BiE TRANSACTIONS ON AYSTEMS, MAN. AMD CYRLRNLTICE. WOL. 21 NCE 7, JL0Y 100

Lol

Theoretical Performance of a
Multivalued Recognition System

Deba Prasad Mamdal, C. A, Murthy, and Sankar K. Pal, fellow, [EEE

Abstract—A mullivalued cecopnition system was formulated by
the anthors which has the ahility of diseriminating the nroever-
lapping, and overlapping and no-class {ie., amhiguous/doohtiulj
repions snd of unalvzing the associated wacerfainties by pro-
viding oulput decisivns in [our stuies, oamely, s@ngle, firsi-
aecond, combined, und null choiccs, The singlec chotees corre-
spand to the nonoverlapping regions, whereas the overlapping
regions are reflected by the first-secomd and exvoabined chodees.
The null choices reflevl the portions ontslde the pattern classes
andior Lhe portions f the pattern classes uneovered by the
training samples, A theoretical analysis of rhese characteristics
and of the pecformance of the recopnition syvstem has been
provided in (he prescntl article. Il s been shovwm theoretically
thad with Lthe inecease in the stee of the leuiniop samples, the
estimates of the overlapping, oonoverlapping, and no-class re-
gions tend to their actnal sizes. AN analyticyl indings have becn
substantiated with experimentnl results varjous sitnations in one-
and {wo-dimensioonal [eulore spaces. Baves deciston boondaries
are always found o lie within the combined chofce mepion as
provided by the multivalued recognition system. The present
investigation, in twm, establishes analytically the jusiitication
o providing muithvaloed owiput decisions in tour states for
managing unceriaintiss arising from ambiguews rerions,

I INTRODLUCTIN

HE muldivalued recopgnition sysem. described by the
Tnmlmrs in [1]. decomwposes the fatore space basel on
spamneiric siracidre anad the relative position of the patiern
classes. and provides output 2s multiple choice for classcs
with their preforences, Tt classifics & sample cither as o single
chevice {posshiliny (o be only inoone class), or a5 a combined
chice (posaibility of belonging to more than one class with
swme: preference), or us o feeeseeond choree (possibilily of
belonging e more than one cluss with dileent pralerences),
or 25 a Bull chelce (possibiline of not belonping to any of the
classcs), The single clwices correspond to the nonoverlapping
regionys whoreus the overlupping regions are reilecied by the
Sirst-sevond and combined choices. e antl choices ceflect
the regions oulsile the pattern classes andfor the regions
of the pollern classes uncoversl by the Iraining samples
feven with its cxtended portions). Thus, the system has the
ability of diseiminating the overlapping and no-class e,
ambiguonsfdouifud) regions and of analvring the assoicared
uncertaintics by providing outpur i four states.

Tn this paper, a theometical analysis of the aforemenmtioned
characteristics and the performance of the recognition system
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is provided, Tnitizlly, the regions cormesponding o the four
oulpul. Tarms are determined snalylically and the estimates of
the nonoverlapping, overlapping, and ne-class rogions in the
feature space ate then detecmined. Varons possible silalions
in ome- and two-dimensional feature spages with two classes
are considered here. It has been shown that with the inereass in
the size of the wuining swmples, the estimates of the overlap-
ping, nonoverlapping, and ne-<class (null cheice) regions tend
o thweir actual siees,

All the unalvtical findings have been substantizted with cx-
perimental results, For a compurative smdy of the recognition
svstom with o conventional one, the Baves classifer [1] s
implemented on the considered varous data sets. The Bayes
thresholds hetween classes ane glways found to lic within the
cownbined choice region of the maltivalucd recopnition syslem.
The present investipation, in turm, analydcally e<ablishes the
justification of considering ontput devision in four states for
managing uncertaintics arising rom ambiguous regions.

A bref description of he recognition system [1] 15 furmished
in Section 1L Section 118 provides some theorems which are
usesl in the subsequent sections. 'The theorctival analysis of the
system in ene- and two-dimensiony] feanne spaces are deall
with in Sections [V and ¥, respectively. Section V1 contians
the conclusions,

T, MinrivalUEDR RECOGNITION Sysred [1]

The multivalucd recognilion system developed by Man-
dal. Murthy, and Pal is desceibed here in briel. The
syslemn hax the capability of handling  variows input par-
werns and it orovides multiple choice for classes as the
output  decision. For describing the system, let ws con-
sider an A class O Q- Oy -0 and N Tewiure
[Fy 8o, - Fr-oo ) prolens, 'The block disgram of the
reognifon sysem is shown in Fig, LT censists of two parts,
nameky, fearning and fuzmy processer. The learning scctien
basically decompases the entite featire space mio some s
siebdewmerines and fiels a relational mams, The Tuzzy processor
pses the relational matrix in the modifed compositional rle
of inference [3] to decide shoul vhe class or classes in which
a patiern X may helong. The aperations of various Blocks in
Fip. | are discussed balow,

A Learring

The lcaming section has two blacks, namely, preprocessing
and reditional metrix vatimator. The space siebdomaing in the
Teaure space are ohiamed o the preprocessing dlock and the
hlack relational matrix estimator finds a relational matrix It
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Fig. 1. Block diagram of the multivalued recognition system [1].

Initially depending on the geometric structure [4]-[6] and
the relative positions of the pattern classes in the feature
space, the training sample set of each pattern class (say C;)
is decomposed into a few sample groups (say, m;). That
is, the training sample sets of all the M pattern classes are
decomposed into Zf;l m;(= M, say) groups. Accordingly,
each individual feature axis (say, F;) is divided into a number
(say, n;) of subdomains (referred to as feature subdomains) to
highlight the sample goups. Each of the feature subdomains
is extended to an extent to incorporate the portion (of the
pattern classes) possibly uncovered by the training samples.
Thus the whole feature space is decomposed into some, say
N(= II}L,n;) overlapping space subdomains.

The feature subdomains are then characterized by the
piecewise linear triangular functions. That is, the gth feature
subdomain along the ith feature space is characterized by
T(z, tig, Bigs Buigs L1igy Tusg) in which a4y is the central
part where the membership value is 1.0; 8,4 and 8, are the
lower and upper most ambiguous (cross-over) points where
the membership values are 0.5; I';,y and Iy, are the lower
and upper end points beyond which the membership values
are zero. Here

Ty, =06, —€ig
and

Fu,-,, =:3u£g + Eig
where

&ig = 6t(Bus, — Bui,) &y

is the extension factor for the gth domain along ith feature
axis and 6; is the accuracy factor. The value of §; is decided
as [4]-[6]

1 1

— <6<

a/w S %S arn @

so that as the number of training samples (¢) — o0,8; — 0,
and t6) — oo.
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Fig. 2. Piecewise linear triangular function [1].

The functional form of the piecewise linear triangular func-
tion (T) is stated below.
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Such a piecewise linear triangular function is graphically
shown in Fig. 2. Note that a = function [1] (which is a
quadratic function) may also be used to characterize the feature
subdomains. ’

The relational matrix R denotes the compatibility of the
pattern classes corresponding to the space subdomains. The
order of R is N x M. The matrix R is estimated from
the training samples in the relational matrix estimator block.
Let rp; denote the (h,j)th element of R, i.., the element
corresponding to the hth space subdomain and jth pattern
class. The value of rp; is decided as

0 if hth space subdomain does not
highlight jth pattern class;
1 if hth space subdomain highlights
Thy = s only jth pattern class;

_h_;:
(0.8)"*"°  if hth space subdomain highlights
jth pattern class along with

some other classes. @
Here NG}, is the number of training sample groups highlighted
by the space subdomain h; N CJ’-L is the number of training
samples from the jth class (C;) is the hth space subdomain
and NS, is the total number of training samples in the hth
space subdomain ie., NS, = M, NCk.
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So the block relational matrix estimator provides B which
is utilized in the fuzzy classifier block to find the final output
of the recognition system.

B. Fuzzy Processor

This section consists of three parts, namely, feature extrac-
tor, fuzzy classifier, and decision maker. It uses the relational
matrix in the modified compositional rule of inference [1], [3]
to decide about the class or classes in which a pattern X may
belong.

The feature extractor block determines the membership
values (degree of belonging) of an unknown pattern X (=
[F1,F2,---,Fy]) to the space subdomains. Initially, each
individual feature information is considered separately to find
the membership values (f) of X to the corresponding feature
subdomains.

