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Sequential Testing for Simple Hypotheses for
Processes Driven by Fractional Brownian Motion
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Abstract: We prove the existence of an optimal sequential-test procedure for
a simple null hypothesis that the observed process is a noise modeled by a
fractional Brownian motion against the simple alternate hypothesis that the
observed process is the sum of an unobserved signal and the noise.
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1. INTRODUCTION

i
Statistical inference for diffusion-type processes satisfying stochastic
differential equations driven by Wiener processes has been studied
earlier, and a comprehensive survey of various methods is given in
Prakasa Rao (1999a). There has been a recent interest in studying
similar problems for stochastic processes driven by a fractional Brownian
motion (fBm). Le Breton (1998) studied parameter estimation and
filtering in a simple linear model driven by a fractional Brownian motion.
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In a recent paper, Kleptsyna and Le Breton (2002) studied parameter-
estimation problems for a fractional Ornstein-Uhlenbeck-type process.
This is a fractional analogue of the Ornstein-Uhlenbeck process, that is, a
continuous-time first-order autoregressive process X = {X,, ¢ > 0}, which
is the solution of a one-dimensional homogeneous linear stochastic
differential equation driven by a fBm W¥ = {W" t> 0} with Hurst
parameter H € [1/2, 1). Such a process is the unique Gaussian process
satisfying the stochastic integral equation

t
X,=0[0 X, ds+oWH, 1>0. (L.1)

They investigate the problem of estimation of the parameters 0 and o2
based on the observation {X,,0 <s < T} and prove that the maximum
likelihood estimator 0, is strongly consistent as 7 — oo.

We discussed more general classes of stochastic processes satisfying
linear stochastic differential equations driven by an fBm and studied
the asymptotic properties of the maximum likelihood and the Bayes
estimators for parameters involved in such processes in Prakasa Rao
(2003a,b). It is well known that sequential procedures can be used for
estimation and testing problems leading to shorter expected period of
observation time as compared to fixed sample procedures. Novikov
(1972) investigated the asymptotic properties of a sequential maximum
likelihood estimator for the drift parameter in the Ornstein-Uhlenbeck
process. We have discussed analogous results for 2 fractional Ornstein-
Uhlenbeck type process in Prakasa Rao (2004a).

We study the sequential-testing problem for a simple null hypothesis
that an observable process is a special case of the noise modeled
by an fBm against the simple alternate hypothesis that the process
also contains an unobservable signal along with the noise. Self-similar
processes and fBm have been used for modeling phenomena with long-
range depedence. It was recently observed that such a phenomenon
occurs in problems connected with traffic patterns of packet flows in
high-speed data networks such as the Internet and in the study of
economic behavior in finance (cf. Prakasa Rao, 2004b). The motivation
for the present study comes from such observations, which in turn can
be looked as modeling in the branch of signal processing. Suppose we
surmise that a signal (which is unobserved) is possibly transmitted over
a channel corrupted by an fBm. We are interested in testing the simple
hypothesis that there is no transmitted signal, but only a noise modeled
by an fBm that is transmitted through the channel, against the hypothesis
that a signal is transmitted corrupted by a noise modeled by the fBm. We
prove the existence of an optimal sequential-testing procedure for such a
problem. Results obtained are analogues of similar results for diffusion
processes derived in Liptser and Shiryayev (2001b).
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2. PRELIMINARIES

Let (Q, %, (%,). P) be a stochastic basis satisfying the usual conditions.
The natural filtration of a stochastic process is understood as the
P-completion of the filtration generated by this process.

Let W# = {W[, 1> 0} be a normalized fBm with Hurst parameter
H € (0, 1), that is, a Gaussian process with continuous sample paths such
that WJ’ =0, E(‘V‘H) =0 and

