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ABSTRACT

We investigate the asymptotic properties of the sequential
maximum likelihood estimator of the drift parameter for fractional
Ornstein~Uhlenbeck type process satisfying a linear stochastic
differential equation driven by a fractional Brownian motion.
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1. INTRODUCTION

Long range dependence phenomenon is said to occur in a stationary
time series {X,, n > 0} if the Cov(X,, X,) of the time series tend to zero
as n— oo and yet it satisfies the condition

3 [Cov(Xer X,)| = .
n={)

In other words Cov(X,, X,) tends to zero but so slowly that their sums
diverge. This phenomenon was first observed by the hydrologist Hurst®!
on projects involving the design of reservoirs along the Nile river
(¢f. Montanari®!) and by others in hydrological time series. It was recently
observed that a similar phenomenon occurs in problems concerned with
traffic patterns of packet flows in high-speed data net works such as the
Internet (cf. Willinger et al.,*®! Norros!!!'l). The long range dependence
pattern is also observed in macroeconomics and finance (cf. Henry and
Zafforoni®!). Long range dependence is also related to the concept of
self-similarity for a stochastic process. A stochastic process {X(z), ¢ € R}
is said to be H-self-similar with index H > 0 if for every a>0,
the processes {X(at),? € R} and the process {a”?X(r),t € R} have the
same finite dimensional distributions. Suppose a self-similar process has
stationary increments. Then the increments form a stationary time series
which exhibits long range dependence. A Gaussian H-self-similar process
with stationary increments with 0 < H < 1 is called a fractional Brownian
motion (fBm). A recent monograph by Doukhan et al.!! discusses the
theory and the applications of long range dependence and the properties
of fractional brownian motion (see Taqqu!'®!). If H = 1/2, then the
fractional Brownian motion reduces to the standard Brownian motion
also called the Wiener process.

Diffusion processes and diffusion type processes satisfying stochastic
differential equations driven by Wiener processes are used for stochastic
modeling in wide variety of sciences such as population genetics,
economic processes, signal processing as well as for modeling sunspot
activity and more recently in mathematical finance. Statistical inference
for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes has been studied earlier and a comprehensive
survey of various methods is given in Prakasa Rao.l'"¥! There has been
a recent interest to study similar problems for stochastic processes
driven by a fractional Brownian motion to mode! processes involving
long range dependence. Le Breton!®! studied parameter estimation and
filtering in a simple linear model driven by a fractional Brownian
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motion. In a recent paper, Kleptsyna and Le Breton®] studied parameter
estimation problems for fractional Ornstein-Uhlenbeck type process.
This is a fractional analogue of the Ornstein—Uhlenbeck process, that is,
a continuous time first order autoregressive process X = {X,, ¢ > 0} which
is the solution of a one-dimensional homogeneous linear stochastic
differential equatiom driven by a fractional Brownian motion (fBm)
WH = {WH, ¢ > 0} with Hurst parameter H € (1/2, 1). Such a process is
the unique Gaussian process satisfying the linear integral equation

X,=ef0 X,ds+oWH, ¢>0. (1.1)

They investigate the problem of estimation of the parameters § and o2
based on the observation {X,,0 < s < T} and prove that the maximum
likelihood estimator 0 is strongly consistent as T — oo.

Parametric estimation for more general classes of stochastic
processes, satisfying linear stochastic differential equations driven by
a fractional Brownian motion and observed over a fixed period
of time T, is studied in Prakasa Rao.l'®17] It is well known that
the sequential estimation methods might lead to efficient estimators
from a process observed possibly over a shorter expected period of
observation time as compared to estimators based on predetermined
fixed observation time. We now investigate the conditions for such a
phenomenon. Novikovl!?l investigated the asymptotic properties of a
sequential maximum likelihood estimator for the drift parameter in the
Ornstein—Uhlenbeck process. We now discuss analogous results for the
fractional Ornstein—-Uhlenbeck type process.

2. PRELIMINARIES

Let (Q,%,(F,),P) be a stochastic basis satisfying the usual
conditions. The natural filtration of a process is understood as the

P-completion of the filtration generated by the process.
Let WH = {W¥, ¢ >0} be a normalized fractional Brownian motion

(fBm) defined on (Q, 7, (%,), P) with the Hurst parameter H € [1/2,1)
that is, a Gaussian process with continuous sample paths such that

WH = 0, E(W¥) =0 and

E(WW!) = %[s”* +t# —js— 1], =0, 520. 2.1)
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Let us consider a stochastic process {X,,f >0} defined by the
stochastic integral equation

X, =0 jo X(s)ds+oW?, >0 (2.2)

where € and o are the unknown constant drift and the diffusion
parameters respectively. For convenience, we write the above integral
equation in the form of a stochastic differential equation

dX, = 0X(f)dt + adW, X,=0, 1>0 (2.3)

driven by the fractional Brownian motion W¥#. Even though the
process X is not a semimartingale, one can associate a semimartingale
Z ={Z,,t >0} which is called a fundamental semimartingale such that
the natural filtration (Z,) of the process Z coincides with the natural
filtration (%) of the process X (see Kleptsyna et all’l). Define, for
D<s<t,