For an unknown pattern of X, a characteristic vector
CV(X) was then defined as

CV(X) = (evi(X), cva(X), - -+, cvg(X)) 5)
where the hth element cv,(X) denotes the degree of its
belonging to the hth space subdomain. Let the hth(h =
1,2, ,N ) space subdomain consist of the feature subdo-
mains g, g3, -+, g7, -, gk Suppose for (X) represents the
membership of X to belong in the gPth feature subdomain.
Then the hth element of CV(X), i.e., the membership value

of X corresponding to hth space subdomain, was defined [1]
as

N
T3S (X) i) >0
1

for alli =1,2,---,N
0 otherwise

h=1,2,---,N.

cup(X) =

(6)

So the block feature extractor finds a characteristic vector
with N elements (for N space subdomains) corresponding to
each input pattern X.

Suppose the membership (cvy, (X)) values of a feature point
are positive for two or more neighboring subdomains and one
particular pattern class is highlighted by the said subdomains.
Then it indicates that the said feature point lies in two or
more training sample groups of a pattern class. This in turn
increases the possibility for the said feature point to belong in
the actual pattern class. We call this notion as the neighboring
effect and to incorporate this effect in the characteristic vectors
CV(X), M neighboring characteristic vectors corresponding
to M pattern classes are defined as

CONV;(X) =(cnvjn (X)), envjo(X), -, cm)jN(X))

j=1,2,"',M (7)
where the hth element if cnv;e(X) denotes the degree of
belonging to the jth class based on Ath subdomain and the
effect of neighboring subdomains of h on the jth class. It is
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defined as
1
min {1, cvp(X) + 2—ﬁcvﬁ(X)}
whenrhj > Oand Thi >0
and cvj, (X)is the maximum
cnvjn(X) = 4 among all the elements in the

neighbor of A which
highlights the class C;
otherwise.

L cvp(X) ®

These CNV;(X)’s along with the relational matrix R are
utilized in the fuzzy classifier to find the degree of similarity
of the input X to the various pattern classes.
A class similarity vector S(X) was then defined as
S(X) = (s1(X), 2(X), -+, sm (X)) ©
where the jth element s;(X) denotes the degree of similarity
of a pattern X to the jth class. The s;(X) is determined as

max {%(cnvjh(X) + rhj)}
h=1,2, N
ifcnvjh(X) > Oandrh]- >0

0 otherwise

5;(X) = (10)

where cnv;n(X) is the hth element of CNV;(X);ry; is the
(h,j)th entry of R, and N is the number of space subdomains.
Therefore, the block fuzzy classifier finds a class similarity
vector S(X) corresponding to an unknown input X.

The similarity vector S(X) is then analyzed in the decision
marker block. The system provides output decision in one of
the following forms.

* Single Choice: If the entry in S(X) corresponding to
only one class, say C;, is positive then the class Cj is
considered as the output with single choice.

o Combined Choice: If the entries in S(X) corresponding
to more than one class are positive and if they are
nearly same (dfference <0.05) then the said classes are
considered as output with combined choice.

o First-Second Choice: If the entries in S(X) correspond-
ing to at least two classes are positive and the said
entries do not satisfy the criteria for combined choice
then first-second choice is considered. The highest two
entries in S(X) are taken as the first and second choices,
respectively.

o Null Choice: If all the entries in S(X) are zero then the
system refuses to assign the unknown sample to any class,
i.e., null choice is given.

It needs to be mentioned here that the single choices corre-
spond to the nonoverlapping regions whereas, the overlapping
regions are reflected by the first-second and combined choices.
The null choices reflect the regions outside the pattern classes
and/or the regions of the pattern classes uncovered by the
training samples.

In order to give the final decision in linguistic form regard-
ing the class or classes to which the unknown input pattern
X may belong, the confidence factor (CF), as defined in
[1], is calculated and accordingly the final output decision in
linguistic form is provided.



HI. SOME THEOREMS

In order to provide the theoretical analysis of the multi-
valued recognition system [1], we have presented here some
theorems.

Definition 1: A set A C R issaid to be a pattern class [7]
if A is a compact interval. ]

Definition 1.1: A set A C RY is said to be a pattern class
[71 if

1) A is path connected compact,

2) cl(Int(A)) = A, [cl means closure, Int means interior]

3) Int(A) is path connected, and

4) M6A) = 0 where 64 = AN cl(A°) and A is the

Lebesgue measure on RY.

Let B = {A:.4CR" Ais a pattern class}. [ ]

Definition 2: P is said to be probability measure on A4, A €
B if P satisfies the following properties [7]-[9].

HPKA [A is the Lebesgue measure on R™].

2) Let f = dP/dX be the density on A. Then f(z) >

0 Vz e Int(A). n

Note that Definition 2 restricts the probability measures
under consideration on A.

Result: Let X1,X5, -+, X, be independent and identically
distributed random variables with density f. If A is a class
and P is a probability measure on A then

VBCA, B
is open,
= PX1¢BX,¢B,---,X: ¢ B)—>0ast — oo.

Proof: Proof is obvious. a

Theorem 1: Let X1, X, -+, X; be independent and identi-

cally distributed random variables taking values in [a, b] with
continuous density f.

Let X(l) = min{Xy,---,X;} and X(t) =
max {X1,---,X¢}. Then X(;, goes to a in probability
as t — oo and Xy goes to b in probability as ¢ — oo.

Proof: Let F be the density function, ie., F(z) =
I3 f(y)dy,a < z < b. Then F(a) = 0 and F(b) = 1.

PXq) >y)=PX1>y,X2>y,--, Xt >y)

=[P(X1 > y)*
=[1-PX; <))
=1-F@I" a<y<bd an
Let e > 0.
P(|X@y—a| >€) -0 forany e>0.
® PXy-a>e)—0
& 'p(X(l)>a+E)—)0
& [1-F(a+e)t—0 [by(11)]
which is true as t — oo.
So X(1) goes to a in probability.
7)(‘X(t) < y) =P(X1 < an2 < Yy ',Xt < y)
=[F@)° a<y<b (12)
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Let e > 0.
P(| X — b >¢€)—0 forany e>0.
& Pb-Xg >e)—0.
&  P(Xy <b-e)—0.
& [Fb-of—0 [by(2)]

which is true as { — oo.

So X(;) goes to b in probability as ¢ — oco. Hence the
theorem. ]

Theorem 2: Let X1, X5, --,X; be independent and iden-
tically distributed random variables with continuous density f
in [a,b].

Let A = [a,b] and 6 — 0 as t — oo. Let B; =
[Xa) — 6:, X(¢) + 6:). Then A\(B;AA) — 0 in probability
as t — oo, where X is the lebesgue measure on IR.

Proof: a £ X3) < X5y < b Vi

It is sufficient to show that

la — X(1y + 6;| — 0 in probability
and

|b — X1y — 6:| — 0 in probability.

Here we shall show that |b — X(y) ~ 6;| — 0 in probability.
The proof for the other statement is similar.

Claim: P[|b— X4 — 6| < ] — 1 as t — oo for every
€ > 0.

Proof: Let e > 0.

Note that |b— Xy — 6| < |b—X(y|+6; = b—X(y)+6; It1
such that ¢ > t; = 6./ since 6; — 0. Let {; = [gb;—“z] +
1([r] means the largest integer <7). Let C = [b — bT\,‘z—“,b].
> PX1€CX2¢C,---,X; €C) > 0ast — oo
Hence P(3t such that X; € C) — 1 as t — oo. Then P(3t
such that b — X; < §) — 1 as ¢t — 00. or P(3 - t such that
b—Xuy <§)—last— oo

Hence the theorem. [ |

Theorems 1 and 2 are used in the subsequent sections to
verify the following proposition.

Proposition 1: As the sample size increases, the estimated
overlapping, nonoverlapping, and no-class regions tend to their
actual size, respectively. [ ]

Here, we have considered overlapping and nonoverlapping
classes in R' and R2. The classes in IR? are considered to
be regular shaped (rectangular and circular). Piecewise linear
triangular functions (3) has been considered as membership
functions.

For the nonoverlapping pattern classes, the training sam-
ples of the clases are obviously nonoverlapping. But for the
overlapping pattern classes, the training samples are either
overlapping or nonoverlapping. Note that if the training sam-
ples are nonoverlapping then the membership functions of
the feature feature subdomains may be overlapping. All these
situations have been considered in the proposed analysis.

