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structure inherent in the gene expression matrix. It refers to

the simultaneous clustering of both genes and conditions in

the process of knowledge discovery about local patterns from

microarray data [6]. This also allows detection of overlapped

groupings among the biclusters, thereby providing a better

representation of the biological reality involving genes with

multiple functions or those regulated by many factors. For

example, a single gene may participate in multiple pathways

that may or may not be coactive under all conditions.

It may be noted that clustering approaches compute global

models, while biclustering techniques focus on local mod-

els. Some of the existing nomenclature for biclustering, par-

ticularly in other application fields, are bidimensional clus-

tering, subspace clustering and coclustering.

1.1. Related work

There has been a lot of research in biclustering [7–9] in-

volving statistical and graph-theoretic techniques. The pio-

neering work by Cheng and Church [6] employs a set of

heuristic algorithms to find one or more biclusters in gene

expression data, based on a uniformity criteria. One biclus-

ter is identified at a time, iteratively. There are iterations

of masking null values and discovered biclusters (replacing

relevant cells with random numbers), coarse and fine node

deletion, node addition, and the inclusion of inverted data.

The computational complexity for discovering k biclusters

is of the order of O(mn × (m + n) × k), where m and n are

the number of genes and conditions, respectively.

Sometimes the masking procedure may result in a phe-

nomenon of random interference, thereby adversely affect-

ing the subsequent discovery of high quality biclusters. In

order to circumvent this problem, a two-phase probabilis-

tic algorithm termed flexible overlapped clusters (FLOC)

[10] is designed to simultaneously discover a set of possibly

overlapping biclusters. Initial biclusters (or seeds) are cho-

sen randomly from the original data matrix. Iterative gene

and/or condition additions and/or deletions are performed

with a goal of achieving the best potential residue reduc-

tion. The time complexity of FLOC is lower for p iterations

(p>n + m); i.e., O((n + m)2 × k × p).

The Plaid model [11] tries to capture the approximate

uniformity in a submatrix of the gene expression data, while

discovering one bicluster at a time in an iterative process.

The input matrix is described as a linear function of variables

corresponding to its biclusters, and an iterative maximization

process is pursued for estimating the function. It searches

for patterns where the genes differ in their expression levels

by a constant factor.

Bipartite graphs are employed in Ref. [12], with a biclus-

ter being defined as a subset of genes that jointly respond

across a subset of conditions. The objective is to identify

the maximum-weighted subgraph. Here a gene is considered

to be responding under a condition if its expression level

changes significantly, under that condition over the connect-

ing edge, with respect to its normal level. This involves an

exhaustive enumeration, with a restriction on the number of

genes that can appear in the bicluster. A simultaneous dis-

covery of all biclusters is made at the same time. It may

be noted that in all these methods it is possible to generate

overlapped gene clusters.

A coupled two-way iterative method [13] has been de-

vised to iteratively generate a set of biclusters, at a time, in

cancer datasets. In the process it repeatedly performs one-

way hierarchical clustering on the rows and columns of the

data matrix, while using stable clusters of rows as attributes

for column clustering and vice versa. The Euclidean dis-

tance is used as the similarity measure, after normalization

of the data.

Gene ontology (GO) information, involving hierarchi-

cal functional relationships like “part of”, “overlapping”,

has been incorporated into the clustering process called

smart hierarchical tendency preserving algorithm (SHTP)

[14]. A fast approximate pattern matching technique has

been employed [15] to determine maximum sized biclus-

ters with a number of conditions greater than a specified

minimum. The worst case complexity of the procedure is

claimed to be O(m2n). Rich probabilistic models have been

used [16] for discovering relations between expressions,

regulatory motifs and gene annotations. The outcome is a

collection of disjoint biclusters, generated in a supervised

manner.

Efficient techniques have been successfully amalgamated

in the deterministic biclustering with frequent pattern min-

ing algorithm (DBF) [17] to generate a set of good quality

biclusters. Here the changing tendency between two condi-

tions is modeled as an item, with the genes corresponding to

transactions. A frequent itemset with the supporting genes

forms a bicluster. In the second phase, these are iteratively

refined by adding more genes and/or conditions.

A good survey on biclustering is available in literature

[18], with a categorization of the different heuristic ap-

proaches made as follows:

• Iterative row and column clustering combination [13]:

apply clustering algorithms to the rows and columns of

the data matrix, separately, and then combine the results

using some iterative procedure.

• Divide and conquer [7]: break the problem into smaller

sub-problems, solve them recursively, and combine the

solutions to solve the original problem.

• Greedy iterative search [6,10]: make a locally optimal

choice, in the hope that this will lead to a globally good

solution.

• Exhaustive biclustering enumeration: the best biclusters

are identified, using an exhaustive enumeration of all pos-

sible biclusters existent in the data, in exponential time

[12].

• Distribution parameter identification [11]: identify best-

fitting parameters by minimizing a criterion through an

iterative approach.



2466 S. Mitra, H. Banka / Pattern Recognition 39 (2006) 2464–2477

There exist a number of investigations dealing with time-

series data [19,20]. However, in this study, we will not

be concerned with differentiating between time-course and

condition-based gene expression data.