1
E(WHWH) = E[sm +2" —|s—t]*], t>0, s>0. 2.1

Let us consider a stochastic process ¥ = {¥,, t > 0} defined by the
stochastic integral equation

t 4
Y, = fo C(s)ds + j; B(s)dW¥, ¥, =0, t>0 2.2)

where C = {C(r), t = 0} is an (%,)-adapted process and B = {B(z), t > 0}
is a nonvanishing nonrandom function. For convenience, we write (2.2)
in the following stochastic differential equation form:

dy, = C(t)dt + B(f)dwW/, Y,=0, t>0 (23)

driven by the fBm W#. The integral
[ 4
fo B(s)dw" (24)

is not a stochastic integral in the Ito sense, but one can define the integral
of a deterministic function with respect to the fBM in a natural sense (cf.
Norros et al., 1999). Even though the process Y is not a semimartingale,
one can associate a semimartingale Z = {Z,, ¢ > 0}, which is called a
fundamental semimartingale, such that the natural filtration (Z,) of the
process Z coincides with the natural filtration (%,) of the process Y
(Kleptsyna et al., 2000a). Define, for 0 < s <,

ko =aa(3-0)r(+ 1), @9

kgt ) = kglstH(z — 5)tH, (2.6)
_ 2HT(3 - 2H)T(H + D) )

A‘H - r(% —H) ’ ( 7)

mf = J= 2, 28)
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where the function I'(\) is the Euler gamma function and

!
MY = j; Ku(t, )AWH, £>0. (2.9)

The process M is a Gaussian martingale, called the fundamental
martmgale (cf. Norros et al.,, 1999), and its quadratic variation (M?) =

H Furthermore, the natural filtration of the martingale M¥ coincides
w1th the natural filtration of the fBm W¥. In fact, the stochastic integral

j{; ' B(s)aw" (2.10)

can be represented in terms of the stochastic integral with respect to the
martingale M¥. For a measurable function f on [0, T], let

KL, s)——-2H— j fOrtr—s¥tdr, 0<s<:r  (211)

when the derivative exists in the sense of absolute continuity with
respect to the Lebesgue measure (see Samko et al., 1993 for sufficient
conditions). The following result is due to Kleptsyna et al. (2000b).

Theorem 2.1. Let M¥ be the fundamental martingale associated with the
/Bm WH as given by (2.9). Then

3 t
]0 f(s)dwH = fo KL, s)dM¥, 1< [0, T] .12)
a.s [P] whenever both sides are well defined.

Suppose the sample paths of the process { 5= 0} are smooth
enough (see Samko et al., 1993) so that the process

Q(f)=—i-f‘x (t, 5) ()ds tel0, T] (2.13)
T dmi Jy T '
is well defined almost everywhere where w” and &, are as defined in (2.8)

and (2.6) respectively and the derivative is understood in the sense of
absolute continuity. Let the process Z = (Z,, ¢ € [0, T]) be defined by

Z,= /;,‘ ku(t, )[B(s)]™' ¥, (2.14)

where the function «(z, 5) is as defined in (2.6). The process Z defines a
semimartingale associated with the process Y, and the natural filtration
(Z,) of Z coincides with the natural fitration (%,) of Y. The following
theorem is due to Kleptsyna et al. (2000a).
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Theorem 2.2. Suppose the sample paths of the process Q, defined by
(2.13) belong P-a.s to L*([0, T], dw") where w¥ is as defined by (2.8).
Define the process Z as in (2.14). Then the following results hold.

(i) The process Z is an (F,) -semimartingale with the decomposition

z,=[ ' Qu()dut + MY 215

where M¥ is the fundamental martingale given by (2.9).
(ii) The process Y admits the representation

t
Y, = fo K2(t, 9)dz, (2.16)

where the function K§(.,.) is as in (2.11).
(iti) The natural fitrations of (£,) and (¥%,) coincide.

Kleptsyna et al. (2000a) derived the following Girsanov-type formula
as a consequence of Theorem 2.2,

Theorem 2.3. Suppose the assumptions of Theorem 2.2 hold. Define

AuD =exp| - [" Quray — 3 [" Ghpamt]. @1

Suppose that E(Ay(T)) =1. Then the measure P*=Ay(T)P is a
probability measure and the probability measure of the process Y under P*
is the same as that of the process V defined by

!
V, = fo B(s)dW®, 0<t<T. (2.18)

3. MAIN RESULTS

Suppose that 6 = {f,,¢ >0} is an unobservable %-adapted process
independent of the fBm W = {W#, ¢ > 0}. Suppose that one of the
following two hypotheses hold for the ¥,-adapted observable process
¥ ={y,t>0}:

Ho . dlll‘ = d“’xﬂ, l’/o = 0, t= 0, (3.1)
and

H :dy, =0,dt+dW", =0, t=0. (3.2)



194 Prakasa Rag

If we interpret the process 6 as a signal and the fBm W¥ as the noise,
then we are interested in testing the simple hypothesis H, indicating the
presence of the signal in the observation of the process y against the
simple hypothesis H, that the signal 0 is absent. Assume that the sample
paths of the process {6,, t > 0} are smooth enough so that the process

d ¢
Q) =+ j; Kg(t, )0, ds, >0 (3.3)

is well defined almost everywhere where m? and x,(z, 5) are as defined
in (2.8) and (2.6) respectively. Suppose the sample paths of the process
{Q(), 0 <t<T} belong almost surely to L*([0, T}, dm¥) for every
T > 0. Define

Z, = fo kgt S)dW,, 2 0. (.4)

Then the process Z = {Z,,t > 0} is an (%,)-semimartingale with the
decomposition

z,= ' 0(s)dw! + M? (3.5)

where M” is the fundamental martingale defined by (2.9), and the
process i admits the representation

b= [ Kuts, )42, (3.6)

Here the function K,(.,.) is given by (2.11) with f = 1. We denote
the probability measure of the process ¥ under H, as P, for i =0, 1.
Let E denote the expectation under the probability measure P and E;
denote the expectation under the hypothesis H;,i =0, 1. Let PT be the
measure induced by the process {,, 0 < ¢ < T} under the hypothesis H,.
Following Theorem 2.3, we get that the Radon-Nikodym derivative of
P{ with respect to PY is given by

j—;‘; = exp [ fo ' Q(s)dz, — -;- jo ! Qz(s)dwf]. (3.7

Let us consider the sequential plan A = A(x, 8) for testing H, versus
H, characterized by the stopping time 7 and the decision function 8. We
assume that 7 is a stopping time with respect to the family of g-algebras
B, = ofx : x,, s < t} where x = {x,, t > 0} are continuous functions with
X = 0. The decision function & = §(x) is %,-measurable and takes the
values 0 and 1. Suppose x is the observed sample path. If 8(x) takes
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the value 0, tl.len it amounts to the decision that the hypothesis H, is
accepted, and if (x) takes the value 1, then it will indicate the acceptance
of the hypothesis H,. For any sequential plan A = A(z, §), define

a(d) = P(6(¥) =0), B(A) = Py(3(¥) =1).

Observe that a(A) and B(A) are the first and second kind of errors
respectively. Let A, ; be the class of sequential plans for which

w(A) <a, P(A)<§B

where 0 <a+ f <1, and

Ei( [0 e mf(w)dmf') <00, i=0,1. (3.8)

We now state the main theorem giving the optimum sequential plan
subject to the conditions stated above.

Theorem 3.1. Suppose the process Q = {Q,, %, t >0} defined above
satisfies the condition

E|Q,| <o, 0<t< 0. (39)
Let
m,(¥) = E(Q|F)). (3.10)
Suppose that
Pi{j‘;wmf(tjl)dmf"=oo] =1, i=0,1. 3.11)

Then there exists a sequential plan A = A(%, 8) in the class A,y that is
optimal in the sense that for any other sequential plan A = A(z, 8) in Ay p,

E,-( j(; " mf(!ll)dmf') < E,-( j; v mf(lll)dm‘,"), i=0,1. (312

The sequential plan A = A(%, d) is defined by the relations
() = inf{t : 4,(¥) = B or 4(¥) < A},
and

d() =1 if Ay 2 B,
=0 if Ly = A
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where
w = [ mwaz, - 5 [ mdul
and
A=1oglfﬁ, B=logl;a.
Furthermore,
B[ mrant) =2 V.0, (3.13)
and
5 ([ mwant) =2 V. p) (314
where
V(x,3) = (1 — ) log - + xlog liy. (3.15)

We first derive three lemmas that will be used to prove the main
result.