IV. ANALYSIS IN 1-D FEATURE SPACE

To provide the theoretical analysis of the multivalued recog-
nition system in one-dimensional feature (F') space, a two
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Fig. 3. (a) Two nonoverlapping classes (1-D) with a training set. (b) Sub-
domains (disjoint) with their membership functions for the pattern classes in
(a). (¢) Subdomains (overlapping) with their membership functions for the
pattern classes in (a).

class (C; and Cs) problem is considered here. Since there is
only one feature, the space subdomains are same as the feature
subdomains. Suppose [L1, U1] and [Lz, Us] [Fig. 3(a)] denote
the actual class ranges corresponding to the classes C; and Oy,
respectively. Suppose also, [I1,u1] and [l2, up] [Fig. 3(a)] are
the ranges of training samples corresponding to C; and Cs for
a particular training set. To find the regions corresponding to
single, first-second, combined, and null choices, and to verify
Proposition 1, different possible cases are considered.

A. Nonoverlapping Pattern Classes

This case is shown in Fig. 3(a). Initially, the system finds
two distinct feature subdomains [l1,u;] and [lg,us] corre-
sponding to the classes C; and Cs. The feature subdomains
are denoted by D and D,;. Now these feature subdomains
are extended to some extent using piecewise linear triangular
functions (3) 77 and T, respectively. The feature subdomains
with their characterizing membership functions are shown in
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Fig. 3(b). Note that

ﬂlg :lg§
Flg :ly — &g

ﬁug = Ug;

and B, =ugy+¢4

for g = 1,2.

Here ¢, (1) is the extended portion for the gth feature
subdomain Dy (g = 1,2).

The relational matrix R in this case will be

R = ((rg;))g=1,2;j=1,2
where

,= 1.0 forg=17y
93 0 forg #j.

Case 1: Feature subdomains are disjoint.

This case is shown in Fig. 3(b) where the feature subdo-
mains D; and D, are disjoint. Here, it is easy to show that
the single choice region for Cy is (I';;,I',, ); the singel choice
region for Cy is (I'j2,T,) and the remaining points in the
feature space represent the null choice region. n

Case 2: Feature subdomains are overlapping.

This case is demonstrated in Fig. 3(c) where the feature
subdomains D; and D, are overlapping in their extended
portions. It is clear from Fig. 3(c) that (T';,, T';,] and [y, , Tu2)
represent the single choice regions for C; and Cs, respectively.
For X € (I',,T'y,), the elements in the similarity vector
S(X) are all positive, i.e., s1(X) > 0 and so(X) > 0. This
implies that (I';,,T", ) is the overlapping region and we will
concentrate now only on this region.

Here two points, say 7; and 72, can be found such that
', < <m <Ty, and

for X € (I'y,, 1),
for X € (1,Ty,),

[51(X) — s2(X)] > 0.05;
[52(X) — 51(X)] > 0.05
and

for X € [1m1,72], |s1(X) — s2(X)| < 0.05.

The values of 7 and 72 are given by
_ U1€g + 1251 - 1.16162
- €1+ €2

71

and

u1€9 + loe; — 0.9¢169
€1t &2

T2 13)
where €4 (1) is the extended portion of the feature subdomain
D,(g = 1,2), and I; and u; are the lowest and highest
values, respectively, among the training samples from the class
Ci(j = 1,2).

So, as a summary, we can state the following: The single
choice for Cy is (T'y,,1';,]; the first-second choice region with
first choice as Cj is (T, 71); the combined choice region is
[71,72}; the first-second choice region with first choice as Cs
is (72,T,); the single choice for Cs is [T'y,,Tw,), and the
remaining points in the feature space correspond to the no-
class (null choice) region. However, if 77(I';,) < 0.05, ie.,



lg —uy > €3 + 0.9¢1, then (I'y,,71) becomes a combined
choice region instead of a first-second choice region. Again,
if Ty (T'y,) < 0.05, ice., if Iy —ug > €1 + 0.9¢2, then (12, Ty, )
will be a combined choice region instead of a first-second
choice region. If both the conditions are satisfied, i.e., if
lg—uy > €2+0.9¢1 and lo—uy > £1+0.9¢5, then the complete
set (I'y,, Ty, ) will represent a combined choice region. ]
Proof of Proposition 1: By Theorem 1, it can be

stated that with the increase of training sample size,
l;j =L; and u; —U;

in probability forj = 1,2. (14)

With the increase of training sample size, the sample sizes in
the feature subdomains also increase. Thus, by Theorem 2,

Ty, -8,
in probability forg = 1, 2.

and T,, — f,,
(15)

This implies that the uncovered portions of the feature space
(by the training sample set) decrease in probability with the
increase in sample size.

In case 1, there are no overlapping region, and the single
choice region for C; (j = 1,2) is (I'1,, 'y, ) which tends to the
set (L;,U;) (the actual nonoverlapping region) in probability.

In case 2, the estimated overlapping region is (T'y,, Ty, )-
By (14) and (15), this overlapping region tends to (L2, U, ) in
probability. But U; < L,. This implies that the overlapping
region decreases in probability.

The single choice regions for C; and Cy are (I'y,,T},)
and [I'y,,T'y,), respectively. By (14), and (15) these regions
converge to (Ly, Ly) and (Uy, Uz) in probability. As Uy < L,
the regions under single choices for C; and Cs tend to (Ly, Uy)
and (L, Uz) (actual nonoverlapping regions) is probability.

Hence the proof. [ ]

Experimental Results: To verify the aforementioned analyt-
ical results, a two class problem with class ranges [2, 6] and
[7, 11} is considered. It may be noted that the pattern classes
are nonoverlapping. To implement the recognition system, five
training sample sets with 50, 100, 150, 200, and 250 samples
from each of the classes are chosen randomly.

The ranges of the training sample sets for the classes C; and
C3, and for the feature subdomains D; and Dj corresponding
to the five sample sets are shown in Table I(a). It is to
be noticed that for first two sample sets (with 50 and 100
samples from each class), the feature subdomains obtained
are overlapping whereas, for the remaining three sets (with
150, 200, and 250 samples from each class), the feature
subdomains obtained are nonoverlapping. So the first two
sample sets represent the case 2, i.e., the feature subdomains
are overlapping when the pattern classes are nonoverlapping.
The remaining three sample sets represent the case 1, i.e.,
the feature subdomains are nonoverlapping when the pattern
classes are nonoverlapping. The various regions obtained for
the first two sample sets are shown in Table I(b). The regions
obtained for the remaining three sample sets are shown in
Table I(c).

These results verify that with the increase in sample size, the
training classes (i.e., portions covered by the training samples)
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TABLE I(a)
RANGES OF TRAINING SETS AND FEATURE SUBDOMAINS
FOR THE PATTERN CLASSES [2, 6] AND [7, 11].

SAMPLE SIZES IN EACH CLASS
50 100 150 200

250

Class C1  2.09-5.92 12.07-5.94 12.06-5.97 12.02-5.98 12.01-5.99
Class Co 7.16-10.89 7.05-10.92 7.04-10.93 7.02-10.95 7.01-10.98
Subdomain 1.29-6.74 1.37-6.59 1.52-6.44 1.67-6.32 1.78-6.19
D,

Subdomain 6.49-11.65 6.42-11.62 6.56-11.47 6.71-11.33 6.82-11.22
Dy

TABLE I(b)
VARIOUS REGIONS AND BAYES THRESHOLD POINTS FOR THE FIRST
Two TRAINING SETS OF THE PATTERN CLASSES [2, 6] AND {7, 11].

SAMPLE SIZES IN EACH CLASS

VARIOUS GROUP 50 100
OF CHOICES
Null choice —00-1.2908 —00~-1.3727
Single choice (Cy) 1.2909-6.4947 1.3728-6.4263
First-second choice (C1) 6.4948-6.5402 6.4264-6.4494
Combined choice 6.5403-6.6966 6.4495-6.5748
First-second choice (C2) 6.6967-6.7494 6.5749-6.5984
Single choice (C2) 6.7495-11.6507 6.5985-11.6236
Null choice 11.6508—0c0 11.6237—+00
Bayes threshold point 6.4859152 6.4435577
TABLE I(c)

VARIOUS REGIONS AND BAYES THRESHOLD POINTS FOR THE REMAINING
THREE TRAINING SETS OF THE PATTERN CLASSES [2, 6] AND [7, 11].