A greedy local search heuristic for biclustering has been

reported in literature [6]. Here similarity is computed as a

measure of the coherence of the genes and conditions in the

bicluster. Although the greedy local search methods are by

themselves fast, but they often yield suboptimal solutions.

1.2. Role of genetic algorithms

The quality of a biclustering is often considered to be

more important than the computation time required to gen-

erate it. Hence genetic algorithms (GAs) [21] provide an al-

ternative efficient search technique in a large solution space,

based on the theory of evolution. GAs involve a set of evo-

lutionary operators, like selection, crossover and mutation.

A population of chromosomes is made to evolve over gen-

erations by optimizing a fitness function, which provides a

quantitative measure of the fitness of individuals in the pool.

Single-objective GA, with local search, has been employed

for identifying biclusters in gene expression data [22].

A simulated annealing (SA) based biclustering algorithm

[23] is found to provide improved performance over that of

Ref. [6], and is also able to escape from local minima. Un-

like the classical optimization techniques like GA, that ap-

preciate only improvements in the chosen fitness functions,

SA also allows a probabilistic acceptance of temporary dis-

improvement in fitness scores. However, the results are often

data dependent.

When there are two or more conflicting characteristics to

be optimized, the single-objective GA requires an appropri-

ate formulation of the single fitness function in terms of an

aggregation of the different criteria involved. In such situa-

tions multi-objective evolutionary algorithms (MOEAs) [24]

provide an alternative, more efficient, approach to search-

ing for optimal solutions. They have found successful appli-

cation in feature selection and classification of microarray

gene expression patterns [25].

In this paper we investigate the use of MOEA, in con-

junction with local search heuristics, while generating and

iteratively refining an optimal set of biclusters. Here the ob-

jective is to find one or more biclusters that are optimal with

respect to their homogeneity and size. Since these two cri-

teria are usually conflicting, this lead us to formulate the

biclustering problem in a multi-objective framework. The

fitness functions are formulated as a pair, consisting of the

mean squared residue score [6] and the size of the bicluster.

The remaining part of this article is organized as follows.

Section 2 introduces the preliminaries of gene expression

data, biclustering and MOEA. The proposed multi-objective

GA is presented in Section 3. A new quantitative measure

for evaluating the goodness of the biclusters is proposed in

Section 4. Comparative results, along with statistical signif-

icance for biological relevance, are provided in Section 5 on

benchmark gene expression datasets. Section 6 concludes

the article.

2. Preliminaries

In this section we briefly discuss the basic concepts

of microarray gene expression data, biclustering and

MOEA.

2.1. Microarray and gene expression data

Reverse transcribed mRNA or cDNA microarrays (gene

arrays or gene chips) [1] usually consist of thin glass or nylon

substrates containing specific DNA gene samples spotted

in an array by a robotic printing device. This measures the

relative mRNA abundance between two samples, which are

labeled with different fluorescent dyes viz. red and green.

The mRNA binds (hybridizes) with cDNA probes on the

array. The relative abundance of a spot or gene is measured

as the logarithmic ratio between the intensities of the dyes,

and constitutes the gene expression data.

Gene expression levels can be determined for samples

taken (i) at multiple time instants of a biological process

(different phases of cell division) or (ii) under various con-

ditions (e.g., tumor samples with different histopathological

diagnosis). Each gene corresponds to a high-dimensional

vector of its expression profile. The data contain a high

level of noise due to experimental procedures. More-

over, the expression values of single genes demonstrate

large biological variance within tissue samples from the

same class. Fig. 1 provides a schematic diagram of a mi-

croarray, depicting the gene expression matrix. Here the

rows correspond to the gene expression levels of each

sample.

2.2. Biclustering

A bicluster is defined as a pair (g, c), where g ⊆

{1, . . . , m} is a subset of genes and c ⊆ {1, . . . , n} is a

subset of conditions. The optimization task [6] is to find the

largest bicluster that does not exceed a certain homogeneity

constraint stated below. The size (or volume) f (g, c) of

a bicluster is defined as the number of cells in the gene

expression matrix E (with values eij ) that are covered by it.

The homogeneity G(g, c) is expressed as a mean squared

residue score. We maximize

f (g, c) = |g| × |c|, (1)

subject to a low G(g, c)6d for (g, c) ∈ X, with X =

2{1,...,m} × 2{1,...,n} being the set of all biclusters, where

G(g, c) =
1

|g| × |c|

∑

i∈g,j∈c

(eij − eic − egj + egc)
2. (2)
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Fig. 1. Schematic diagram of a microarray.

Here

eic =
1

|c|

∑

j∈c

eij , (3)

egj =
1

|g|

∑

i∈g

eij (4)

are the mean row and column expression values for (g, c)

and

egc =
1

|g| × |c|

∑

i∈g,j∈c

eij (5)

is the mean expression value over all cells contained in the

bicluster (g, c). A user-defined threshold d represents the

maximum allowable dissimilarity within the bicluster. In

other words, the residue quantifies the difference between

the actual value of an element eij and its expected value as

predicted from the corresponding row mean, column mean,

and bicluster mean. A set of genes whose expression levels

change in accordance to each other over a set of conditions

can thus form a perfect bicluster even if the actual values

lie far apart. For a good bicluster, we have G(g, c) < d for

some d>0.

