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Fig. 1. Long range changes.

The important issues are whether there has been a change in the fluctuations of the temperature or ice accumulation

and at which time horizons changes develop. To be able to answer these questions, we need methods that detect

significant changes and account for at which scale changes in the statistical behaviour of the measured parameters are

detected.

In this paper, change points are interpreted as time points where the stationarity assumption is broken. This means

that there are changes in the statistical properties of a process at these time points. We will focus on changes in the

time domain that can be found as a change in the power spectrum of a process.

For our analysis of change points, we do not assume any standard model in the time domain like those used in

e.g., “intervention analysis” (Box et al., 1994). Further, our objective is not to model the time series for the purpose of

making prediction. Balke (1993) detects level shifts and outliers in time series to enable building a model in the time

domain for the time series. Polansky (2007) uses Markov chains to model the time series. These examples demonstrate

the scope of a large part of the existing time series literature dealing with change points, where the aim is to develop

a model for the time series which can be used for further prediction of the process. Other examples are Appel and

Brandt (1983), Basseville and Benveniste (1983), Sclove (1983) and Davis et al. (2006) who are using parametric

sequential segmentation procedures assuming a piecewise autoregressive process.

Segmentation of a time series by different statistical methods has been considered by several authors. Lai (1995)

gives a review of different sequential detection procedures and suggests a class of sequential detection rules for on-

line implementation. A common approach for detecting change points, is to use sequential detection procedures based

on piecewise modelling of a process. Dahlhaus first addressed the concept of local stationarity; see Dahlhaus (1997),

Dahlhaus and Neumann (2001) and Dahlhaus and Sahm (2001). Sato et al. (2007) use wavelet expansions to find

locally stationary autoregressive models. In this paper, our objective is not just to identify stationary segments in a

time series, but to identify statistically significant change points that exist on different time scales. This provides more

insight into the statistical behaviour of time series for different time horizons. Of course, our identification of short

and long range change points can be used to identify various stationary segments in a series. Authors like Coates and

Diggle (1986), Adak (1998), Mallat et al. (1998) and Donoho et al. (1998) have used various transformations on the

time series for identifying stationary segments. Andrews (1993) considers Wald, Lagrange multiplier and likelihood

ratio-like tests and gives critical values for the asymptotic distribution. In the present work, we have chosen to use the

traditional discrete Fourier transforms and related periodogram estimates that were found to yield good results in our

data analysis.

Depending on which time horizon we are looking at, the assessment of whether a process is changing will be

different. Fig. 1, left part, shows a time series of 2000 time points where the variation level is changing at t = 1000.

This change is easily found by visual inspection. Looking more closely at a small neighbourhood around t = 1000

(Fig. 1, right part), it is harder to see that there is a change point. This illustrates that for a long time horizon there is

clearly a change, but for a short time horizon a change point is harder to locate.
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Fig. 2. Short range changes.

Fig. 2 displays a time series of 5000 time points simulated from a N (0, σ 2)-distribution, where the standard

deviation σ changes between 0.5 and 0.2 for segments of 250 time points. Comparing two long time segments

(e.g. 1000 time points or more) from this process, the fluctuations between high and low variance will be similar

for the two segments, and no change would be claimed. Looking at a shorter time segment, like in the right part of

Fig. 2, we interpret the change in variation at t = 1750 as a change point.

The examples illustrate that the scale chosen for analysis is of vital importance. If we choose one scale only, we

may not be able to detect all changes. In this paper, we will focus on analysis using scale-space which means that

we are analysing the data simultaneously for several time horizons. For an introduction to scale-space see Lindeberg

(1994) and ter Haar Romeny (2001). In many cases, there is no sudden change, and it is reasonable to allow a structural

change a certain amount of time to take its effect. This happens for evolutionary (Priestley, 1965) or quasi-stationary

processes (Amin, 1987) where the frequency distribution changes slowly and continuously. Such changes will not be

seen on small scales, but will be apparent on longer scales.