Various Group of Sample Sizes in Each Class

Choices 150 200 250
Null choice —00-1.5250  —00-1.6690  —oo-1.7779
Single choice (C1) 1.5251-6.4461 1.6691-6.3288 1.7480-6.2519
Null choice 6.4462-6.5638 6.3289-6.6969  6.2520-6.7619
Single choice (C2)  6.5639-11.4736 6.6970-11.3288 6.7620~11.2496
Null choice 11.4737—oco  11.3289—+00  11.2197—400
Bayes threshold 63621473 6.4193249 6.3900852
point

tend to the actual classes (Theorem 1) and the feature subdo-
mains with the extended portions tend to their actual sizes
(Theorem 2). It is to be noticed that the overlapping regions
(i.e., corresponding to combined and first-second choices), the
nonoverlapping regions (i.e., corresponding to single choices)
and no-class regions (i.e., corresponding to null choices) are
tending to their actual sizes with the increase in sample sizes.
Thus Proposition 1 has been verified experimentally for the
case of nonoverlapping pattern classes in one-dimensional
feature space.

To show the recognition performance of the system exper-
imentally, a test sample set with 1000 samples from each
of the considered pattern classes is generated. With all the
aforementioned five training sets, the system recognized the
total test sample set correctly under single choices.

For comparison, the Bayes classifier is also applied on
the same pattern classes (assuming normal distributions). The
threshold points found between the classes C; and Cy are
shown in Table I(b) and (c) corresponding to the first two
and the remaining three training sets, respectively. These
thresholds are seen to lie in the combined choice region of
our recognition system. The Bayes classifier also recognized
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s1(X) = %[Tl(X) + %TQ(X) +1.0] asr;; =10

and
Sz(X) = %[TQ(X) + 7‘22].
> s1(X) - s2(X) = 3[Tu(X) - 3T2(X)
+ 1.0 - T22].
where
5?:::", o ri1 = L.O; r12 =0;
Troining et 21 > 0; T2 > 0;
¢ Ca ra; = 0; and 732 = 1.0.
N_————M '\
~ ' ) In the feature region (T'y,,T,],T1(X) > 0 and T5(X) =
o A S 3% Ty(X) = 0. This implies that 51(X) > 0 and s5(X) = 0. So
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Fig. 4. Two overlapping classes (1-D) with a training set. (b) Subdomains
with their membership functions for the pattern classes in (a).

all the test samples correctly.

B. Overlapping Pattern Classes

This case is shown in Fig. 4(a). Here the actual overlapping
region between the classes Cy and Cy is (Lo, U1). In the
training samples, the overlapping region is ({2, u1).

Initially the algorithm decomposes the feature space into
three feature subdomains as [l1,lz), [l2, u1], (u1,ug] denoted
by D, D3, and Dj, respectively. Here the feature subdomain
D; reflects only C1, the feature subdomain Dj reflects only C»
and the feature subdomain Ds is overlapping by reflecting both
C; and C,. These feature subdomains are extended to some
extent and are characterized by piecewise linear triangular
functions (3) 73,75, and T3. The feature subdomains with
their membership functions are shown in Fig. 4(b).

The relational matrix R in this case will be

R = ((rg;))e=1,2,3;=1,2

(Ty,,Ty,] is the single choice region for Cf.

Similarly, [['y,, 4, ) is the single choice region for Cs.

Let us now consider the feature region (I',,[3;,]. Here,
Ti(X) > 0.5 > Tp(X) > 0 = T3(X). Hence (see top of
page)
As here Ty (X) > 0.5 > To(X) > 0 and 722 < 1.0,[51(X) —
s2(X)] > 0.05. Thus, (I';,,8;,] comes under a first-second
choice region with first choice as Cj.

Similarly, [8;,,[y,) comes under a first-second choice
region with first choice as Cs.

Now consider the region [['y,,I';,]- Here T1(X) > 0.5 and
T>2(X) = T5(X) = 0. Hence,

51(X) = §[To(X) + 21
and

52(X) = §[Ta(z) + 722
Now
|S](X) - 52(X)| S 0.05 = |’I‘21 — 7'22‘ S 0.1.

So, if |rz; — 22| < 0.1 then (T'y,,T';,] will be a combined
choice region. If 791 > 722 + 0.1, then (T'y,,I';,] will be a
first-second choice region with first choice as C;. Otherwise
(i.e., if 79 > 791 + 0.1), it becomes a first-second choice
region with first choice as Cy.

Now in the region (B,,,Tw,),T2(X) > 0.5 > T1(X) >
0 = T3(X). Hence

$1(X) = 3[T2(X) + 3T0(X) + 721]
and

52(X) = §[Ta(X) + 722]
= 81(X)~S2(X):%[%Tl(X)-I-'I’Ql—Tzz].

Here a point 7, may be found such that [s1(m1) — s2(71)] =
0.05 where

T =19+ 61[4(7’21 - 7‘22) + 06] (16)
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in which €; (1) is the extended portion of the feature sub-
domain D; and [y is the lowest among the training samples
from Ca.

Thus, (Bu,,71) is a first-second choice region with first
choice as C; and [ry,T,,) is a combined choice region. If
roa > 791 + 0.15, then the complete set (5,,,T,,) will be
a combined choice region. Again, if 757 > 722 + 0.1, then
(Bu,, 'y, ) will be a first-second choice region with first choice
as Cy.

Similarly, in the region (I',, 3, ), a point 72 may be found
such that [sa(72) — $1(72)] = 0.05 where

Tg = U] — 63[4(7‘22 —_ 7'21) + 06] an

in which e3 is the extended portion of the feature subdomain
D3 and u; is the highest among the training samples from C;.

So, (72, B1,) is a first-second choice region with first choice
as Cy and (I'y,,79] is a combined choice region. If r9; >
722+ 0.15, then the complete set (I';,, 5, ) will be a combined
choice region. Again, if rga > r91 + 0.1, then (T'y,, ;) will
be a first-second choice region with first choice as C.

The conclusions, after combining all the previous results,
are given below.

The single choice region for C; is (I';,,I';,}; the single
choice region for C; is [I'y,,T'y,); the overlapping region
(i.e., corresponding to combined and first-second choices)
is [[';,,I'y,] and the remaining portion in the feature space
represent the no-class region.

Note that in the overlapping region, (I'i,,/(;,] is a first-
second choice region with first choice as C; and [B,,, Ty, ] is
a first-second choice region with first choice as Cs.

In the region (I, , Ty, ], if |ra1 — 22| < 0.1, then it becomes
a combined choice region. If r3; > r32 + 0.1, then (T, , ']
becomes a first-second choice region with first choice as Cj,
and if 723 > 721 + 0.1, then (T, ,T';,] becomes a first-second
choice region with first choice as Cs.

In the region (By,, 'y, ), if 722 > r2;+0.15, then it becomes
a combined choice region, and if r9; > 792 + 0.1, then it
comes under a first-second choice region with first choice as
C. Otherwise (i.e., if 721 — 0.1 < 792 < 721 + 0.15), a point
71 (16) is found such that (8,,,71) becomes a first-second
choice region with first choice as C; and [ry,T,,) becomes
a combined choice region.

In the region (T'y,, B1,), if 721 > 792 +0.15, then it becomes
a combined choice region. If 729 > o1 + 0.1, then ('}, Bi,)
will be a first-second choice region with first choice as Cj.
Otherwise (i.e., if 722 — 0.1 < 191 < 792 + 0.15), a point 73
(17) is found such that (72, 3;,) will be a first-second choice
region with first choice as C; and (I';,, 72] will be a combined
choice region.

Proof of Proposition 1: Here, the actual overlap-
ping region is [Lo, U] and the nonoverlapping regions for C;
and Cs are (L, L) and (Uy, Uz), respectively. In the training
set, the region [I',,T,,] is overlapping between C; and Cs,
and the regions (I';,,T",) and (T,,,T,,) are nonoverlapping
for C; and Cj, respectively.
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TABLE I(a)
RANGES OF TRAINING SETS AND FEATURE SUBDOMAINS
FOR THE P ATTERN CLASSES [2, 7] anD [S, 10].