The optimization task of finding one or more biclusters

by maintaining the two competing constraints, viz., homo-

geneity and size, is reported to be NP-complete [26]. The

high complexity of this problem has motivated researchers

to apply various approximation techniques to generate near

optimal solutions.

2.3. Multi-objective EAs

Most real-world search and optimization problems typ-

ically involve multiple objectives. A solution that is bet-

ter with respect to one objective requires a compromise in

other objectives. In problems with more than one conflicting

objective there exists no single optimum solution. Rather,

there exists a set of solutions which are all optimal involving

trade-offs between conflicting objectives.

Unlike single-objective optimization problems, the

MOEA tries to optimize two or more conflicting characteris-

tics represented by fitness functions. Modeling this situation

with single-objective GA would amount to heuristic deter-

mination of a number of parameters involved in expressing

such a scalar-combination-type fitness function. MOEA,

on the other hand, generates a set of Pareto-optimal solu-

tions [24] which simultaneously optimize the conflicting

requirements of the multiple fitness functions.

Among the different multi-objective algorithms, it is

observed that non-dominated sorting genetic algorithm

(NSGA-II) [27] possesses all the features required for a

good MOEA. It has been shown that this can converge to

the global Pareto front, while simultaneously maintaining

the diversity of population. We describe here the character-

istics of NSGA-II, like non-domination, crowding distance

and crowding selection operator. This is followed by the

actual algorithm.

2.3.1. Non-domination

The concept of optimality, behind the multi-objective op-

timization, deals with a set of solutions. The conditions for a

solution to be dominated with respect to the other solutions

are given below.

Definition 1. If there are M objective functions, a solution

x(1) is said to dominate another solution x(2), if both condi-

tions (a) and (b) are true:

(a) The solution x(1) is no worse than x(2) in all the M

objective functions.
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(b) The solution x(1) is strictly better than x(2) in at least

one of the M objective functions.

Otherwise the two solutions are non-dominating to

each other. When a solution i dominates solution j, then

rank ri < rj .

The major steps for finding the non-dominated set in a

population P of size |P | are outlined below.

(i) Set solution counter i = 1 and create an empty non-

dominated set P ′.

(ii) For a solution j ∈ P (j 6= i), check if solution j

dominates solution i.

If yes then go to Step 4.

(iii) If more solutions are left in P, increment j by one and

go to Step 2.

Else set P ′ = P ′ ∪ {i}.

(iv) Increment i by one.

If i6 |P | then go to Step 2 else declare P ′ as the non-

dominated set.

After all the solutions of P are checked, the members

of P ′ constitute the non-dominated set at the first level

(front with rank = 1). In order to generate solutions for

the next higher level (dominated by the first level), the

above procedure is repeated on the reduced population

P = P − P ′. This is iteratively continued until P = ∅. The

complexity of non-dominated sorting at each iteration is

O(M × P 2).

2.3.2. Crowding distance

In order to maintain diversity in the population, a measure

called crowding distance is used. This assigns the highest

value to the boundary solutions and the average distance

of two solutions [(i + 1)th and (i − 1)th] on either side

of solution i along each of the objectives. The following

algorithm computes the crowding distance di of each point

in the front F.

(i) Let the number of solutions in F be l=|F| and assign

di = 0 for i = 1, 2, . . . , l.

(ii) For each objective function fk, k = 1, 2, . . . , M , sort

the set in its worse order.

(iii) Set d1 = dl = ∞.

(iv) For j = 2 to (l − 1) increment dj by fkj+1
− fkj−1

.

The complexity incurred for calculating the crowding dis-

tance is O(M × P log P).

2.3.3. Crowding selection operator

Crowded tournament selection operator is defined as fol-

lows. A solution i wins tournament with another solution j

if any one of the following is true:

• Solution i has better rank, i.e., ri < rj .

• Both the solutions are in the same front, i.e., ri = rj ,

but solution i is less densely located in the search space,

i.e., di > dj .

2.3.4. NSGA-II

The multi-objective algorithm NSGA-II is characterized

by the use of the above-mentioned three characteristics while

generating the optimal solution. Let us now outline the main

steps of NSGA-II [27].

(i) Initialize the population randomly.

(ii) Calculate the multi-objective fitness function.

(iii) Rank the population using the dominance criteria of

Section 2.3.1.

(iv) Calculate the crowding distance based on Section

2.3.2.

(v) Do selection using crowding selection operator of

Section 2.3.3.

(vi) Do crossover and mutation (as in conventional GA)

to generate offspring population.

(vii) Combine parent and children population.

(viii) Replace the parent population by the best members of

the combined population. Initially, members of lower

fronts replace the parent population. When it is not

possible to accommodate all the members of a par-

ticular front, then that front is sorted according to the

crowding distance. Selection of individuals is done

on the basis of higher crowding distance. The num-

ber selected is that required to make the new parent

population size the same as the size of the old one.

The overall complexity of the above algorithm is O(M ×

P 2), and is mainly governed by the non-dominated sorting

part.

