.18)

Now from (5.17),

I ≥
∫ π

−π

1

log(ξ(θ)/s(θ))
dθ

= 2
∫ π

−π

−1

log(s(θ)2/ξ(θ)2)
dθ.(5.19)

To estimate (5.19) we note that the function f(x) = −1/ log x satisfies

(i) f(x) > 0, (0 < x < 1),

(ii) f ′(x) > 0, (0 < x < 1),(5.20)

(iii) f ′′(x) > 0, (1/e2 < x < 1).

We shall use (5.20) in the form

f(x) = f(x̄) + f ′(x̄)(x− x̄) +
f ′′(ζ)

2
(x− x̄)2,(5.21)

for some ζ ∈ (x, x̄) or (x̄, x). From (5.7) (iii) and (5.14) (iii), it follows
that s(θ)/ξ(θ) < 1 and 1/2 ≤ ρ/R ≤ 1/

√
1 + δ < 1. Then with

x̄ = ρ2/R2, it follows from (5.19), (5.20) and (5.21) that

I − 2π

logR/ρ
≥ 2

∫ π

−π

−1

log(s(θ)2/ξ(θ)2)
+

1

log(ρ2/R2)
dθ

≥ 2f ′(ρ2/R2)
∫ π

−π

(
s(θ)2

ξ(θ)2
− ρ2

R2

)
dθ(5.22)

+ C3

∫ π

−π

(
s(θ)2

ξ(θ)2
− ρ2

R2

)2

dθ.

The positive constant C3, in (5.22), results from the fact that (5.15)(ii)
implies that ζ ≥ min(s(θ)2/ξ(θ)2, ρ2/R2) ≥ 1/4 > 1/e2.
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Next we estimate the quantities

B =
∫ π

−π

s(θ)2

ξ(θ)2
− ρ2

R2
dθ, and D =

∫ π

−π

(
s(θ)2

ξ(θ)2
− ρ2

R2

)2

dθ.

We may rewrite B as

B =
∫ π

−π
s(θ)2

(
1

ξ(θ)2
− 1

R2

)
+
s(θ)2 − ρ2

R2
dθ

=
∫ π

−π
(s(θ)2 − ρ2)

(
1

ξ(θ)2
− 1

R2

)
(5.23)

+ ρ2

(
1

ξ(θ)2
− 1

R2

)
+
s(θ)2 − ρ2

R2
dθ.

By (5.12) and (5.13),

∫ π

−π

s(θ)2 − ρ2

R2
dθ ≥ 0.(5.24)

Also by (5.15) (iii), (5.7) (ii), (5.14) (ii) and (5.11),∣∣∣∣∣
∫ π

−π
(s(θ)2 − ρ2)

(
1

ξ(θ)2
− 1

R2

)
dθ

∣∣∣∣∣ ≤
∫ π

−π
|s(θ)2 − ρ2|

∣∣∣∣∣ξ(θ)2 −R2

ξ(θ)2R2

∣∣∣∣∣ dθ
≤ C4ε

R2

∫ π

−π
|ξ(θ)2 − R2|dθ

≤ C5ε

(
β +

A(N)

πR2

)
.(5.25)

By (5.13),

ρ2
∫ π

−π

(
1

ξ(θ)2
− 1

R2

)
dθ = ρ2

∫ π

−π

{
R2 − ξ(θ)2

R2ξ(θ)2
+
ξ(θ)2 −R2

R4
− µ

R2

}
dθ

= ρ2
∫ π

−π

(R2 − ξ(θ)2)2

R4ξ(θ)2
dθ − 2πµρ2

R2

≥ −2A(N)ρ2

R4
.(5.26)

Putting together (5.23), (5.24), (5.25) and (5.26) we have

B ≥ −2A(N)ρ2

R4
− C5ε

(
β +

A(N)

πR2

)
.(5.27)
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We now estimate D. It is easy to see that

1

2

(
s(θ)2

ξ(θ)2
− s(θ)2

R2

)2

≤
(
ρ2

R2
− s(θ)2

R2

)2

+

(
s(θ)2

ξ(θ)2
− ρ2

R2

)2

.(5.28)

Integrating with respect to θ and using (5.15) (iii) and (5.14), we have

∫ π

−π

(
ρ2 − s(θ)2

R2

)2

dθ ≤ 8πR̄4
oε

2

R4
= 8πε2

(
R̄o

Ri

Ri

ρ

ρ

R

)4

≤ C6ε
2.(5.29)

Using Hölder’s inequality,(∫
{ξ(θ)≤R}

R2 − ξ(θ)2dθ

)2

≤
(∫ π
−π |ξ(θ)2 − R2|dθ

)2
(5.30)

≤ 2π
∫ π
−π(ξ(θ)

2 −R2)2dθ.