Sample Sizes in Each Class
50 100 150 200 250

Class C 2.11-6.88 2.08-6.93 2.06-593 2.04-5.96 2.02-5.99
Class Ca 5.13-9.89 5.12-9.92 5.07-9.94 5.03-995 5.01-9.99
Subdomain D1 134-5.64 143-558 1.56-544 1.69-5.31 1.77-5.21
Subdomain Dy 4.57-735 4.68-7.32 4.76-724 4.83-7.16 4.86-7.13
Subdomain D3 6.26-10.636.40-10.54 6.55-10.40 6.68-10.29 6.79-10.22

By Theorem 1, it can be stated that as the training sample
size increases

Lh=06,—L in probability

lo =By, = B, = L2 inprobability

41 =01, = Bu, — Ui inprobability
and

ug =Ly, = U1 in probability.

With the increase in the size of training samples, the number
of samples in the feature subdomains also increases. Then, by
Theorem 2,

Iy, -8, and T,, — B,, inprobability
forg =1,2,3
= [, =8, —Bu=l— L in probability
and
Puy = Bu, =P, =uw — U in probability.

Therefore, with the increase of the training sample size, the
estimated overlapping region [[';,, T'y,, ] tends toward the actual
overlapping region [Lg, U] in probability. At the same time,
the estimated nonoverlapping (single choice) regions (I'y,,T';,)
and (T'y,,Ty,) for the classes C; and C; tend toward their
actual sizes (L1, Lz) and (Uy, Uz), respectively, in probability.
The no-class region also tends to its actual size.

Hence the proof. [ |

V. EXPERIMENTAL RESULTS:

To substantiate the analytical results, a two class problem
with classes [2, 7] and [5, 10] is considered. Here, the actual
nonoverlapping regions for the classes C; and C; are [2, 5]
and [7, 10], respectively, and the actual overlapping region
between the classes is [5, 7]. To implement the recognition
system, five training sample sets with 50, 100, 150, 200,
and 250 samples from each of the pattern classes are chosen
randomly.

The ranges of the training samples of the classes C; and
Cs, and the ranges of the obtained three feature subdomains
D1, Ds, and Dj for the considered five sample sets are shown
in Table II(a). The regions obtained corresponding to various
output choices are shown in Tables II(b) and (c) for the
first two (with 50 and 100 samples from each class) and the
remaining three (with 150, 200, and 250 samples from each
class) sample sets, respectively.
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TABLE II(b)
VARIOUS REGIONS AND BAYES THRESHOLD POINTS FOR THE FIRST
Two TRAINING SETS OF THE PATTERN CLASSES [2, 7] AND [5, 10].

Sample Sizes in Each Class
Various Group of Choices 50

Null choice —o00-1.3402

Single choice (Cy) 1.3403-4.5741
First-second choice (Cy) 4.5742-5.3090
Combined choice 5.3091-6.4549

100
—oo-1.4274
1.4275-4.6752
4.6753-5.3175
5.3176-6.6060

First-second choice (C2) 6.4550-7.3457 6.6061-7.3173
Single choice (C2) 7.3458-10.6274 7.3174-10.5438
Null choice 10.6275-+00 10.5439—+00

Bayes threshold point 5.7445097 5.8655739

TABLE H(c)
VARIOUS REGIONS AND BAYES THRESHOLD POINTS FOR THE REMAINING
THREE TRAINING SETS OF THE PATTERN CLASSES [2, 7] AND [5, 10].

Various Group of Choices Sample Size in Each Class
150 200
—00-1.5625  —o00-1.6921
1.5626-4.7565 1.6922-4.8287
4.7566-5.2758 4.8288-5.1997
5.2759-6.7329 5.1998-6.8013
6.7330-7.2361 6.8014-7.1621
7.2362-10.39577.1622-10.2906
210.3958—+ 00 10.2907—+ 00
5.9670115 5.9635067

250
—o0-1.7684
1.7685-4.8549
4.8550-5.1318
5.1319-6.8505
6.8506-7.1279
7.1280-10.2228
110.2229—4-c0
5.9716177

Null choice

Single choice (C1)
First-second choice (C1)
Combined choice
First-second choice (Ca2)
Single choice (C3)

Null choice

Bayes threshold point

TABLE I1(d)
RECOGNITION SCORE FOR THE PATTERN CLASSES [2, 7] AND [5, 10].

% Recognition Score
Sample Sizes in Each Class

Various Group of Choices

50 100 150 200 250
Single Correct Choice 55.40 58.30 60.15 61.60 63.05
First Correct Choice 16.85 15.50 13.15  9.60 7.25
Combined Correct Choice  18.60 18.55 21.10 24.10 2650
Second Correct Choice 9.15 7.65 5.60 4.70 3.20
Fully Wrong Choice 0.00 0.00 0.00 0.00 0.00
Bayes Correct  79.00 79.35 7930 7930 79.25
Classifier Wrong  21.00  20.65 2070 2070 20.75

These results substantiate that with the increase in sample
size, the training classes (i.e., the portions covered by the
training samples) tend to their actual classes (Theorem 1) and
the feature subdomains with the extended portions tend to their
actua] sizes (Theorem 2). It is to be noticed that the overlap-
ping and the nonoverlapping regions are tending to their actual
sizes with the increase in sample sizes. Hence Proposition 1
is verified experimentally for the case of overlapping pattern
classes in one-dimensional feature space.

For analyzing the recognition performance of the system,
1000 test samples from each of the pattern classes are gener-
ated. The recognition scores corresponding to the considered
five training sets are shown in Table II(d). Note that the
recognition scores are grouped into five categories, namely,
single correct choice, first-correct choice, combined correct
choice, second correct choice, and fully wrong choice.

For comparison, the Bayes classifier is implemented on
the same pattern classes (assuming normal distributions). The
threshold points found between the classes C; and C» are
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shown in Tables II(b) and (c) corresponding to the considered
five training sets. The recognition scores of the Bayes classifier
are included in Table II(d).

Note from Tables II(b) and (c) that the Bayes threshold
points lie in the combined choice region of our recognition
system. By adding up the scores corresponding to single
correct, first-second correct, and half of the combined correct
choices in Table II(d), the recognition score becomes higher
than the corresponding correct choices of Bayes classifier.
Again, the wrong choices of Bayes classifier are found to be
distributed in the combined correct and second correct choices
of the proposed system. Therefore, the proposed recognition
system has a provision of improving its efficiency significantly
by incorporating combined and second choices under the
control of a supervisory scheme.

VI. ANALYSIS IN 2-D FEATURE SPACE

Let us consider a two-class (C; and Cs) problem to analyze
the performance of the multivalued recognition system in
a two-dimensional feature space (F} X F). For the sake
of convenience, the classes are initially assumed to be of
rectangular shape. Then the results are extended to circular
pattern classes. These results can easily be generalized to the
pattern classes of any shape.

A. Rectangular Classes

Suppose [L11, U11] X [La1, Ua1] and [L12, Urs] X [Lag, Uss)
denote the classes C; and Cy, respectively. Here [L1g, U11] X
[La2,Uz1] is the overlapping portion between the classes.
Suppose also that [111, uu] X [lzl, u21] and [lzl,ulg] X [122, uz2]
denote the training sets corresponding to C; and C, respec-
tively, where [l12,u11] X [l22,u21] is the overlapping portion
in the training set. Such pattern classes with the span of their
training sets are shown in Fig. 5(a).

Initially, based on the training set, each individual feature
domain is partitioned into three feature subdomains [Fig. 5(b)].
Recall that the gth (¢ = 1,2,3) feature subdomain in the
ith (z = 1,2) feature axis is denoted by D;,. As a re-
sult, the total feature space is decomposed into nine space
subdomains, which are dentoed by SD;,SDs,---,SDg, re-
spectively [Fig. 5(b)]. Here SD;,SDs, and SD4 uniquely
correspond to the class Ci;5Dg,SDg, and SDg uniquely
correspond to Ca; SD; is overlapping by reflecting both C;
and Cy, and SD3 and SDj are the no-class regions, i.e., they
reflect neither C; nor Cs.

Thus, the feature subdomains along Fy and F} are extended
to some extent to highlight the portions possible uncovered by
the training samples. These feature subdomains are character-
ized by different piecewise linear triangular functions of the
form Tig(wﬁ Qig, ﬂliq s ﬂulg ’ Flzg’ Puig) (i = 1,29 = 1,2,3)
(3). The feature subdomains and the space subdomains are
shown in Fig. 5(b). Note that

ﬂlu zlﬂ; ﬂu,g = U;2;

Biiy = Buyy = lin; Blis = Busp = Uit
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and
Eig = (ﬂuig - Blig)aig

where €;4 (1) is the extended portion for the gth (g = 1, 2, 3)
feature subdomain in the ith (z = 1,2) feature axis. It
is obvious from Fig. 5(b) that [I';,,,T",] X [Ti;,,s,,] and
[Tuy, Tyl X [Tiyy,T,,] are the single choice regions for Cy
and [th’r‘lla] X [Fuzwruza] and [rumvrum] X [Flzz’run]
are ths single choice regions for Cs.