3 1
ky=2HT (-2- - )I‘(H + 5), (2.4)
ky(t, 5) = kzlst (s — )4, (2.5)
_2HT(3-2H)I(H +})
Ay = G- 8 ; (2.6)
wil = A5l (2.7
and
. t
MH = fo ku(t, )AWE, > 0. (2.8)

The process MY is a gaussian martingale, called the fundamental
martingale (cf. Norros et al.l'%l), and its quadratic variation (M") = wf’.
Further more the natural filtration of the martingale M* coincides with
the natural filtration of the fBm W, Let

t
Ky(t, s) = HQH — 1)% [ i —splar, 0ss<i. @9
The sample paths of the process {X,, ¢ > 0} are smooth enough so that
the process Q defined by

() = '&fw'ﬁ fo “ku(t, X, ds, te[0,1] 2.10)
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is well-defined where w" and k, are as defined in (2.7) and (2.5)
respectively and the derivative is understood in the sense of absolute
continuity with respect to the measure generated by w”. More over the
sample paths of the process Q belong to L2([0, 7], dw™) a.s. [P). The
following theorem due to Kleptsyna et al.l’l associates a fundamental
semimartingale Z associated with the process X such that the natural
filtration (Z,) of Z coincides with the natural filtration (%,) of X.

Theorem 2.1. Let the process Z =(Z,, t € [0, T]) be defined by
4
Z,= fo ky(t, $)dX, 2.11)

where the function ky(t, 5) is as defined by (2.5). Then the following results
hold:

(i) The process Z is an (¥,)-semimartingale with the decomposition
! , .
Z =0 j O(s)dw" + aM¥ (2.12)
0

where M¥ is the Gaussian martingale defined by (2.8),
(1i) The process X admits the representation

H
X, = [o K, (t, $)dZ, (2.13)

where the function K is as defined in (2.9), and
(iii) The natural filtrations of (Z,) and (%,) coincide.

Kleptsyna et all derived a Girsanov type formula for the
fractional Brownian motion. As an application, it follows that
the Radon-Nikodym derivative of the measure P], generated by the
stochastic process X when 6 is the true parameter, with respect to the
measure generated by the process X when 6 = 0, is given by

P : 1,7
E-FZ-T- = exp [6[} Q(s)dZ, - 582-[0 Qz(s)dwf]. (2.14)

From the representation (2.12), it follows that the quadratic
variation (Z), of the process Z on [0, T] is equal to o?w# a.s. and hence
the parameter o2 can be estimated by the relation

im Y [Zo - Zo] =ow] as. (2.15)
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whete (=’t§l") ) is an appropriate partition of [0, T] such that

sup &) — £ > 0

as n— co. Hence we can estimate o2 almost surely from any small
interval as long as we have a continuous observation of the process. For
further discussion, we assume that ¢ = 1.

3. MAXIMUM LIKELTHOOD ESTIMATION

We consider the problem of estimation of the parameter 6 based
on the observation of the process X = {X,,0 < ¢ < T} for a fixed time T
and study its asymptotic properties as T — oo. These results are due to
Kleptsyna and Le Breton'® and Prakasa Rao.l'*1617]

Theorem 3.1. The maximum likelihood estimator 0 based on the
observation X = {X,,0 < t < T} is given by

te={[ Cwat]” [ oz, @3.1)

where the processes Q and Z are as defined by (2.10) and (2.11)
respectively. Furthermore the estimator 8y is strongly consistent as T — oo,
that is,

}iﬂﬁr =0 a.s. [Pg] (3.2)
for every 0 € R.

We now discuss the limiting distribution of the MLE 8, as T — oo.

Theorem 3.2. Let
4T
Ry = fo 0(s)dz,. (3.3)
Assume that there exists a norming function I,, t > 0 such that

T
P fo QY duwl Sy as T — oo (3.4)
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where I —> 0 as T — oo and n is a random variable such that P(n > 0) = 1.
Then

Ry, B(R;)) S5 (1Z,7?) as T — oo (3.5)

where the random variable Z has the standard normal distribution and the
random variables Z and n are independent.

Proof. This theorem follows as a consequence of the central limit
theorem for martingales (cf. Theorem 1.49, Remark 147 in p. 65

of Ref.l15]),
QObserve that
N I-R
17 By — 0) = T (3.6)

L{Ry)

Applying the Theorem 3.2, we obtain the following result.

Theorem 3.3. Suppose the conditions stated in the Theorem 3.2 hold. Then
—~1/5" Z .
I7 (BT—BO)—+; inlawast — o (3.7

where the random variable Z has the standard normal distribution and the
random variables Z and n are independent.