3. Multi-objective biclustering

MOEA is a global search heuristic, primarily used for

optimization tasks. In this section we present the general

framework and implementation details of MOEA for biclus-

tering. Local search heuristics are employed to speed up

convergence by refining the chromosomes.

3.1. Representation

Each bicluster is represented by a fixed sized binary string

called chromosome or individual, with a bit string for genes

appended by another bit string for conditions. The chromo-

some corresponds to a solution for this optimal bicluster

generation problem. A bit is set to one if the corresponding

gene and/or condition is present in the bicluster, and reset

to zero otherwise. Fig. 2 depicts such an encoding of genes

and conditions in a chromosome.

The initial population is generated randomly. Uniform

single-point crossover, single-bit mutation, and crowded
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Fig. 2. An encoded chromosome representing a bicluster.

tournament selection (of Section 2.3.3) are employed in the

multi-objective framework. Both parent and offspring pop-

ulation, in each generation, are combined to select the best

members as the new parent population. Diversity is main-

tained within the biclusters by using the crowding distance

operator (of Section 2.3.2).

3.2. Multi-objective framework

We observe here that one needs to concentrate on generat-

ing maximal set of genes and conditions while maintaining

the “homogeneity” of the biclusters. These two characteris-

tics of biclusters, being conflicting to each other, are well

suited for multi-objective modeling. In order to optimize this

pair of conflicting requirements, the fitness function f1 is

always maximized while function f2 is maximized as long

as the residue does not exceed the threshold d. They are

formulated as

f1 =
g × c

|G| × |C|
, (6)

f2 =

{

G(g, c)

d
if G(g, c)6d,

0 otherwise,
(7)

where g and c are the number of ones in the genes and

conditions within the bicluster, G(g, c) is its mean squared

residue score as defined by Eqs. (2)–(5), d is the user-defined

threshold for the maximum acceptable dissimilarity or mean

squared residue score of the bicluster, and G and C are the

total number of genes and conditions of the original gene

expression array.

Note that f1 is maximum for g =G and c =C, i.e., when

the submatrix (g, c) is equal to the whole input dataset.

Now as the size of the bicluster increases, so does the mean

squared residue. Thereby f2 is allowed to increase as long

as it does not exceed the homogeneity constraint d. Beyond

this we assign a lower fitness value of zero to f2, which is

ultimately removed during non-dominated front selection of

MOEA.

3.3. Local search

Since the initial biclusters are generated randomly, it may

happen that some irrelevant genes and/or conditions get in-

cluded in spite of their expression values lying far apart in

the feature space. An analogous situation may also arise dur-

ing crossover and mutation in each generation. These genes

and conditions, with dissimilar values, need to be elimi-

nated deterministically. Furthermore, for good biclustering,

some genes and/or conditions having similar expression val-

ues need to be incorporated as well. In such situations, lo-

cal search strategies [6] can be employed to add or remove

multiple genes and/or conditions. It was observed that, in

the absence of local search, stand-alone single-objective or

MOEAs could not generate satisfactory solutions. The algo-

rithm starts with a given bicluster and an initial gene expres-

sion array (G, C). The irrelevant genes or conditions having

mean squared residue above (or below) a certain threshold

are now selectively eliminated (or added) using the follow-

ing conditions. A “node” refers to a gene or a condition in

the sequel.

(i) Multiple nodes deletion.

(a) Compute eic, egj , egc and G(g, c) of the bicluster

by Eqs. (2)–(5).

(b) Remove all genes i ∈ g satisfying

1

|c|

∑

i∈g

(eij−eic−egj+egc)
2 > a × G(g, c). (8)

(d) Recompute eic, egj , egc and G(g, c).

Remove all conditions j ∈ c satisfying

1

|g|

∑

j∈c

(eij−eic−egj+egc)
2 > a × G(g, c). (9)

(ii) Single node deletion, corresponding to a refinement of

Step (i).

(a) Recompute eic, egj , egc and G(g, c) of the

modified bicluster by Step (i).

(b) Remove the node with largest mean squared

residue (done for both gene and condition), one

at a time, until the mean squared residue drops

below d.

(iii) Multiple nodes addition.

(a) Recompute eic, egj , egc and G(g, c) of the

modified bicluster of Step (ii).

(b) Add all genes i 6= g satisfying

1

|c|

∑

i∈g

(eij−eic−egj+egc)
2
6G(g, c). (10)

(c) Recompute eic, egj , egc and G(g, c).

(d) Add all conditions j /∈ c satisfying

1

|g|

∑

j∈c

(eij−eic−egj+egc)
2
6G(g, c). (11)

It is proven that node deletion decreases the mean squared

residue score of the bicluster [6]. Here the parameter a
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determines the rate of node deletion. Usually a higher value

of a implies a decrease in multiple node deletion, such that

the resulting bicluster size increases. This leads to an in-

crease in execution time, during fine tuning in Step (ii) of

the algorithm.

3.4. Evolutionary algorithm

The NSGA-II of Section 2.3.4, in combination with the

local search procedure of Section 3.3, is used for generating

the set of biclusters. The main steps of the proposed algo-

rithm, repeated over a specified number of generations, are

outlined as follows.