IfXe [Flu’ﬂlu] x [I‘ln’ﬁun] or X € [Fluvﬁmz] X
[Ty, B1z,), the elements in S(X) are positive for both the
classes, i.e., s1(X) > 0 and s2(X) > 0. It can be easily shown
that [s1(X) — s2(X)] > 0.05 for X’s lying in these regions.
This implies that [F112$ﬂ112] X [Flzzaﬂuzzl and [Fllza:@um] X
[Ti,,, Bi,,] are the first-second choice regions with first choice
as Cy. Similarly, [rhz’ﬂlu} X [Flzzvﬂuzzl and [I‘ll2’/6u12] X
[T1,,, Bi,,] are the first-second choice regions with first choice
as 02.
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Now consider the feature region [['y,;, B1,5] X [Buggs Nuss)
which is overlapping. That is, s1(X) > 0 and s2(X) > 0. In
this region, two lines Z; and Z; may be found so that

for X lying below the line Z1,
[51(X) = s2(X)] > 0.05,
for X lying above the line Z3,
[Sz(X) - Sl(X)] > 0.05,
and
for X lying between Z; and Z5,
[81(X) — s2(X)| < 0.05.
The equations of Z; and Z, are

A1zy + Bizo — m =0

and
Aoz + Boxo — 13 =0 (18)
where
Ay = Ap = kokaky ~ kikaks;
By = By = kikoky — k1koks
N = Bu,, k2kaks — Ty, k1ksky
+ I‘u” ki1koky
— Bz k1koks 4 0.4k koksky;
My = Pu,, koksks — Ty, kiksky
+ Ty, krkoka
- ,Blzaklkgkg + 0.4k1k2k3k4
with

kl =031 — ﬂ‘u.u; "72 = ﬂllz - Flu;
k3 =ﬂ'u22 - Fu;g and k4 = 23 — 6123 .

Similarly, [Bu,,, Tusz) X [Tl Bi,] is a overlapping region.
Here also, two lines Z3 and Z, may be found such that

for X lying below the line Z3,
[51(X) — s2(X)] > 0.05,
for X lying above the line Z4,
[s2(X) — 51(X)] > 0.05,
and
for X lying between Z3 and Z4,
[s1(X) — s2(X)| < 0.05.
The equations of Z3 and Z, are

Aszi + Bazg —n3 =0
and

Ay 4+ Bazg — 14 =0 19
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where
Ag = Ay = kaksky — kiksks;
B3 = By = kikoky — k1koks;
N3 = Buo k2kaks — Ty k1ksks
+ Busi kikzka
- F[22 ki1koks + 0.4k kokgky;
N4 = Buy, kokaks — iy kiksks
+ Buyi kikaka
— Ty, k1koks + 0.4k kokzky
with

k1 =PBuy, —Tups k2= 013 — Buy,;
k3 = a1 — Bu,, and kg = B, — Tiy,-
Let us now consider the region [Bu;, Luys] X [Tizss Bias)

which is overlapping. In this region, two lines Zs and Zg may
be found so that

for X lying below the line Zs,
[81(X) — s2(X)] > 0.05,
for X lying above the line Zg,
[82(X) — s1(X)] > 0.05,
and
for X lying between Z5 and Zg,
|s1(X) — s2(X)| < 0.05.
The equations of Z5 and Zg are

Aszry + Bsza — 15 =0

and
Agz1 + Begxa — e =0 (20)
where
As = Ag = kakska — k1kska;
Bs = Bg = kikoks — kik2ks;
N5 =T, kaksks — Bi, k1kaks
+ Bug, k1k2ka
— Ty, k1koks + [1.6 — 16(r51 — 752)|k1k2ksky;
Ng =, kokaks — b1y, k1k3ks
+ Buy, krkoks
— Ty ki koks — [1.6 + 16(rs; — 52)]k1k2kaks
with
ky =Buy;, —Tups k2 =12 — Bis
ks = ass — By, and kg = B, — Ty
Similarly, in the overlapping region ([, B1,] X

[Busys Tus, ), two lines Z7 and Zg may be found so that
for X lying below the line Z,
[51(X) — s2(X)] > 0.05,
for X lying above the line Zg,
[s2(X) — 51(X)] > 0.05,
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and
for X lying between Z7 and Zs,
|31(X) — s2(X)| < 0.05.
The equations of Z7 and Zg are
A7rx1 4+ Brzg — 7y =0
and
Asz1 + Bgzas — g =0 21)
where
A7 = Ag = kaokakq — kiksky;
By = Bg = kikoky — ki1koks;
N7 = Buy, kakaka — Tiy, ki ksks
+ Lo, k1koky
— Biy,k1koks + [1.6 — 16(rs; — r52) k1 kokaky;
78 = Puy, kokska — Ty, ki ksky
+ Doy, k1 kaky
— By k1koks — [1.6 + 16(rs1 — rs2)|k1koksks
with
ki =012 = Bui,; k2 =B, —Tuy;
k3 = Bu,, —Tu,, and kg = agy — By,,.

Now consider the region [8,,,,y,,] X [@22,T1,,]. Here, a
line Zg may be found so that

for X lying below the line Zg;
[51(X) — s2(X)] > 0.05
and

for X lying above the line Zg;
[s1(X) — s2(X)| > 0.05.

The equation of Zg is
Agz1 + Bozy — 19 = 0 (22)
where
Ag =kg; By = k1;
19 =Tuyi k2 + Bus, k1
+ [0.6 — 16(r51 — 752)]k1k2
with

ky =pu,, — Ty, and
kz =Q32 — /Buzz'

Similarly, in the region [By,,,Tu,,] X [[u,,,@22], a line
Z10 may be found such that

for X lying above the line Z;;
[31(X) — s2(X)] > 0.05
and
for X lying below the line Z;;
[81(X) — s2(X)| > 0.05.
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The equation of Zjq is

A10%1 + Bioz2 — 710 = 0 (23)
where
Ao = kz; Bio = ki;
Mo =Ly, k2 + Bi,, k1
+[0.6 — 16(rs; — r53)]k1ks
with

k1 =pu,, — Ty, and
ky =z — ﬁuza .

In the regions [B,,,, a12] X [Buy,, Tuyy ] and [on2,Ty,,] X
[Buzy s Ty, |, two lines Z1y and Zi, are found such that

for X lying below both Z1; and Z;5;
[81(X) — s2(X)] > 0.05
and
for X lying above Z1; or Z»;
[$1(X) — s2(X)}| > 0.05.
The equations of Z;; and Z;, are

Anzy + Buiza —mp =0

and
Aja1y + Brawa — M2 =0 4)
where
A1 = Aqg = ky;

Bi1 =k and By = ki;
M1 =P, ke + Tuy k1 + (0.6 — 16(rs1 — rs2)|k1ka;
M2 = Buys ka2 + Doy k1 + [0.6 — 16(rs1 — 7s53)] k1 ks
with
ki =012 — B, k2 = Buyy ~ Lus
and
iﬂl = a12 — Buy,-

In the regions [Ty, B1,,] X [Tu,,,@22] and [Ty, Br,] ¥
[@22,T1,,], two lines Z13 and Z;4 may be found in their
respective regions such that

for X lying right to both Z13 and Z14;
[82(X) — 51(X)] > 0.05
and
for X lying left to Zi3 or Zy4;
|s1(X) — 52(X)| > 0.05.
The equations of Zj3 and Z;4 are
A1371 + Bigz2 —m3 =0
and

Aty + Buaza —a =0 (25)
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where
Ary =ko; Arg = ky;
By3 =Bis = ky;

M3 =T ko + Bi, ka1 + [0.6 — 16(752 — r51)]ka k2;
Ma =Tiyka + Bugykr + (0.6 — 16(rsz — 51)]k1 ks
with
k1= By — Ty ke = age — By,
and
fy = 022 ~ Pugs-

Similarly, in the regions [[y,,,a12] X [Tty;,5,,] and
[o12, 15 X [Tisg, Bigs)s two lines Zy5 and Z16 may be found
in their respective regions such that

for X lying above both Z;5 and Zi¢;
[s2(X) — 51(X)] > 0.05
and
for X lying below Z15 or Z16;
|81(X) — s2(X)| > 0.05.
The equations of Z;5 and Z;¢ are

Ajszy + Bisza — m15 =0
and

Air6z1 + BigT2 — M6 =0 (26)
where

Ars = Aie = ko

Bis =ky; Big = ki;

Ms = Bz ks + Tipa k1 + [0.6 — 16(rsa — 751)]k1k2;

M6 = Purskz + Liyokr + [0.6 — 16(rsy — r51)]k1kz
with

ki = a1z — B3k = By — Ty

and
k1 = @19 = Buy,-

Let us now consider the region [8,,,,'y,,] X [Buzy Tuay )-
Here two lines Z17 and Z;5 may be found such that

for X lying below both Z;7 and Z1s;
[s1(X) — s2(X)] > 0.05

and

for X lying above Z17 or Z1g;
IS]_(X) — 82(X)| > 0.05.