Next∫ π

−π

(
s(θ)2

ξ(θ)2
− s(θ)2

R2

)2

dθ =
∫ π

−π

s(θ)4

ξ(θ)4R4

(
R2 − ξ(θ)2

)2
dθ

≥ inf
s(θ)4

ξ(θ)4R4

∫ π

−π

(
R2 − ξ(θ)2

)2
dθ.(5.31)

First employing (5.8) in (5.30) and (5.15) (ii) in (5.31), and then com-
bining the two estimates we see that

∫ π

−π

(
s(θ)2

ξ(θ)2
− s(θ)2

R2

)2

dθ ≥ C7

(
β − A(N)

πR2

)2

.(5.32)

Thus (5.28), together with the estimates in (5.29) and (5.32), yields

D =
∫ π

−π

(
s(θ)2

ξ(θ)2
− ρ2

R2

)2

dθ ≥ C8β
2 − C9ε

2 − C10
A(N)

πR2
.(5.33)

By the assumptions in (5.14) and the conclusions of (5.15), the posi-
tive constants C1 − C10 are either absolute or depend only on δ. The
estimates in (5.18), (5.27) and (5.33) when used in (5.22) yield the
estimate of the lemma, namely,

I ≥ 2π

logR/ρ
+K0β

2 −K1εβ −K2ε
2,

where K0, K1, K2, are positive constants depending only on δ and be-
come absolute once a value for δ is chosen.
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Remark 5.1: We intend to use Lemma 5.1 with F (T ) = O,F (t0) = Q
and xi = 0 (see Section 4 and (4.15)). It is easily verified, with ε =

6
√
kα (see (4.9)) and δ = 0.11, that (4.14) together with (2.6) implies

(5.14). Thus, with β = A(F (t0)\B(xi, R))/A(t0) ≥ α/2 (see (4.13)), it
is easily seen that there are absolute constants K > 0 and k1 > 0 such
that for k ≤ k1 we have the following lower bound in (4.15), namely,

Cap(Γ) ≥ 2π

logR/ρ
+Kα2.(5.34)

In Section 6, we work out the proof of Theorem 1 in Case 2.

6 Proof of Theorem 1 in Case 2

By (4.1), it follows that

1

2
log

A(Ω)

A(T )
=

1

2
log

π

A(T )
≥ 1

2
log

A(t0)

A(T )
= log

R

ρ
.(6.1)

Thus it is seen from (6.1), (5.34) and (4.15) with v = (G− t0)/(T − t0)
(see the last paragraph of §4) and k ≤ k1, that∫

F (t0)\F̄ (T )
|DG|2dxdy = (T − t0)2Cap2(Γ)(6.2)

≥ (T − t0)2

{
4π

log(π/A(T ))
+Kα2

}
.

We now estimate t0 in (4.1); recall that G(x) = t0 on ∂F (t0) (also see
(4.2)). Let Γ̄ be the condenser Γ̄(F̄ (t0), IR

2\Ω). By symmetrization [4;
p. 3] we find

Cap2(Γ̄) =
1

t20

∫
Ω\F̄ (t0)

|DG|2dxdy ≥ 4π

log(π/A(t0))
.

It follows from (4.1) that

t20 ≤
1

4π
log

1

1− kα2

∫
Ω\F̄ (t0)

|DG|2dxdy.(6.3)

An application of the divergence theorem yields∫
Ω\F̄ (t0)

|DG|2dxdy = t0

∫
∂F (t0)

∂G

∂n
= −t0

∫
|x|=r

∂G

∂r
(6.4)

= 2πrt0(
1

r
+O(1))→ 2πt0 as r → 0+.