(i) Generate a random population of size P.

(ii) Delete or add multiple nodes (genes and conditions)

from each individual of the population, as discussed

in Section 3.3.

(iii) Calculate the multi-objective fitness functions f1 and

f2, using Eqs. (6)–(7).

(iv) Rank the population using the dominance criteria of

Section 2.3.1.

(v) Calculate crowding distance as in Section 2.3.2.

(vi) Perform selection using crowding tournament selec-

tion of Section 2.3.3.

(vii) Perform crossover and mutation (as in conventional

GA) to generate offspring population of size P.

(viii) Combine parent and offspring population.

(ix) Rank the mixed population using dominance criteria

and crowding distance, as above.

(x) Replace the parent population by the best |P | mem-

bers of the combined population, as mentioned in

Section 2.3.4.

4. Quantitative evaluation

The bicluster should satisfy two requirements simultane-

ously. On one hand, the expression levels of each gene within

the bicluster should be similar over the range of conditions,

i.e., it should have a low mean squared residue score. On

the other hand, the bicluster should simultaneously be larger

in size. Note that the mean squared residue represents the

variance of the selected genes and conditions with respect

to the coherence (homogeneity) of the bicluster.

In order to quantify how well the biclusters satisfy these

two requirements, we introduce Coherence Index CI as a

measure of evaluating their goodness. Here CI is defined as

the ratio of mean squared residue score to the size of the

formed bicluster. Let there be P biclusters of size |gk| ×

|ck|, ∀k ∈ P in Eq. (1), with mean squared residue score

Gk(gk, ck) from Eqs. (2)–(5). We define

Gk(gk, ck)

=
1

|gk| × |ck|

∑

i∈gk,j∈ck

(eij−eick
− egkj + egkck

)2, (12)

fk(gk, ck) = |gk| × |ck|, (13)

CI = min
k∈P

Gk(gk, ck)

fk(gk, ck)
. (14)

The kth bicluster for k ∈ P is considered to be good, if it has

minimum CI k among all j ∈ P and j 6= k. A small mean

square residue indicates that the corresponding gene set has

consistent value over the samples. Note that an increase in

bicluster size also leads to a decrease in the value of CI.

5. Results

We have implemented the proposed multi-objective bi-

clustering algorithm on microarray data consisting of two

benchmark gene expression datasets, viz., Yeast and Hu-

man B-cell Lymphoma. Availability of literature on the per-

formance of related algorithms on these datasets, prompted

their selection in this study. As the problem suggests, the

size of an extracted bicluster should be as large as possible

while satisfying a homogeneity criterion. The threshold d

was selected as 300 for Yeast data in Refs. [6,10,15,17,22,28]

and 1200 for Human B-cell Lymphoma data in Refs. [6,28].

There are no definite guidelines available in literature for

the choice of this parameter d. With a view to providing a

fair comparison with existing methods, we have often used

the same parameter settings for d and a; i.e., d = 300 and

1200 for Yeast and Human B-cell Lymphoma data, respec-

tively, with a = 1.2. We have also made a detailed study on

the variation of these parameters.

The crossover and mutation probabilities of 0.75 and 0.03

were selected after several experiments with random seeds.

However it was noticed that the crossover and mutation pa-

rameters had insignificant effect on the results, as compared

to that of d and a. Due to lack of space, we restrict the pop-

ulation size to 50. Additionally, we investigated the effect

of lower d values in order to demonstrate the biological rel-

evance of the extracted smaller biclusters.

Table 1

Best biclusters for Yeast data after 50 generations with d = 300

a Bicluster

size

No. of

ganes

No. of

conditions

Mean

squared

residue

CI

1.1 6447 921 7 206.77 0.032

1.2 8832 1104 8 249.61 0.028

1.3 9846 1094 9 263.48 0.027

1.4 11754 1306 9 298.54 0.025

1.5 12483 1387 9 299.88 0.024

1.6 12870 1287 10 299.85 0.023

1.7 12970 1297 10 299.87 0.023

1.8 14828 1348 11 286.27 0.019

1.9 13783 1253 11 299.95 0.022



S. Mitra, H. Banka / Pattern Recognition 39 (2006) 2464 –2477 2471

 260
 280

 300
 320

 340
Delta  1.1

 1.2
 1.3

 1.4
 1.5

 1.6
 1.7

 1.8
 1.9

Alpha

 0.018

 0.02

 0.022

 0.024

 0.026

 0.028

 0.03

 0.032

C
I

Fig. 3. Plot of CI for different choices of a and d on Yeast data.
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Fig. 4. Plot of bicluster size for different choices of a and d on Yeast data.

5.1. Yeast data

Yeast data1 is a collection of 2884 genes (attributes) under

17 conditions (time points), having 34 null entries with −1

indicating the missing values. All entries are integers lying

in the range of 0–600. The missing values are replaced by

random number between 0 and 800, as in [6].

Table 1 summarizes the best biclusters for Yeast data af-

ter 50 generations, with d = 300, for different values of a.