The equations of Z17 and Z;g are

Az + Birza —mr = 0
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and

Aysx1 + Bigzo —ms = 0 27

where
Ay =ky; Arg = kg;
By; =k1;B1s = iﬂl;
M7 =Ty, ko + By, k1 + [0.6 — 16(r51 — r52)k1k2;
Ms = Buys k2 + Tug, k1 +[0.6 — 16(r51 ~ r5a)|k1ks
with
k1 =Bu;, — iy k2 = a2 — By,;
ky = a1z ~ Bu,, and
k2 = Buzy — Tusy-

Again, in the region [T'y,,, B1,,] X [Tty Bia5], tWo lines Z1g
and Zyy may be found such that

for X lying above both Z19 and Zxp;
[s2(X) — 81(X)] > 0.05
and
for X lying below Z1g9 or Zao;
Js1(X) = 52(X)] < 0.05.
The equations of Z19 and Zyo are
A19z1 + Bioza — 19 =0
and

Agozy + Baoz2 —n20 =0 (28)

where
Aty =ky; Ago = by;
Big =k1; Bao = ky;
o =T1,k2 + Bug, k1 + [0.6 — 16(r52 — r51)|k1 ke;
20 = Burs k2 + Tug b1 + [0.6 — 16(rs2 — 751)]ka ks
with
kl = 3113 - 1—‘113; k2 = Q32 — ﬂu22
and
]:31 =aj3 — 61112 and
ko =IB‘23 - Flzs‘

At last, let us consider the region [I'y,,, Ty, ] X [Tugy s Bios )
Here, s1(z) > 0 and s$3(X) > 0 and there does not exist
any effect from the neighboring feature subdomains. In this
region, if rs; > 752 + 0.1 then [s1(X) — s2(X)] > 0.05,
i.e., the region will be a first-second choice region with first
choice as C). If r52 > 751 +0.1 then [s2(X) — 51(X)] > 0.05,
i.e., the region willl be a first-second choice region with
first choice as Cj. Otherwise (i.e., if |r51 — r52| < 0.1 then

|s1(X) — 32(X)} £ 0.05), the region will become a combined
choice region. ’
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The conclusions, after combining all the previous cases, are
given below.

The single choice regions for C; are [Iy,,Iy,,] X
151, Ty, and [Ty, Tuyy] X [Ty, T,,]- The single choice
regions for Cs are [Ty, 11,5 X [Tugss Duga ] and [Tuyy, Tuys] X
[T1;5, Ty, )- The overlapping (corresponding to combined and
first-second choices) regions are [T'y,,, 81,,] X (i, , Bu,,] and
[Ti1zs Buga) X [Ty, , Bize]- The remaining portion in the feature
space is termed as the no-class (null choice) region.

In the overlapping region, [I'i,,081,] X [Tlag: Buzy] and
[T1y25 Busz] X [Tiys, Bia,) correspond to the first-second choice
regions with first choice as C. Again, [T,,, B1,,] X [Ct,;, Buszs)
and [T';,,, Bus,] X [Tty Br,) correspond to the first-second
choice regions with first choice as Cs. The region surrounded
by the lines Z1,Z3,--- and Zy [Fig. 5(d)] is the combined
choice region. The portions in the overlapping region, not
falling in the combined choice region, are the first-second
choice regions.

The pattern classes C; and C, are shown in Fig. 5(a).
A typical training set is also shown in this figure. The
overlapping portions in the pattern classes and also in the
training set are marked here. Fig. 5(b) shows the typical
feature subdomains and space subdomains corresponding to
the training set [Fig. 5(a)]. The regions corresponding to
single, first-second, combined, and null choices are also shown
in Fig. 5(b). Note that the regions are drawn based on the
previous analytical findings.

To show the overlapping regions more prominently, the
rectangular portion [shown by dotted lines in Fig. 5(a)] which
includes the overlapping regions, are enlarged in Fig. 5(c). The
corresponding rectangular portion in Fig. 5(b) is also enlarged
in Fig. 5(d). Figs. 5(b) and (d) show the various choice re-
gions corresponding to the pattern classes in Figs. 5(a) and
(c), respectively. The lines Z1, Zs,- -+, Zao corresponding to
(18)—(28) are shown in Fig. 5(d). |
. Proof of Proposition 1: In the present case, the ac-
tual overlapping region between the classes C; and Cj is
[L12,U11) X [Le2g, Ua1]. The nonoverlapping regions for C
are [Ly1,Uys] X [La1, Lao] and [Li1, L12) X [Laz, Uzi]. The
nonoverlapping regions for Cy are [L12, Uis] X [Uz1, Uz] and
[U11, U12] X [La2,Usi]. In the training samples, the feature
region [li2,u11] X [l22,u21] is overlapping. Based on the
training set, [T';,,,Tu;,] X [Tipp, Ty, | is the estimated over-
lapping region. The estimated nonoverlapping regions for Cy
are [Plll ’ F"12] X [F121>Fu22] and [I‘lu > Fulz] X [r12271_‘u22]' On
the other hand, the estimated nonoverlapping regions for Cy
are [FIIZ’FuIS] X [Fuzz’run] and [Fu127Fu13] X [Flmvruzz]'

By Theorem 1, it can be stated that as the size of the training
samples increases

lij — Ly in probability
and

uij — Uij in probability (¢ =1,2;5 =1,2). (29
With the increase of the size of the training samples, the
samples in the feature subdomain also increase. Thus, by
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Theorem 2,
Iy, =B, in probability

and

Iy, = Bu;, inprobability

(i: 1,2,9= 1’273) (30)
From Fig. 5(c), we have
Bln = li1; Buu = ﬁlm = lig; (31)
ﬂlis = IBUiZ = U1 and ,Bu,'a = U2 (Z =1, 2)
Combing (29), (30), and (31), one gets
Ty, — B, =lia — Li  in probability
Tw., = Bu, =lia = Liz in probability

Ty, — B, =li2 — Liz  in probability

Tu;; = Bui, =ui1 — Un  in probability
Ty, — Bi; =us1 — Uin  in probability
Fuis - ﬂ’um = U2 — Ui2

(i=1,2).

in probability

Therefore, as the size of the training sample increases, the
estimated overlapping region [[';,,,Ty,,] X [Tip, Tuy, | tends
to the actual overlapping regin [Li2,Ui1] X [L22,Uz] in
probability. At the same time, the estimated nonoverlapping
regions for C; and C5 go to their actual sizes, respectively, in
probability. Using the previous results, it can also be concluded
that the no-class (null choice) region also tends to their actual
size in probability.

Hence the proposition. [ ]

Experimental Results: To substantiate the analytical results,
a two-class problem with classes [2, 7] x [2, 7] and [5, 10]
x [5, 10] is considered [Fig. 6(a)]. Here, the nonoverlapping
regions for C; are [2, 7} x [2, 5] and [2, 5] X [5, 7], and the
nonoverlapping regions for Cy are [5, 10] x [7, 10] and [7,
10] x [5, 7]. The overlapping region is [5, 7] x [5, 7].

To implement the recognition system, five traning sample
sets with 50, 100, 150, 200, and 250 samples from each of the
classes are chosen randomly. Figs. 6(b)—(f) show the regions
corresponding to various output choices for the five sample
sets. Here the character “A” represents the single choice for
C;; the character “B” represents the single choice for Cs;
the character “a” represents the first-second choice with first
choice as Ci; the character “b” represents the first-second
choice with first choice as Co; the character “C” represents
the combined choice reflecting both C; and Cs, and the blank
character “\thinspace ” represents the null choice.