Remarks. If the random variable n is a constant with probability one,
then the limiting distribution of the maximum likelihood estimator is
normal with mean 0 and variance 2. Otherwise it is a mixture of the
normal distributions with mean zero and variance #~2? with the mixing
distribution as that of #.

4. SEQUENTIAL MAXIMUM
LIKELIHOOD ESTIMATION

We now consider the problem of sequential maximum likelihood
estimation of the parameter 6. Let h be a nonnegative number. Define
the stopping rule t(k) by the rule

w(h) = inf{t : [o ' (s)dw > h]. 4.1
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Kletptsyna and Le Breton!) have shown that

f Q*(duwf =+o0o as. [Py (4.2)

T=r 0

for every 8 € R. Then it can be shown that Py(t(k) < o0) = 1. If the
process is observed up to a previously determined time 7, we have
observed that the maximum likelihood estimator is given by

b= {[ Fea]” [ a0z, 43)
The estimator
B(h)= b,
- Qz(s)dw;'}" [ ez,

= p-! fo O(s)dZ, 4.4)

is called the sequential maximum likelihood estimator of 6. We now study
the asymptotic praperties of the estimator 8(k).

We shall first prove a lemma which is an analogue of the
Cramer-Rao inequality for sequential plans (r(X), 8,(X)) for estimating
the parameter @ satisfying the property

for all 6.

Lemma 4.1. Suppose that differentiation under the integral sign with
respect to 0 on the left side of Eq. (4.5) is permissible. Further suppose that

Eg{ j; A Q*(s)dw ] <o (4.6)
Jor all 8. Then
Var,{6,(X)} > (Ea{ j; e O*(s)duw! })—l @&.7)

for all 6.
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Proof. Let P, be the measure generated by the process X(r), 0 < ¢ < ©(X)
for given 6. It follows from the results discussed above that

dP,
e =enfo-0) [ ooz,

. ey — t H
2(92 62) fo 0 (s)dw! ] as. [Py,). (4.8)
Differentiating (4.5) with respect to 6 under the integral sign, we get that
a 7(X) (X} _
B[] [ 0@az, -0 [ GPaut]] =1 (49)
Theorem 2.1, implies that
dzZ, = 0Q, dw + dM* (4.10)
and hence
T T T
[ 0(az, =6 [ @@dut + [ oGsyam?. @.11)
0 0 0
The above relation in turn implies that
(X) ©(X)
E - 2(S)dw?} =0 12
[ 0waz,—6[ " Faut} “.12)
and
(X) 7(X) 2 ©(X)
Hl __ 2 H
Ef[ owdz,-o0[ " Qau] =Ef [ G*aut]
(4.13)

from the properties of the fundamental martingale M¥ and the fact that
the quadratic variation (M¥), of the process M¥ is w. Applying the
Cauchy-Schwartz inequality to the left side of Eq (4.9), we obtain that

-1

Vary{B.00) = (B[ [ @0t} (4.1
for all 6.

Definition. A sequential plan (1(X), ét(X)) is said to be efficient if there
is equality in (4.7) for all 0.

We now prove the main result.
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Theorem 4.2, Consider the fractional Ornstein-Uhlenbeck type process
governed by the stochastic differential Eq. (2.3) with ¢ =1 driven by the
fractional Brownian motion W¥ with H € [1/2, 1). Then the sequential plan
(x(h), 8(h)) defined by Egs. (4.1) and (4.4) has the following properties for
all 6:

(i ?)(h) = 9,(,,), is normally distributed with Eg(?)(h)) =0 and
Vary(8(h)) = h™%;
(1) the plan is efficient; and
(i) the plan is closed, that is, Py(t(h) < 00) = 1.
Proof. let
T
Jp = fo O(s)aME. 4.15)

From the resuits in Karatazas and Shreve,” Revuz and Yor!'®! and
Tkeda and Watanabe,®! it follows that there exists a standard Wiener

process W such that
Jr=W({J);) as. (4.16)

with respect to the filtration {% ,7>0} under P where 7, =
mf{s : {(J}, > t}. Hence the process

(k)
j; O(s)dM¥ 4.17)
is a standard Wiener process. Observe that
. 0
by =n [ o)z,
(1]
. 1(k) (k)
—_ ~1 H H
h [e L P (s)dw! + j; o(s)am* |

z(h)
=0+h! aM¥
+17 [ o()am;
=0+ h"' T

which proves that the estimator #(h) is normally distributed with mean
0 and variance h~!. Since

E,,{ fo “ Po)dut } = h, (4.19)
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it follows that the plan is efficient by the Lemma 4.1. Since

T
Py(x(h) = T) = pg{ [o Q*(s)duw < h] (4.20)
for every T > 0, it follows that Py(1(h) < o0) = 1 from the observation
pa( fo Q¥ (s)dw! = oo) =1. @21)
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