The population size is chosen to be 50. The largest sized bi-

cluster is found at a = 1.8 for each d, with coherence index

CI being minimal and indicating the goodness of the dis-

covered partitions. The minimum value of CI is 0.019 when

d = 300 and a = 1.8, with a corresponding size of 14,828

being the best in the table. As mentioned earlier, a low mean

squared residue indicates a high coherence of the discov-

ered biclusters. It may also include some trivial biclusters

containing insignificant fluctuations in their expression val-

ues, and are not of interest to our study. Hence d is used as

1 http://arep.med.harvard.edu

an upper limit of allowable dissimilarity among genes and

conditions. However, a higher d is indicative of diminishing

homogeneity.

Figs. 3 and 4 depict the 3D plots of CI and bicluster size,

against the variations of parameters d and a. It is observed

that with increasing a and d, the bicluster size also increases

while CI proportionately decreases.

5.2. Human B-cell Lymphoma data

Human B-cell expression data2 contain 4026 genes and

96 conditions, with 12.3% missing values, lying in the range

of integers −750–650. Here the missing values are replaced

by random numbers between −800 and 800, as in Ref. [6] .

Table 2 indicates the best biclusters for Human B-cell

Lymphoma data, with population size 40 after 50 gener-

ations, with d = 1200, for different a values. The largest

bicluster, in this table, is of size 37,560. This is greater

than any other method reported in existing literature. The

2 http://arep.med.harvard.edu
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Table 2

Best biclusters for Human B-Cell Lymphoma data after 50 generations

with d = 1200

a Bicluster

size

No. of

genes

No. of

conditions

Mean

squared

residue

CI

1.1 25420 820 31 1199.94 0.047

1.2 27200 800 34 1199.33 0.044

1.3 28971 999 29 1199.69 0.041

1.4 31992 1032 31 1199.80 0.037

1.5 33000 1000 33 1199.91 0.036

1.6 33915 969 35 1199.94 0.035

1.7 33896 892 38 1199.31 0.035

1.8 33934 893 38 1199.88 0.035

1.9 37560 939 40 1199.98 0.032

corresponding CI value is 0.031. Figs. 5 and 6 demonstrate

the 3D variation of CI and bicluster size with d and a. The

size of a bicluster increases with a and d while CI propor-

tionately decreases.

Fig. 7 depicts the gene expression profile of this largest

bicluster, corresponding to d = 1200 and a = 1.9. The gene

expression values in the range −100–100 indicate the highly

dense profiles of the coregulated genes having little or no

fluctuations under the selected conditions of the bicluster.

However, there also exist a few genes (about 3–5) having

large expression values. This is perhaps because of the pres-

ence of a large number of missing values (about 12.3% of the

total) that are replaced by random numbers between −800

and 800, some of which remain in the biclusters without vi-

olating the homogeneity constraint. Sometimes this can also

occur when a few genes having large variation in their ex-

pression values get included while continuing to satisfy the

homogeneity constraint d of the bicluster. Although it is pos-

sible to deterministically eliminate these highly fluctuating

genes (i.e., those with expression values above 100 or below

−100), thereby generating a smaller sized bicluster, yet we

choose to retain them as their inclusion does not violate the

total allowable dissimilarity d.

5.3. Comparative study

Biclusters of smaller size were discovered in Ref. [28]

for Yeast and Human B-cell Lymphoma data, using the same

values of d as mentioned earlier. Those extracted from Yeast

are of sizes (124 × 8), (124 × 9), (19 × 8), (19 × 9),

(63 × 9), (23 × 9), (20 × 8) and (20 × 9), with the two

entries within the parentheses corresponding to the numbers

of genes and conditions, respectively. Note that we gener-

ate biclusters of comparable sizes with d as small as 10–20

in case of Yeast data. The authors in Ref. [28] removed

genes with missing entries, from Human B-cell Lymphoma,

to start with a reduced set of 854 genes. Some of the biclus-

ters are of sizes (4 × 15), (5 × 15), (5 × 81), (15 × 81),

(4 × 83), (5 × 83), (7 × 83), (26 × 83), (21 × 83), (25 × 83),

(72 × 13) and (106 × 13). Sample biclusters, discovered in

Ref. [6] for Human B-cell Lymphoma data, are of sizes (103

× 25), (127 × 13), (158 × 17), (59 × 18), for d = 1200.

Tables 1 and 2 depict some of the bicluster sizes gener-

ated by our proposed algorithm, for these two datasets,

corresponding to different a–d combinations. In all cases

our results indicate a better performance in terms of larger

bicluster size, while satisfying the homogeneity criterion in

terms of d. The best entry is marked in bold, in both cases.

Table 3 lists a comparative summarization of results on

Yeast data, involving performance of related algorithms with

a threshold d = 300. The deterministic DBF [17] discov-

ers 100 biclusters, with half of these lying in the size range

2000–3000, and a maximum size of 4000. FLOC [10] uses a

probabilistic approach to find biclusters of limited size, that

is again dependent on the initial choice of random seeds.

FLOC is able to locate large biclusters. However DBF gen-

erates a lower mean squared residue, which is indicative of

increased similarity between genes in the biclusters. Both

these methods report an improvement over the pioneering

algorithm of Ref. [6], considering mean squared residue as

well as bicluster size. A largest size of 4485 is discovered

[6] with d = 300. Comparing with Table 1, we observe that

the bicluster size is always larger in our proposed method.