ESTIMATES FOR GREEN’S FUNCTION 19

Employing (6.4) in (6.3) and noting (2.6), we find that

t0 ≤ kα2 ≡M.(6.5)

We see from (6.2), (4.13) and (2.9) that there is an absolute constant
C such that∫

Ω\F̄ (T )
|DG|2dxdy ≥

∫
F (t0)\F̄ (T )

|DG|2dxdy

≥ 4π(T − t0)2

log(π/A(T ))
(1 + Cα2).(6.6)

It is easy to check that (see (6.4)),∫
Ω\F̄ (T )

|DG|2dxdy = 2πT.(6.7)

We study two cases, namely, (i) T > M and (ii) T ≤ M , where M is
as in (6.5).

Case(i): Let T > M . Then from (6.6) and (6.7) we find that

4π(T − kα2)2

log(π/A(T ))
(1 + Cα2) ≤ 2πT.

Simplifying,

(T − kα2)2 ≤ T

1 + Cα2

1

2
log

π

A(T )
.

On expanding the left hand side and simplifying (we may take C < 1),
we have

T ≤ 1

2
(1− C

2
α2) log

π

A(T )
+ 2kα2.(6.8)

Recalling (2.9) we see that by taking k ≤ k2, k2 small enough, (6.8)
yields

T ≤ 1

2
(1− C̄α2) log

π

A(T )
,(6.9)

where C̄ is an absolute constant. Again with ρ =
√
A(T )/π ≤

√
0.9,

we get from (6.9) that

T ≤ (1− C̄α2) log
1

ρ
,
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i.e.,

G∗(ρ) ≤ (1− C̄α2) log
1

ρ
.(6.10)

We proceed now as in Section 3. We apply the usual isoperimetric
inequality to obtain (see (3.2) and (3.3))

dt

dA
≥ − 1

2A
.

For t > T ,

t− T ≤ 1

2
log

A(T )

A(t)
.

With r =
√
A(t)/π, we find

G∗(r)−G∗(ρ) ≤ log
ρ

r
.(6.11)

Combining (6.10) and (6.11), for 0 < r <
√

0.8 ≤
√
A(T )/π, we deduce

that

G∗(r) ≤ log
ρ

r
+ (1− C̄α2) log

1

ρ

= log
1

r
− C̄α2 log

1

ρ
.

Recalling (2.9) we obtain

G∗(r) ≤ log
1

r
− C̃α2, 0 < r <

√
0.8.(6.12)

Thus (6.12) implies Theorem 1 in Case (i).

Case (ii): We now consider the case T ≤ M , where M is as in (6.5).
Again, (6.11) holds for t > T , i.e., for 0 < r < ρ. Thus

t ≤ log
ρ

r
+ T ≤ log

ρ

r
+ kα2

= log
1

r
− log

1

ρ
+ kα2

≤ log
1

r
− 1

2
log

1

0.9
+ kα2.

Once again the estimate (2.5) in Theorem 1 holds for k small.

Thus Theorem 1 is completely proven for domains Ω that are simply
connected.
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7 The multiply connected case.

We now present details of the proof of Theorem 1 when Ω is multiply
connected. The proof in Case 1 undergoes no change. However, as the
study of the geometry of sets in Case 2 involves the use of Bonnesen
inequalities, we need to modify the calculations somewhat. The basic
aim is to ensure that the estimates of Section 4 continue to hold, with
minor modifications, and that the geometry of the condenser Γ is not
significantly altered (see (4.15)). Thus the result of Lemma 5.1 can
be applied even when Ω is multiply connected. This will in turn en-
sure that the analysis in Section 6 continues to hold thus yielding the
estimate (2.5) in Case 2.

Let us then begin by recalling the definitions of T and t0 (see (2.9),
(2.10), (4.1) and (4.2)). Firstly, T is such that

0.8π ≤ A(T ) ≤ 0.9π,(7.1)

and
L(∂F (T ))2 < 4π(1 + kα2)A(T ).(7.2)

Secondly, t0 is such that

(1− kα2)π ≤ A(t0) ≤ π,(7.3)

and
L(∂F (t0))

2 < 4π(1.01)A(t0).(7.4)

Noting that Green’s function G(x) has only one pole in Ω, it fol-
lows from the maximum principle that F (t) has only one component.
However, in general, F (t) would be multiply connected except, perhaps
when t is large. With some abuse of notation, let H(t) denote the holes
of F (t), i.e., the set F (t) ∪ H(t) is simply connected. Since T > t0,
F (T ) ⊂ F (t0). We now prove a lemma that will provide us with an
estimate for the perimeter and the area of the holes H(T ) of F (T ).