Lemma 3.1. The sequential plan A = A(%, 3) satisfies the properties

P(EiY)<w)=1, i=0,1. (3.16)
Proof. Note that

Py(2(¥) < ) = P(E(W") < o)

since ¥, = W}/ under H,. Let

o, (WH) = inf {t : j: m2(WH)dwH > n].

Then

#HWH)Aa, (WH)
Aewityng, wiy (WH) = _[

m (WHydmH
i f%(w”)m.(wﬂ)
()

3 m}(WH)dwH
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and

A < Lywiypg,wiy(W?) < B.

Hence

A < E(A;qwnyno, vy (WH)) < B,

which implies that
H(WH)na, (WH)
E( fo mf(W")dwf) < 2(B — A) < o,
since 0 < a+ f§ < 1. In particular, we have
#(wH)
E( [0 mf(w")dwf) <2(B - A) < . (3.17)
Since
#HwH) o
E ( /; my(W*)dw)') > E(lpwrty=m) L mi(W”)dwf),

it follows that P(3(WH) <o) =1 from equation (3.11). Applying
an analogous argument, we can prove that P,(7(y) < o) = 1. This

completes the proof. O
Let
.
w=2,~ [ m@)du. (3.18)
Then
dZ, = m,(Y)dwf +dv,, t>0 (3.19)

where {v,, 7,1 > 0} is a continuous Gaussian martingale with (v), =
m,'. Furthermore, under H,,

t 1 t 5
— ot X 3.20
4W) = [ m@av, + 5 [ mip)au] (3.20)
This can be seen from Theorem 2 in Kleptsyna et al. (2000a).

Remark 3.1. The random variable 1y, takes the values A and B only
almost surely under the probability measures P, as well as Py.
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Lemma 3.2. The sequential plan A = A(%, 8) defined in Theorem 3.1 hgg
the property

a(A) = o; B(A) = B.
Proof. Since
a(B) = P,(3(¥) = 0) = Py (4xy)(¥) = A)
and
BA) = PyGW) = 1) = Pi(%, (%) = B),
it is sufficient to prove that
Pi{hygy(9) = A) = o Po(Aipy () = A) = B. (3.21)

Following the techniques in Liptser and Shiryayev (2001b, p. 251),
let a(x) and b(x), A < x < B be the solutions of the differential equations

a'(x)+d(x)=0, a(A)=1, a(B)=0 (3.22)

and
b'(x) +b(x) =0, b(A)=0, b(B)=1. (3.23)

It can be checked that

a(x) = fi:;_%ll, b(x) = ::_“_: (3.24)

and
a®=a; b0) =34 (3.25)
O

We will first prove that

Py(Asggy (¥) = A) = . (3.26)

Let

o, () = inf[t : j:mf(gll)dwf > n}.
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Applying the generalized Ito-Ventzell formula for continuous local
martingales (cf. Prakasa Rao, 1999b, p. 76), we obtain that

oo =@+ [ dam,w)ay,
1 pine,. ()
*3 fo [&'(4,(¥)) + a” (4, (YN mE () duwf

"t'(ﬁl)/\d, (\0)
=a+ [0 a'(4,))m,(b)dv, (3.27)

But

?w‘)‘ \on("‘)
El f
0

< sup dGPE( [ mi)duf

A<x<B

a4, ()m, )P dw;

<n sup [@'(x)]* < oo.
A<x<B

Hence

([ dG@m) =0,

Taking the expectation under the probability mesasure P, on both sides
of (3.27), we get that

E, (a()-i(.p)m,, () ) =«

Observe that the function a(x) is bounded on the interval [A, B] and
0,({) ~ oo a.s. under P, as n — oo. An application of the dominated
convergence theorem proves that

E, [a('l%(w)m,,(w)(l/’))] = a. (3.28)

Applying Lemma 3.1, noting that 4, takes only the values A and
B a.s under the probability measure P, and observing that a(4) =1 and
a(B) = 0, we obtain that

o= E, [a(('li(w))]
= 1.P|(Jzgy = A) + 0.Py(Ay) = B)
= P 1 (Ai(,‘,) = A). (3.29)
Similar arguments show that

P, 0(/1;«,) = B) = B. (3.30)
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Lemma 3.3. The relations (3.13) and (3.14) hold for the sequential plan
A = A%, 9).

