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ABSTRACT

A binary operation * over real numbers is said to be associative if
(x*y)*z=x+(y*2z) and it is said to be reducible if x*y=x*z
or y*w =z +w if and only if z = y. The operation * is said to have
an identity element & if x * € = x. Roy [Roy, D. (2002). On bivarate
lack of memory property and a new definition. Ann. Inst. Statist.
Math. 54:404-410)] introduced a new definition for bivariate lack of
memory property and characterized the bivariate exponential
distribution introduced by Gumbel [Gumbel, E. (1960). Bivariate
exponential distributions. J. Am. Statist. Assoc. 55:698-707] under
the condition that each of the conditional distributions should have
the univariate lack of memory property. We generalize this definition
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and characterize different classes of bivariate probability distriby-
tions under binary associative operations between random variables,
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1. INTRODUCTION

Different types of bivariate exponential distributions have been
investigated for stochastic modeling purposes. Some of these distribu-
tions have been developed via characterizing properties such as the lack
of memory property (LMP) of the exponential distribution. Marshall
and Olkin (1967) proposed a bivariate lack of memory property (BLMP)
and studied a class of bivariate as well as multivariate exponential distri-
butions. Roy (2002) introduced a new definition for bivariate lack of
memory property (BLMP,) and characterized the bivariate exponential
distribution introduced by Gumbel (1960) under the condition that each
of the conditional distributions should have the univariate LMP. We
generalize this definition and characterize different classes of bivariate
probability distributions under binary associative operations between
random variables. These include bivariate exponential, bivariate Weibull,
and bivariate Pareto distributions.

2. PRELIMINARIES

A binary operation * over real numbers is said to be associative if

(xxy)sz=xx(y*2) (2.1)
for all real numbers x, y, z. The binary operation * is said to be reducible
ifxxy=xxzifandonlyif y=zandif y*xw =z xwif and only if y = z.
It is known that the general reducible continuous solution of the func-
tional Eq. (2.1) is

xxy =g\ (g(x) +2(») (22)

where g(-) is a continuous and strictly monotone function provided x, y,
x % y belong to a fixed (possibly infinite) interval A (cf. Aczel, 1966, 1987).
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The function g(-) in (2.2) is determined up to a multiplicative constant,
that 1s,

gri{21(x) + 21(0) = 7' (22(%) + £2(y))

forall x, y in a fixed interval A implies g,(x) = 0g, (x) for all x in that interval
for some o # 0. We assume hereafter that the binary operation is reducible
and associative with the function g(-) continuous and strictly increasing.
Furthermore, assume that there exists an identity element # € R such that

xxe=x, X€A.

It is also known that every continuous, reducible, and associative
operation defined on an interval A in the real line is commutative (cf.
Aczel, 1966). Let X be a random variable with the distribution function
F(x) having support A. Define

Py (s) = /A exp{isg(x)} F(dx), —oo <s< 00. (2.3)

Note that the function ¢}(s) is the characteristic function of the
random variable g(X) and hence determines the distribution function
of the random variable g(X) uniquely.

Examples of such binary operations are given in Castagnoli (1974,
1978, 1982), Muliere (1984) and Castagnoli and Muliere (1984, 1986,
1988). For instance:

(i) If A= (-o00,00) and x *xy = x+y, then g(x) = x.

(i) IfA=(0,00) and x*y=xy,x > 0,?1 > 0 then g(x) = log x.

(iii) If A= (0,00) and x*y = (x*+y*)'/*, x>0, y > 0 for some
a > 0, then g(x) = x°.

(iv) If A=(-1,00) and x*y=x+y+xy+1,x>—-1,y> -1,
then g(x) = log(1 + x).

(v) If A=(0,00) and x*y = xy/(x +y),x > 0, then g(x) = 1/x.

(vi) If A= (0,00) and xxy= (x+)/(1+xy), x>0, y>0, then
g(x) = arth x.