Lemma 7.1: Let D ⊂ IR2 be a bounded domain whose boundary ∂D
consists of a finite union of rectifiable curves. Let H denote the holes
of D, i.e., the set D ∪ H is simply connected. Suppose that for some
small δ > 0, we have

L(∂D)2 ≤ 4π(1 + δ)A(D).
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Then

L(∂H) ≤ δ

2
L(∂D) and A(H) ≤ δ2

4
A(D).(7.5)

Proof: Let S = D ∪ H ; then L(∂S) + L(∂H) = L(∂D), and A(S) =
A(D) + A(H). Thus,

L(∂D)2 = {L(∂S) + L(∂H)}2 ≤ 4π(1 + δ)A(D).

Expanding, we obtain

L(∂S)2 + 2L(∂S)L(∂H) + L(∂H)2 ≤ 4π(1 + δ)A(D).(7.6)

Applying the usual isoperimetric inequality for S and H , employing
A(D) ≤ A(S) and simplifying (7.6), we see that

2
√

(A(D) + A(H))A(H) + A(H) ≤ δA(D).

Thus,

A(H) ≤ δ2

4
A(D).(7.7)

Again using A(D) ≤ A(S), (7.6) yields

2L(∂S)L(∂H) + L(∂H)2 ≤ 4πδA(S) ≤ δL(∂S)2.

Finally,

L(∂H) ≤ δ

2
L(∂S) ≤ δ

2
L(∂D).

Thus (7.5) holds.

Our strategy for multiply connected domains is as follows. Set
B = F (T ) ∪ H(T ) and H = B ∩ H(t0), i.e., H denotes the holes
of F (t0) that lie in B. Note that H ⊂ H(T ). It is clear that B is
simply connected. Also set D = H ∪ F (t0). The motivation for this
choice of H follows from the observation that (7.2) and Lemma 7.1
imply that A(H) ≤ A(H(T )) ≤ k2α4 (see (7.8)). However, it is not
clear that A(H(t0)) can be bounded by such a term (see (7.4)). With
these modifications, we employ the methods of Section 4 to describe
the geometry of the condenser Γ′ = Γ′(B̄, IR2\D) and conclude (4.14).
Now, if Γ is the condenser Γ(F̄ (T ), IR2\F (t0)) then Cap(Γ) ≥ Cap(Γ′).
We use Lemma 5.1 to get a lower bound for Cap(Γ′). The desired
estimate for Cap(Γ) will then be shown to follow from this estimate for
Cap(Γ′).
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We now proceed with the calculations to estimate the inradius and
outradius of the set B = F (T ) ∪H(T ). Recall (7.1) and (7.2). By an
application of Lemma 7.1,

A(H(T )) ≤ k2α4

4
A(T ) and L(∂H(T )) ≤ kα2

2
L(∂F (T )).(7.8)

Call S = ∂F (T )\∂H(T ) = ∂B. Note that L(∂B) = L(S) ≤ L(∂F (T ))
and A(T ) ≤ A(B). If Ri and Ro denote the inradius and the outradius
of B respectively then (2.11), (2.12), (2.13), (7.1), (7.2) and (7.8) yield

π2(Ro − Ri)
2 ≤ L(∂B)2 − 4πA(B) ≤ L(∂F (T ))2 − 4πA(T ) ≤ 4πkα2A(T ).

Thus,

0 ≤ Ro −Ri ≤ 2

√
kA(T )

π
α ≤ 2

√
kα.(7.9)

Also,

Ro ≤
1

2π

{
L(∂B) +

√
L(∂B)2 − 4πA(B)

}
≤ 1

2π

{
L(∂F (T )) +

√
L(∂F (T ))2 − 4πA(T )

}

≤ 1

2π
L(∂F (T )) + α

√
kA(T )

π

≤ (1 + 2
√
kα)

√
A(T )

π
,(7.10)

and using the usual isoperimetric inequality for F (T ), we see

Ri ≥
1

2π

{
L(∂B)−

√
L(∂B)2 − 4πA(B)

}
≥ 1

2π

{
L(∂F (T ))− L(∂H(T ))−

√
L(∂F (T ))2 − 4πA(T )