Single-objective (classical) GA, along with the local

search strategy of Section 3.3, was investigated for different

sizes of bicluster populations. The fitness function

Ft = c1f1 + c2f2 (15)

was used, in terms of Eqs. (6)–(7). Additionally, we

worked with 0 < c1, c2 < 1 for 0.16c1 60.9 subject to c1 =

1− c2, and found no significant change in results. Compari-

son is provided for the same set of parameter initializations,

involving multiple (13–15) runs over the same number of

generations. The average result is included in Table 3 for

Yeast data. It is observed that a population size of 50 leads

to the generation of a largest bicluster of size 1408. This

is less than the bicluster size generated by the proposed

multi-objective approach.

Single-objective GA has also been used with local search

[22], to generate considerably overlapped biclusters. An ini-

tial deterministic selection of biclusters, having similar size,

is made for uniform distribution of chromosomes in the pop-

ulation. Thereafter GA is used with minimization of a fitness

function, defined as

F(g, c) =











1

f (g, c)
if G(g, c)6d,

G(g, c)

d
otherwise.

(16)

The best bicluster generated from Yeast data is 12,350, with

an average size of 8600.

The SA based algorithm [23] is able to find significant

biclusters of size 18,460 with d = 300 for Yeast data, but it

suffers from the “random interference”. The results are also

data dependent.
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Fig. 5. Plot of CI for different choices of a and d on Human B-cell Lymphoma data.
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Fig. 6. Plot of bicluster size for different choices of a and d on Human B-cell Lymphoma data.
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Fig. 7. Gene expression profile of a large bicluster on Human B-cell Lymphoma data, with 939 genes and 40 conditions.

Fig. 8 depicts sample gene expression profiles for small

biclusters, generated with d = 20, for Human B-cell Lym-

phoma data. Note that similar sizes of biclusters required a

higher d of 1200, as reported in literature. This implies that

MOEA can generate good quality biclusters with compara-

tively smaller d values. We also investigated the significance
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Table 3

Comparative study on Yeast data

Method Average residue Average bicluster size Average no. of genes Average no. of conditions Largest bicluster size

FLOC [10] 187.54 1825.78 195 12.8 2000

DBF [17] 114.7 1627.2 188 11 4000

Cheng–Church [6] 204.29 1576.98 167 12 4485

Single-objective GA 52.87 570.86 191.12 5.13 1408

Proposed MOEA 234.87 10301.71 1095.43 9.29 14,828
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Fig. 8. Small biclusters, of size 32 × 6, for Human B-cell Lymphoma data with d = 20.
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Table 4

Significant shared GO terms (process, function, component) of the selected 12, 18 genes for Yeast data

No. of genes Process Function Component

12 tRNA methaylation tRNA (guanine) Cytosolic small

(2, 0.00024), RNA methyltransferase ribosomal subunit

methaylation activity (6.07e-05), (sensu Eukaryota)

(2, 0.00027), biopolymer tRNA methyl- (2, 0.0046), Eukaryotic

methaylation (2, 0.0014), transferase activity 48S initiation complex

tRNA modification (2, 0.00027), RNA (2, 0.004), Eukaryotic

(2, 0.0015), cellular methyl transferase 43S preinitiation

process (12, 0.0052), activity (2, 0.0006), complex (2, 0.0062),

intracellular transport methyltransferase small ribosomal

(4, 0.006), establishment activity (2, 0.007) subunit (2, 0.010)

of cellular localization

(4, 0.0072)

18 Cell organization and Protein transporter Nucleus (4, 0.0053),

biogenesis (9, 0.0048), activity (2, 0.0067) small nucleolar

rRNA processing ribonucleo protein

(3, 0.008), primary complex (2, 0.0089)

transcript processing

(2, 0.0120), membrane

lipid biosynthesis

(2, 0.0130)

of annotated Yeast cell-cycle genes, in case of smaller biclus-

ters generated with d = 20. This is described in Section 5.4.

Another measure of comparative study is coverage. This

signifies the total number of cells in the gene expression ar-

ray that are covered by the biclusters. MOEA covers an av-

erage of 51.34% cells in Yeast data, with a population size

of 50, while an average coverage of 67.30% [6] and 50.99%

[22] cells are reported in literature with a population of 100

biclusters. In Human B-cell Lymphoma data the MOEA cov-

ers an average of 20.96% cells with population size of 40,

whereas an average of 36.81% cells are covered in Ref. [6].

It is observed that the process of masking the discovered

biclusters by random numbers [6] prohibits the already dis-

covered genes and conditions from future pattern discovery,

and leads to discovery of smaller subsets of new genes and

conditions. This sort of random interference leads to a higher

coverage [6] as compared to MOEA, while simultaneously

inhibiting the discovery of larger biclusters.

5.4. Statistical significance

We determined the biological relevance of smaller biclus-

ters for the Yeast cell-cycle data, with d = 20, in terms of

the statistically significant GO annotation database.3 Here

genes are assigned to three structured, controlled vocabu-

laries (ontologies) that describe gene products in terms of

associated biological processes, components and molecular

functions in a species-independent manner.