In our test procedures, we transform the data to the frequency domain. This is advantageous because it enables us

to avoid the need for finding a model in the time domain, for the dependency structure of the time series data, to be

able to analyse the process. It also gives us technical advantages like asymptotic independence of the periodogram

values for different frequencies, as well as the asymptotic χ2-distributions of scaled periodogram values. To search

for and locate change points, we use two different statistical tests, which are described in Sections 2.1 and 2.2. For

both of them we are analysing segments of the time series using their spectra, and the concept of scale is taken care

of by using different lengths of the time segments. Some examples to illustrate the method are given in Section 2.4. In

all our examples, the scale and the span of a data window is the same since our time steps are one time unit. Technical

details about the implementation of the method are given in Section 2.5. Section 3 describes how the method performs

in comparison with some other methods and shows some level and power studies. An illustration of the method using

real data is given in Section 3.4. Section 4 is a brief discussion and summary of concluding remarks.

2. Methodology

The spectrum of a vector of observations, x = [x1, x2, . . . , xN ], can be estimated by the periodogram defined as

P(ν j ) =
1

N
·

∣∣∣∣∣
N∑

t=1

xt · e(−2iπν j t)

∣∣∣∣∣

2

=
∣∣X S

(
ν j

)∣∣2 +
∣∣XC

(
ν j

)∣∣2 (1)

where the periodogram frequency ν j = j/N , j = 0, . . . , N − 1, N is the number of observations from the time

domain, and X S and XC are the sine and cosine transforms, respectively. A thorough description of mathematical and
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Fig. 3. Illustration of the time segments in the analysis. t∗ is the analysed time point, and P1 and P2 are the periodograms of the observations in

the data windows on each side of t∗.

statistical details of periodograms and Fourier transforms can be found in Brockwell and Davis (1991). Assuming

that the weak dependency condition, θ =
∑

m |m| · |γ (m)| < ∞, is met (where γ (m) is the autocovariance of the

time series at lag m, and θ is a constant), it is well known that the autocovariance between two different periodogram

frequencies approaches zero. The sine and the cosine transforms are asymptotically normally distributed (Shumway

and Stoffer, 2000). Hence, zero correlation between periodogram values for different frequencies is equivalent to

asymptotic independence between these periodogram values. Tapered versions of the periodogram will usually give a

better estimate of the spectrum and reduce the leakage effects. We have chosen to use the periodogram since its values

are essentially independent for different frequencies.

The scaled periodogram is asymptotically chi-square-distributed with two degrees of freedom, i.e.

2 · P(ν j )

f (ν j )
∼ χ2

2 ,

where f (ν j ) denotes the true spectral density evaluated at the frequency ν j . When the two segments under comparison

are both parts of a stationary process, the components P2(ν j )/P1(ν j ), j = 0, 1, . . . , N/2, are approximately

independent and identically F2,2-distributed for large N . A sum of periodogram values over L frequencies will be

approximately F-distributed with 2L and 2L degrees of freedom (F2L ,2L ).

To search for and locate change points, we calculate the periodograms (Eq. (1)) for segments of the time series

using data windows, and try to determine whether there is a change in the periodogram from one time segment to

the next. The number of observations in a time segment is given by N . A change in the spectrum indicates that there

is a change in the statistical properties of the time series and that the process is non-stationary. Fig. 3 illustrates two

consecutive time segments for which the periodograms are calculated and compared by some test. If two processes

are different, the patterns of these two periodograms will be different.

The estimated spectra of the time series data from two consecutive data windows (P1 and P2), on each side of the

time point being checked (t∗), are compared by looking at the ratio of the two periodograms. More precisely, at time

point t∗, one gets the ratios

R(ν1, . . . , ν N
2
) =

[
P2(ν1)

P1(ν1)
, . . . ,

P2(ν N
2
)

P1(ν N
2
)

]
,

where N equals the number of observations in each of the data windows, from which P2 and P1 are calculated. Since

the periodogram is symmetric around the Nyquist frequency (νN/2), we only use the first half of the periodogram.

The DC component (ν0) tends to obscure the periodogram, and this frequency is removed from the analysis. The

DC component represents the mean of a time series, and therefore the method is not so good at detecting changes

in the mean. For this purpose Mean SiNos for dependent data, Olsen et al. (in press), or SiZer for independent data,

Chaudhuri and Marron (1999), will be a better choice.

2.1. Test statistic for comparing segments of time series

At each of the time points we want to test, we calculate the periodograms of a data window just before and just after

the time point and find the ratio of these two periodograms. Our default test statistic for testing for non-stationarities

is based on the mean of the periodogram ratios (Mean Ratio Test). Alternative effective tests could be chosen, but for

our purpose this test works well.