}

≥
{
(1− kα2/2)−

√
kα
}√A(T )

π

≥ (1− 1.05
√
kα)

√
A(T )

π
.(7.11)

Clearly, there exist xo and xi in IR2 such that S is contained in the
region between the two circles Co = {x : |x− xo| = Ro} and Ci = {x :
|x− xi| = Ri}. It is easy to see from (7.9) that

|xo − xi| ≤ Ro − Ri ≤ 2
√
kα.(7.12)
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Set
ε = 6.5

√
kα.(7.13)

It is necessary to estimate the outradius R̂o of F (t0), which is same
as the outradius of F (t0) ∪H(t0). From (7.4) and Lemma 7.1, we see
that A(H(t0)) ≤ 0.0001A(t0) and L(∂F (t0)) ≤ 0.005L(∂F (t0)). Set
E = F (t0)∪H(t0). Using L(∂E) ≤ L(∂F (t0)), A(t0) ≤ A(E) and (7.4)
in (2.12), we find

R̂o ≤
1

2π

{
L(∂E) +

√
L(∂E)2 − 4πA(E)

}
≤ 1

2π

{
L(∂F (t0) +

√
L(∂F (t0)2 − 4πA(t0)

}

≤ {
√

1.01 +
√

0.01}
√
A(t0)

π

≤ 1.11

√
A(t0)

π
.

Let H = B ∩H(t0), i.e., H denotes the holes of F (t0) which lie in
B. Clearly, H ⊂ H(T ), and (7.8) implies

A(H) ≤ A(H(T )) ≤ k2α4

4
A(T ) ≤ k2α4

4
A(t0) ≤

π

4
k2α4.(7.14)

The setH need not contain all the holes of F (t0), and so (IR2\B)∩H(t0)

may be nonempty. Now set R =
√
A(t0)/π, ρ =

√
A(T )/π and D =

F (t0) ∪H . Define

R′ =

√
A(D)

π
, ρ′ =

√
A(B)

π
, and β ′ =

A(D\B(xi, R
′))

A(D)
,(7.15)

where xi is as in (7.12). In the event that Ω is multiply connected, xo
may not lie in F (t0). Observe that (7.1), (7.3) and (7.14) imply the
following, namely,

√
0.8 ≤ ρ ≤ ρ′ =

√
A(B)

π
=

√
A(T ) + A(H(T ))

π

≤ ρ
√

1 + (k2α4)/4,(7.16)

and

√
0.999 ≤

√
1− kα2 ≤ R ≤ R′ =

√
A(t0) + A(H)

π

≤ R
√

1 + (k2α4)/4.(7.17)
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We may now carry out the calculations in (4.10), (4.11) and con-
clude (4.14) (i) - (v) for the sets B and D. We list these for easy
reference. First note that (i) B(xi, Ri) ⊂ B ⊂ B(xi, R̄o), where R̄o ≤
2Ro − Ri ≤ (1 + 5.05

√
kα)ρ ≤ 1.12, and (ii) B ⊂ B̄ ⊂ D ⊂ B(xi, R̃o),

where R̃o ≤ 2R̂o −Ri ≤ 2.22R− (1− 1.05
√
kα)ρ ≤ 1.40.

Furthermore, (a) Ri ≤ ρ′ ≤ R̄o and R′ ≤ R̂o ≤ R̃o, (b) R̄o − Ri ≤
2(Ro − Ri) ≤ 4

√
kα ≤ ε, where ε = 6.5

√
kα, (c) (1 − ε) ≤ (1 −

6.1
√
kα) ≤ Ri/R̄o ≤ ρ′/R̄o ≤ 1, (d) 4/7 ≤ (1 − 1.05

√
kα)ρ/1.40 ≤

Ri/R̃o ≤ ρ′/R̃o ≤ ρ′/R′ ≤
√

0.9(1 + k2α4/4)/0.999 ≤
√

10001/11100.