A characterization of the multivariate normal distribution through a
binary operation which is associative is given in Prakasa Rao (1974, 1977)
for Gaussian measures on locally compact abelian groups. Some charac-
terizations of probability distributions through binary associative opera-
tions have been studied in Muliere and Prakasa Rao (2003), extending
earlier resuits in Prakasa Rao (1992, 1997).
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Let X = (X1, X;) be a bivariate nonnegative random vector with the
bivariate survival function

S(x1,22) =P(X1 > x1,X2>x), x>0, x>0 (2.4)
satisfying the functional equation

S(x1 +t,x2 + 1) = S(x1,x2) S(t,1), x>0, x>0, t>0. (2.5)

The above functional equation represents a particular type of BLMP.
Marshall and Olkin (1967) characterized the class of bivariate distribu-
tions with the exponential marginal distributions satisfying the above
functional equation. They have shown that the unique solution of the
above functional equation is the bivariate distribution with the survival
function given by

S(x1,%2) = exp{—Aix; — Aaxz — A2 max(xy, x2)}. (2.6)

This bivariate distribution is a mixture of an absolutely continuous
distribution and a singular part that concentrates its mass on the line
x1 = x. This family of distributions has been found useful for applications
in reliability theory (cf. Basu and Block, 1975; Galambos and Kotz, 1978).

Muliere and Scarsini (1987) characterized a class of bivariate
Marshall-Olkin type distributions that generalize the Marshall-Olkin
bivariate exponential distribution through a functional equation invol-
ving binary associative operations. These classes of bivariate distributions
do not necessarily have exponential distributions as their marginal distri-
butions and their form depends on the associative operation. They con-
centrate positive mass on the line x; = x, as in the case of bivariate
exponential distribution introduced by Marshall and Olkin (1967).

Let = be a binary associative operation with an identity element é.
Suppose that the survival function S(x;,x;) satisfies the functional
equations

S(x1 8,32 % £) = S(x1,x2) S(t, 1), (2.7)

Si(x1 % 1) = 81 (x1) 81(2), Si(x1) = S(x1,8), (2.8)
and

Sa(xz * 1) = $2(x2) $2(2), $2(x2) = S(&, x2) (2.9)

for all x|, x,,2 > @.
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Muliere and Scarsini (1987) proved that the only continuous solution
of the functional Eqs. (2.7)(2.9) is

S(x1, x2) = exp{—Adig(x1) — Lag(x2) ~ Apag(max(x;, x,)}} (2.10)
with A1, 42, 412 > 0 where g(-) is the function corresponding to the binary
associative operation .

Different specializations of the binary associative operation  lead to
different bivariate survival functions.

Example 2.1. If x * y = x +y, then g(x) = x and

S(x1,x2) = exp{—~A1x; — A3x3 — A1 max(xy, x2))}. (2.11)

This is the Marshall-Olkin distribution.

Example 2.2. If x x y = xy, then g(x) = logx and

S(x1, x2) = x7% x5 % (max(x, x3)) . (2.12)
This is the bivariate Pareto distribution over the set (1, 00) x (1,00).
Example 2.3. If x * y = (x* + y*)!/%, then g(x) = x* and

S(x,,xz) = exp{—llx‘}‘ - llzxg — A max(x‘}',xg)} (2.13)
This is the bivariate Weibull distribution (cf. Marshall and Olkin, 1967;
Moeschberger, 1974).

Recently, Roy (2002) introduced a new concept of BLMP.
Definition. Let S(x),x;) be the bivariate survival function of a non-
negative bivariate random vector (X}, X2). The survival functiqn S(x1,x2)
is said to possess bivariate lack of memory property BLMP; if and only
if for all x;, x5, y; and ys,

S(x1 + y1,x2) S(0,x2) = S(xq,x2) S(y1,x2) (2.14)

and

S(xl,xz + ,YZ) S(xl, 0) = S(X1,x2) S(-ﬂs)"Z)' (215)
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It is easy to see that if a bivariate distribution has the BLMP,
property, then the marginals posess univariate LMP. This can be seen by
substituting x; = 0 in (2.14) or x; = 0 in (2.15).