Proof. Proof of this lemma is analogous to the proof of Lemma 17.9
in Liptser and Shiryayev (2001b) as an application of a generalized Ito-
Ventzell formula for continuous local martingales. We give a detailed
proof here for completeness.

Let g(x),A<x<B,i=0,1 be the solutions of the differential
equations

gl x) + (-)Hg(x) =-2, g(A)=g(B)=0, i=0,1
It can be checked that

B _ ,A+B—x -

R e |
B_ -

8i(x) = 2[(e :1(5, A _ B+x],

and

80(0) =-2 V(ﬁ’ a); 81 0) =2 V(a, p).
Suppose the hypothesis H, holds. Define

o, (W?) = inf{t : L'mf(w”)dwf > n], n>1

Applying the generalized Ito-Ventzell formula to g,(4,(W#)), we obtain
that

8o(Azwryng, cwiny (WH))
HWH)Ag, (WH)
=0+ [ 8 (L (W) m (WH)aM]"

1 pi0Ag,(WH)

-3/ [, (W) — g5 (A (W)mi (W] )dw]!

ﬂ“{n")"‘n(%")

=2+ [ 8o (A (W, m, (WS )aM ]
HW A0, (W)')
fo m(WH)duwt, (3.31)

Since

HWHnan(WH) o - -
(| G4 )m,(Wam ) =0,
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taking expectations with respect to the probability meaure P, on both
sides of equation (3.31), we have

Eo(fo

Taking limit as n — oo, we obtain that

#WH)Aa,(WH) 2 pverbs o H
m2(WH)dut ) = —80(0) + Eo(oClegwryne,com (WHY).

Ty)
B([ moan) =-a®=2v6.0, 6
Similarly, we can prove that
i) 2 "
([ m@an)=-a@=2v@p. 6
This completes the proof. 0

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let A = A(z,8) be any sequential plan in the
class A,z Let P; be the restriction of the probability measure P,
restncted to the a-algebra &, for i =0, 1. In view of the conditions (3. 8)
(3.9), (3.11) and the representation (3.20), it follows that the probability
measures Pf,i=0,1 are equivalent by Theorem 7.10 in Liptser and
Shiryayev (2001a). Furthermore,

" mam# - 1 [ mRwydu
08 s, W) = [ mowtam — 5 [T mwnyaut

and

o =)
og ks, = [ mapyaz, =3 [ michraut.

Therefore

m( [ mi)au!

g [ movant) 634

o log (e ") -

N = NI'—'

and

e D) =3E ([ @), 639

(o
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Applying the Jensen’s inequality and following the arguments similar tg
those in Liptser and Shiryayev (2001b, p. 254-255), it can be shown that

1 ©(¥) 1-—
iE'(/;; mf(u/l)dwf) > (1 —a)log ; z +alog-i—g-?

=3a( [ moar). 60

by using Lemma 3.3. Hence

g( [ mwant) <[V mwant). o)

Similarly, we can prove that

B(f mi(w)dw:’) < Eo( [ m?(wdw:’)- (338

This completes the proof of the Theorem 3.1. 0O

Remark 3.2. As a special case of the above result, suppose that 6, = A(r)
where h(r) is a nonrandom but differentiable function such that

fo " R(@Bdt =00, ROK@E) =0, t30. (3.39)

Let o, B be given such that 0 < x4 f§ < 1.

Let A, 5 be the class of sequential plans as discussed earlier for given
a, f with 0 < ¢ + B < 1. Consider the plan A; = (T, é;) having the fixed
observation time T for 0 < T < oo and belonging to the class A, ;. Then

the optimal sequential plan A = (%, §) € A, ; has the properties
E(f) <T, i=0,1. (3.40)

This can be seen by checking that, for i =0, 1,

Ei( fo e hz(t)dt) < E,( fo ! hz(t)dt)

= L ! W (t)dt = &(T) (say), (3.41)

which in turn implies that
(

®(7) > E,( jo v hz(t)dt)

= E,(@GW))
> B(E,(¥(¥))) (3.42)
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by obser:ving th.at the function ®(.) is convex and by applying the
Jensen’s inequality. The above inequality in turn proves that

EGiW) <T, i=0,1. (3.43)
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