The results in Figs. 6(b)—(f) verify that with the increase
of sample sizes, the training classes tend to the actual classes
(Theorem 1) and the feature subdomains with the extended
portions tend to their actual sizes (Theorem 2). The over-
lapping (combined and first-second choices), nonoverlapping
(single choice) and no-class (null choice) regions are seen to
tend to their actual sizes with the increase in the size of training
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(a) Two rectangular classes. (b)—(f) Various regions corresponding to five training sets (with 50, 100, 150, 200, and 250 samples from each

Hence Proposition 1 is verified experimentally for the

case of rectangular pattern classes. The experimental results in

a test set with 1000 samples from each of the classes

is generated. Table III provides the recognition scores under

12

class) for the pattern classes in (a). (g) Various regions of the Bayes classifier corresponding to the fifth training set (with 250 samples from each
For analyzing the performance of the proposed recognition

class) for the pattern classes in (a).

Figs. 6(b)~(f) also support the analytical findings and diagrams

in Figs. 5(b) and (d)

samples.
system,

Fig. 6.
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Fig. 6. (continued)

samples from each class) are shown in Fig. 6(g). The feature to one class, i.e., Co. Again, corresponding to a feature point
points represented by the characters “A” and “B” in Fig. 6(g) represented by the blank characters “” in Fig. 6(g), the values
indicate their belonging to the hard regions for C1 and C2, of the discriminating function are zero for both the classes.
respectively. These feature points may be considered as belonging to the

Note from Fig. 6(g) that Bayes classifier (with rectangular no-class region (although this no-class region, in fact, includes
distributions) assigned, unlike the proposed system [Fig. 6(f)], some portions of the actual pattern classes). These findings are
the while overlapping region (based on the training samples) due to the inherent properties of the rectangular distribution.




MANDAL et al.: THEORETICAL PERFORMANCE OF A MULTIVALUED RECOGNITION SYSTEM

TABLE Il
RECOGNITION SCORE FOR THE PATTERN CLASSES IN FIG. 6(a)

Various Group of Choices % Recognition Score

Sample Sizes in Each Class

50 100 150 200 250
Single Correct Choice 79.60  80.35 80.60 81.60 82.45
First Correct Choice 11.05 8.75 8.35 6.45 4.80
Combined Correct Choice 3.70 6.05 6.60 8.15 9.95
Second Correct Choice 5.65 4.85 4.45 3.80 2.80
Fully Wrong Choice 0.00 0.00 0.00 0.00 0.00
Bayes Correct 84.25  83.00 88.35 8855  88.90
Classifier  Wrong 1575 12.00 1165 1145  11.10
TABLE 1V
RECOGNITION SCORE FOR THE PATTERN CLASSES IN FIG. 8(a)
Various Group of Choices % Recognition Score
Sample Sizes in Each Class
50 100 150 200 250
Single Correct Choice 73.95 80.70 84.40 88.70 89.90
First Correct Choice 20.80 13.85 1020 645 4.80
Combined Correct Choice  3.10 3.85 4.00 2.85 3.35
Second Correct Choice 2.15 1.60 1.60 1.95 1.95
Fully Wrong Choice 0.00 0.00 0.00 0.00 0.00
Bayes Correct 9300 94.10 9425  94.50 94.45
Classifier Wrong 7.00 5.90 5.75 5.50 5.55

Note that the assumption of any other distribution is not valid
here. On the other hand, the output decisions, as shown in
Figs. 6(b)—(f), of our multivalued recognition system are seen
to be very appropriate.

The recognition scores of the Bayes classifier (with rect-
angular distributions) corresponding to the five training sets
are included in Table III. Note that the score obtained by
adding single correct, first correct, and half of the com-
bined correct choices becomes much higher than the correct
recognition score of the Bayes classifier. Again, a significant
portion of the wrong choices of Bayes classifier is seen
to be corrected by the proposed system and the remaining
portion is distributed among the combined and second correct
choices.

B. Circular Classes

The analytical results of rectangular classes obtained in the
previous section are extended here to circular pattern classes
[Fig. 7(a)]. A typical training sample set is assumed for car-
rying out the theoretical analysis of the proposed multivalued
recognition system on the circular classes in Fig. 7(a). The
actual overlapping portions and the overlapping portions from
the training set are distinctly marked in Fig. 7(a).

Some typical feature subdomains and space subdomains
corresponding to the training samples [Fig. 7(a)] are drawn
in Fig. 7(b). Based on these feature subdomains and space
subdomains, and using the results obtained for the rectangular
pattern classes [Figs. 5(a)—(d)], the regions corresponding to
the single, first-second, combined, and null choices are shown
in Fig. 7(b). To show the overlapping regions more promi-
nently, the rectangular portion (enclosed by dotted lines) in
Fig. 7(a) which includes the overlapping region, is enlarged
in Fig. 7(c). The corresponding rectangular portion (enclosed
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by thick lines) in Fig. 7(b) is also enlaged in Fig. 7(d).
Figs. 7(b) and (d) show the regions corresponding to various
output choices for the pattern classes in Figs. 7(a) and (c),
respectively.

When the size of the training samples increases, the val-
ues of the accuracy factor (2) decrease, and correspondingly
the number of feature subdomains and space subdomains
increases. Therefore, the sizes of the feature subdomains and
space subdomains decrease with the increae in the size of
the training samples. Hence, it can be concluded that the
increase in sample sizes results in increase in the accuracy
of the choice regions with respect to their actual sizes. There-
fore, Proposition 1 is claimed for the circular shaped pattern
classes. a

Experimental Results: To substantiate the analytical find-
ings, a two-clas problem with circular classes is considered.
The centers of the classes C; and C, are taken to be (5, 5)
and (8.5, 8.5), respectively, and their radii are considered to
be 3.5 and 3, respectively [Fig. 8(a)].

To implement the recognition system, five training sample
sets with 50, 100, 150, 200, and 250 samples from each
of the pattern classes are chosen randomly. Figs. 8(b)~(f)
show the regions corresponding to various output choices for
the five sample sets. Here the character “A” represents the
single choice for Cy; the character “B” represents the single
choice for Cy; the character “a” represents the first-second
choice with first choice as Cj; the character “b” represents
the first-second choice with first choice as Cs; the character
“C” represents the combined choice for both C; and Cs,
and the blank character “” represents the null choice. These
results demonstrate that with the increase of sample sizes, the
estimated classes tend to the actual classes (Theorem 1) and
the feature subdomains (with the extended portions) tend to
their actual sizes (Theorem 2). The estimated nonoverlapping,
overlapping and no-class regions are seen to tend to their actual
sizes with the increase in the size of training samples. Hence
the claim of Proposition 1 is justified experimentally. The
experimental results in figs. 8(b)—(f) also support the analytical
findings in Figs. 7(b) and (d).

The distribution functions of the aforesaid pattern classes
are assumed to be Gaussian for applying the Bayes classifier.
The hard regions of the Bayes classifier for the classes Cy
and C; corresponding to the fifth sample set (with 250
samples from each class) are shown in Fig. 8(g). The feature
points represented by the characters “A” and “B” in Fig. 8(g)
indicate their belonging to the hard regions for C; and C,,
respectively. As expected, the Bayes decision boundary is seen
to pass through the combined choice region of the proposed
system. Note that in the proposed system, the combined choice
region is considered as the boundary between overlapping
classes.

As before, 1000 test samples from each of the classes are
generated artificially for analyzing the performance of the
proposed system. The recognition scores of our system are
shown in Table IV corresponding to the five training sets.
The recognition scores of the Bayes classifier with the same
tranining sets are also included in Table IV. The correct
decision (with single correct, first correct, and half of the
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Fig. 7. (a) Two circular classes with a training set. (b) Subdomains and choice regions for the pattern classes in (a). (c) Enlarged version of the rectangular
portion (enclosed by dotted lines) in (a). (d) Enlarged version of the rectangular portion (enclosed by solid lines) in (b).

combined correct choices) of the proposed system is seen to be  are found to be corrected by our system and the remaining
much higher than that of the Bayes classifier. In other words, samples are distributed among the proposed combined and
among the samples which were misclassified by Bayes some second correct choices.
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regions corresponding to aforementioned four output forms
are calculated analytically under two-class problem in one
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