Roy (2002) proved that a bivariate random vector X = (X, X;)
follows BLMP; if and only if X follows the bivariate exponential
distribution introduced by Gumbel (1960) with the survival function

- S(xy,x2) = exp{~A1x) ~ Aax2 — A2 max(xy, x2)}. (2.16)

It was shown further by Roy (2002) that the failure rates
a . . .
ri{xy, x) = B [~logS(x1,x)], i= 1,2 (2.17)

are locally constant in the sense that r;(x;, x3) = r1(0, x2) for all x; and x;
and similarly, r2(x;,x3) = r2(x;,0) for all x; and x,. Similarly, the mean
residual lives

Mi(x1,x2) = E(X; —x)|X1 2 x1, X2 2 x), i=12 (2.18)

are locally constant.

3. MAIN RESULTS

Let X = (X),X,) be a bivariate random vector with the survival
function S(x;,x;). Let * be a binary associative operation with the
identity é satisfying the equations

S(x1 * y1,%2) S(&,x2) = S(x1,x2) S(y1,x2) (3.1)
and

S(x1,x2 % y2) $(x1,€) = S(x1,x2) S(x1,y2)- (3.2)

Suppose that S(x;,x2) > 0 for all x; > & and x; > & Let g(-) be 2
continuous strictly increasing function associated with the binary associa-

tive operation as described earlier. It is known that the function g(-) is
unique up to a multiplicative constant. Note that g(¢) = 0. Furthermore,

x1xx3 = g~ (g(n) + g(x2)). (3.3)
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Suppose that the function g(:) defined above is differentiable with the
derivative g’ (%) >0 for all x > & We now characterize the class of all
bivariate distributions satisfying the functional equations (3.1) and (3.2).

Observe that

® 8(x1 % 1,x3)
e S(x1,x2)
* S(s, x2)
A _——_S(E, x2) dt (3.4)

My(x1,%2) = dt

from Eq. (3.2) and the right side is a function of x, alone. Let us denote it
by Kj(x2). Hence

1 | S S(x1,x3)

—

Ki(x) M%) L7 8(x1 * ¢, x2)dt (3.5)

for all x; > & and x; > é. Let

[ o]
Ai(x1,x) = [ S(x) * t,x3)dr

e

e ¢(u) |
= f St %2) 1) —ga)) (3.6)

Observe that

0A) - S(x1,x2)g’ (x1)
Ox) g'(g71(0))

_ _S(x,%)g(x) (3.7)
g'(€)
Combining relations (3.4)-(3.7), we get that
L __ Sta,x) (3.8)
Ki(x2) Ay(x1,x2)
v o8 (39)
Ay (x1,%2)’ |
therefore
gy 1 _ G
g'(&) Ki(x2) Ai(x1,%2)
_OlogA; (3.10)

ox)
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Solving this differential equation, we obtain

glx) 1
.mm——logrh + Bi(x2) (3.11)
for some function B;(-). Therefore
Aj(x3,x2) =exp [—%‘(_E%)l}?(l:xz_) + By (xz)] (3.12)
which implies that
_ 1 glx) 1
S(x1 ,XZ) = mexp [— ?:ﬁK; (12) + By (xz)] . (313)
Therefore
S(x1,x2) = Li(x2) exp [— ifx;)) X, :xz)] (3.14)

for some functions K;(x;) and L;(x;). This relation was derived from
(2.14). Similarly, it follows from (2.15) that

S(x1, %2) = La(x1) exp [— %%)lfc?(lx-,)] (3.15)

for some functions K2(x;) and L,(x;). Hence

Ll(xz)exp[—g("‘) ! ]=L2(x1)°xp[—g(x2) ‘ ] (3.16)

2'(&) Ki(x2) £(2) K2(x1)
for all x;, x5. Let x; = @ in the above identity. Then it follows that
2 oxo] 8 1] _ N
L@ee|-Se] = bS] G
or equivalently,
tog (8) - [E0 ] —tog La(x) (3.8)

for all x; since g(é) = 0. Therefore

Ly(x1) = explas + Bg(x1)] (3.19)
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for all x; for some constants &) and 8, and hence

(1, %2) = explos + By (x1) -+ 728(ea) Byl (3.20)

for some constants a;, f;,7, and some function H, dependmg on x; only.
A similar analysis starting with substituting x; = 2 in the identity (3.16)
shows that