Let Γ = Γ(F̄ (T ), IR2\F (t0)) denote the condenser consisting of the
pair F̄ (T ) and IR2\F (t0), and let Γ′ be the condenser Γ(B̄, IR2\D).
Then

Cap(Γ) ≥ Cap(Γ′).(7.18)

Now let β ′ be as in (7.15). We will now derive a lower bound for
Cap(Γ) of the type given by Lemma 5.1 by first calculating a lower
bound for Cap(Γ′). The final estimate for Cap(Γ) will follow from
(7.18). We apply now the symmetrization of Section 5 to the set D,
relative to B(xi, R

′). Taking δ = 0.1 we may verify (5.14) and (5.15)
for β ′, ε, ρ′, R′, Ri, R̄o and R̃o. Thus we may conclude the estimate in
Lemma 5.1 for Cap(Γ′), namely,

Cap(Γ′) ≥ 2π

log(R′/ρ′)
+K1β

′2 −K2ε
2 −K3εβ

′,(7.19)

where K1, K2, and K3 are absolute constants. Our intention is to
express the right hand side of (7.19) in terms of ρ,R, and α. By (7.16)
and (7.17), we see that

log
R′

ρ′
≤ log

R
√

1 + (k2α4)/4

ρ
≤ log

R

ρ
+
k2α4

8
.(7.20)

Recalling that
√

0.8 ≤ ρ ≤
√

0.9,
√

0.999 ≤ R ≤ 1 (see (7.1) and (7.3))
and log(1 + x) ≥ 2x/3 (0 < x < 0.5) , we see from (7.17) that for
k < k0, small, there is an absolute constant K4 such that

2π

log(R′/ρ′)
≥ 2π

log(R/ρ)
−K4k

2α4.(7.21)

Recall that the quantity β, in (4.12), is bounded below by α/2 (see

(4.13)). We now estimate β ′; set R̄ =
√
A(Ω ∪H)/π > 1. Note that
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D ⊂ Ω ∪H and so R̄ > R′; thus (1.1), (7.1) and (7.14) yield

β ′ =
A(D\B(xi, R

′))

A(D)

≥ A((Ω ∪H)\B(xi, R
′))− A((Ω ∪H)\(D))

A(Ω ∪H)

≥ A(Ω\B(xi, R̄))− A(Ω\F (t0))

B(xi, R̄)

≥ A(Ω\B(xi, 1))−A(B(xi, R̄)\B(xi, 1))−A(Ω\F (t0))

π(1 + k2α4)

≥ α− k2α4 − kα2

1 + k2α4
≥ α/2,(7.22)

where k is small. This gives us (4.14) (vi) for β ′.

It is clear from (7.18), (7.19), (7.20), (7.21) and (7.22) that there is
a k1 > 0, and an absolute constant K > 0, such that

Cap(Γ) ≥ 2π

log(R/ρ)
+Kα2.(7.23)

The rest of the proof now follows from the analysis in Section 6.

8 The eigenvalue problem.

The problem of ascertaining the dependence on asymmetry of the first
eigenvalue λ1 for the Laplacian

∆u+ λu = 0 in Ω, u = 0 on ∂Ω,(8.1)

seems more difficult than the corresponding problem for capacity, but
can be reformulated in terms of the Green’s function.

Conjecture: Let λ = λ1 be the first eigenvalue for (8.1), where Ω is a
bounded plane region. Then there exists a constant C such that

λ1 ≥ (1 + Cα(Ω)2)λ∗1,(8.2)

where λ∗1 = λ(Ω∗) is the first eigenvalue for the disk having the same
area as Ω.
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The ellipse shows that this conjecture, if true, is best possible. This
can be deduced from the expansion in [10; p.326]. At present, the best
result is due to Hansen and Nadirashvili [9], who showed that (8.2) is
true with exponent 3 in place of 2.

Using the fact that the solution to (8.1) can be written

u(z) =
λ

2π

∫
Ω
GΩ(z, ζ)u(ζ)dζ,

where GΩ is the Green’s function for Ω, it can easily be shown that
(8.2) would follow from the hypothetical inequality∫

Ω

∫
Ω
...
∫

Ω
GΩ(0, ζ1)GΩ(ζ1, ζ2)....GΩ(ζn−1, ζn)dζ1....dζn(8.3)

≤ (1− cα2)n
∫

Ω∗

∫
Ω∗
...
∫

Ω∗
GΩ∗(0, ζ1)GΩ∗(ζ1, ζ2)....GΩ∗(ζn−1, ζn)dζ1....dζn.

where Ω∗ is the disk of the same area as Ω. The case n = 1 in (8.3)
follows from Theorem 1.
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