3 http://db.yeastgenome.org/cgi-bin/GO/goTermFinder

We have measured the degree of enrichment i.e., p-

values4 using a cumulative hypergeometric distribution,

that involves the probability of observing the number of

genes from a particular GO category (i.e., function, process,

component) within each bicluster. The probability p for

finding at least k genes, from a particular category within a

cluster of size n, is expressed as

p = 1 −

k−1
∑

i=0

(

f
i

) (

g−f
n−i

)

(

g
n

) , (17)

where f is the total number of genes within a category and

g is the total number of genes within the genome [3]. The

p-values are calculated for each functional category in each

cluster. Statistical significance is evaluated for the genes in

each bicluster by computing p-values, which signify how

well they match with the different GO categories. Note that a

smaller p-value, close to zero, is indicative of a better match.

Fig. 9 depicts the significant GO terms (or parents of GO

terms) for a set of 18 genes along with their p-values, with

the significance being indicated in terms of the grayness dis-

played. It shows the branching of a generalized molecular

function into sub-functions like carrier activity, protein bind-

ing, protein transporter activity, etc., which are then clus-

tered gene-wise to produce the final result. In other words,

it displays the annotated genes in a sample bicluster that is

enriched for GO categories.

Table 4 shows the significant shared GO terms (or parent

of GO terms) used to describe the set of genes (12 and 18)

4 The p-value of a statistical significance test represents the probability

of obtaining values of the test statistic that are equal to or greater in

magnitude than the observed test statistic
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in each bicluster, for the process, function and component

ontologies. The common terms with increasing order of p-

value (i.e., decreasing order of significance) are displayed.

For the first bicluster, the genes (TRM82, TRM112) are

particularly involved in the process of tRNA and RNA

methaylation, tRNA modification; while genes (GBP2,

AGE1, TOM20, VPS21, PRS4, SSK22, NHP10, SOK1,

etc.) are involved in cellular process, intracellular transport,

etc. The values within parentheses after each GO term in

columns 2–4 of the table, such as (2, 0.00024) in the first

row, indicate that out of 12 genes in the first cluster two

belong to this process and their statistical significance is

provided by a p-value of 0.00024. Note that the genes in

the cluster share other GO terms also, but with a lower sig-

nificance (i.e., have higher p-value). From the table we note

that each extracted bicluster is distinct along each category.

For example, the most significant process in the second

bicluster are cell organization and biogenesis (genes LSM2,

RRP7, NHP10, TOM20, ECM9, EMG1, SEC65), rRNA

processing (genes LSM2, RRP7, EMG1) and membrane

lipid biosynthesis (genes VRA7, FEN1).

Looking at the function category of each bicluster, we

discover that the most significant terms for the first row are

tRNA (guanine) methyltransferage activity (genes TRM82,

TRM112), while for the second row it is protein tansporter

activity (genes TOM20, PSE1). Finally, the extracted biclus-

ters also differ in terms of their cellular component. The

genes (RPS22A, RPS16A) of the first bicluster belong to

small ribosomal subunit, while those of the second bicluster

(LSM2, RRP7, EMG1, RPC19) belong to the nucleus. This

validates the claim that the proposed method is capable of

detecting potentially biologically significant biclusters.

6. Conclusions

In this article we have introduced a general multi-objective

framework for biclustering gene expression data, while in-

corporating local search for finer tuning. A qualitative mea-

surement of the formed biclusters, along with a compara-

tive assessment of results, is provided on two benchmark

gene expression datasets to demonstrate the effectiveness of

the proposed method. Biological validation of the selected

genes within the biclusters have been provided by publicly

available GO consortium.

Gene expressions provide a fundamental link between

genotypes and phenotypes, and play a major role in biologi-

cal processes and systems including gene regulation, evolu-

tion, development and disease mechanism. Biclustering has

been mainly applied to gene expressions involving cancer-

ous data, particularly for identification of coregulated genes,

gene functional annotation, and sample classification.

Biclustering is typically employed in situations involving

(say) the (i) participation of a small set of genes in a cellular

process of interest, (ii) study of an interesting cellular pro-

cess that is active only over a subset of conditions, (iii) par-

ticipation of a single gene in multiple pathways, which may

or may not be coactive under all conditions. Robustness of

the algorithms is also desirable, due to the complexity of the

gene regulation processes as well as to intelligently handle

the level of noise inherent in the actual experiments. Uncov-

ering genetic pathways (or chains of genetic interactions) is

equivalent to generating clusters of genes with expression

levels that evolve coherently under subsets of conditions,

i.e., discovering biclusters where a subset of genes are co-

expressed under a subset of conditions. Such pathways can

provide clues on (say) genes that contribute towards a dis-

ease. This emphasizes the possibilities and challenges posed

by biclustering.

However, there also exist other application domains,

including information retrieval, text mining, collabora-

tive filtering, target marketing, market research, database

research and data mining. The tuning and validation of

biclustering methods, in comparison to known biological

data, is certainly one of the important open issues for future

research.
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