S(x1,x2) = exploz + Bog(x2) + v28(x1) Hy (x2)] (3:21)

for some constants az, f,,y, and some function H; depending on xz only.
Equating the relations (3.20) and (3.21), it follows that

oy + B1g(%1) + 1g(x2) Ha(x1) = az + Bog(x2) + 1a8(x1)Hi(x2)
(3.22)

for all x; and x;. Let x; = x, = & in Eq. (3.22). Then it follows that
a; = &y since g(&) = 0. Hence

.ﬁug(xl) + y18(x2)Ha(x1) = Bog(x2) + y28(x1) Hy (x2) (3.23)

for all x; and x;. Fix a value of x; = xa9 such that g(xy) # 0. Then it
follows that

Big(x1) + 718(x20)Ha(x1) = Brg(x20) + 728(x1) Hi(x20)
= ¢ + ¢28(x1) (3.24)

for some constants c¢; and c¢;. Therefore

_a+oglx) — Biglxr)
Halx) = 718(x20)

= c3 + c4g(x1) (3.25)

when y, # 0 for some constants c¢; and c4. In particular, we have

S(x1,x2) = explo + Big(x1) + 118(x2)(e3 + cag(x1))]
= exploy + B18(x1) + Brg(x2) + Bag(x1)g(x2)}. (3.26)
It is clear that the above representation holds even if y; =0 from

Eq. (3.20). Let x; = x, = ¢ in Eq. (3.26). Then it follows that «; = 0 since
g(¢) = 0 and 5(2,2) = 1. Suppose that S(x;,&) < 1 and S(2,x,) < 1 for all
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x] > gor x; > é. Then it follows that §; < 0, §, < 0and 0 < ~B; < §,5,.
Hence we have the following theorem.

Theorem 3.1. Suppose a bivariate random vector X has the BLMP,
property under a binary associative operation * with an identity &, that
is, its survival function S(x),x,) satisfies the conditions

S(xl * yhx2) S(E, x2) = S(xlax2) S(yla xZ) (327)
and
S(x;,xz *yz) S(xl, E) = S(xl,xz) S(xl,yz). (3.28)

for all xy > & and x; > & Further suppose that S(x|,¢) <1 and
S(&,x2) < 1 for all x| > € or x, > &. Then there exists constants 1; > 0,
A2 > 0,0 < A3 < A1y such that

S(x1,%2) = expl~Ai18(x1) — A28(x2) — A3g(x1)g(x2)] (3.29)

for all x) > é and x; > é where g(-) is the function corresponding to the
binary associate operation x.

Remark 3.1. By choosing the binary associate operation * as the addi-
tion operation on the set of real numbers with the identity é =0, we
obtain that g(x) = x and hence derive the characterization of the bivari-
ate exponential distribution given in Theorem 3.1 of Roy (2002) as a
corollary to Theorem 3.1 given above. As pointed out by Roy (2002),
the characterization results obtained in Johnson and Kotz (1975), Zahedi
(1985), and Roy and Gupta (1996) also follow as special cases of our
results.

Remark 3.2. A multivariate extension of Theorem 3.1 can be obtained
by mathematical induction. The multivariate version of BLMP; property
under the binary associative operation * with an identity & can be defined
as follows. A k-dimensional random vector X = (X1,..., Xi,...,Xz) is
said to have the MLMP;, property under a binary associative operation
* with an identity & if its survival function S(x;,x2,...,x) satisfies the
conditions

S(xl)"'vxi—lixi *yj,xi-f-l,---,xk)s(Xl,- . axi—laoaxi+h' ..,Xk)
= S(X1y v ey Xiy e ey X)S(XL, <o s Xiny iy Xik Ly« -+ 3 ¥k )
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for all x; > &,i=1,2,...,k. Further suppose that
S ....6x,8...,8)<1, i=12,... k

Then it can be shown that the class of all such multivariate distributions
are those with the survival functions of the form

S(xla”':xi:'“&xk) =GXp[—ZA,-x,- —Zzlijxixj-. cee

— AperxiZs - -xk] . (3.30)
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