The spectra in window 1 and window 2 are given by f1(ν1), . . . , f1(νN/2) and f2(ν1), . . . , f2(νN/2), respectively.

We want to test H0 : f1(ν j ) = f2(ν j ) or equivalently H0 : f2(ν j )/ f1(ν j ) = 1, j = 1, 2, . . . N/2.
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A natural approach is to use the periodogram values to estimate these ratios and then test H0. The periodogram is

not a consistent estimator of the spectral density; hence we look at a coarser level of the problem and test whether

the spectra are equal over a frequency band, Bk = {ν : νk ± (L − 1)/(2N )}, where L is the number of periodogram

values summed in the frequency band, and the bin centres are given by νk = ((2k − 1)L + 1)/(2N ). This means that

we test: H0 : f2(νk)/ f1(νk) = 1, k = 1, 2, . . . , K , where K = bN/(2L)c. When H0 is true, the mean ratio (MR)

equals 1: MR = 1/K
∑K

k=1 f2(νk)/ f1(νk) = 1.

To test whether there is a change in the statistical properties, we therefore test H0 : MR = 1 against H1 : MR 6= 1.

A natural choice of the test statistic is then

M̂R =
1

K

K∑

k=1

P2L(νk)

P1L(νk)
,

where PiL = 1/L
∑kL

j=(k−1)L+1 Pi(ν j ), i = 1, 2. This means that P1L and P2L are the periodograms, averaged

over L frequencies, of the observations in the time segments illustrated in Fig. 3.

Note that Cov (P1 (νk) , P2(νl)) → 0 for all Fourier frequencies. This also holds when k = l. Hence the

conditions of the F-distribution are asymptotically fulfilled for the ratio of P2L and P1L . The variables, Fk =

P2L(νk)/P1L(νk), k = 1, 2, . . . , K , are asymptotically (as N → ∞) independent and identically F2L ,2L -distributed.

This means that E [Fk] = 2L/(2L − 2) and hence E
[
M̂R

]
= 2L/(2L − 2). We reject H0 when M̂R is significantly

different from 2L/(2L − 2). In the Mean Ratio Test, we test whether the expectation of the ratio of P2L and P1L

equals the expectation from an F2L ,2L -distribution.

The number of defined moments for the F-distribution depends on the second degree of freedom in the

F-distribution. We will avoid smoothing too much so that we lose features of the periodogram. Hence, the choice

of L is a trade-off between getting a well “behaved” F-distribution and possibly losing features of the periodogram.

The variance of an F-distribution is defined when the second degrees of freedom is more than or equal to 5. In

the Mean Ratio Test, L = 3 is chosen to get finite second-order moments. To get a two-sided test, we include

the inverse ratios in the test which means that we test both M̂R = (1/K )
∑K

k=1 P2L(νk)/P1L(νk) and M̂RI =

(1/K )
∑K

k=1 P1L(νk)/P2L(νk).

In practice, it is not necessary to test for changes at every single time point. If we change the tested time point only

by one time step from one test to the next, two consecutive tests will be very similar since only one observation in

each data window is new. A better strategy is to skip some time points between two tested time points. We do not,

however, want to miss any change points. Hence, there is a trade-off between testing too many and testing enough.

Not testing all time points could mean that we do not detect “the one” interesting change point. This may also happen

by not performing tests using all possible window widths. But testing all time points and possible scales would be far

too time-consuming. Our method is an exploratory method, and we are not worried about changes detectable for only

one time point since such changes are really hard to separate from spurious detections.

We also want the tests to be relatively independent. We have chosen to use a time shift of 20% of the window

width for all our subsequent data analysis. This means that when the window width is 50, every 10th time point is

checked, while when the window width is 200, every 40th time point is checked. In this way, the number of tests will

be considerably reduced. Simulation studies of the correlation between consecutive tests indicate that using a time

shift of 20% of N gives a correlation less than 0.2 for window widths bigger than 50. A more detailed description of

time shifts is given in Section 2.5.1.

To get a more stable test and increase the power, we are simultaneously testing the neighbouring windows in each

test. A detailed description of the neighbouring testing and applied details of the methodology are given in Section 2.5.

2.2. An alternative test for detecting changes in AR processes

For some AR processes, the Mean Ratio Test has low power, and we wanted to use a test more sensitive to

changes in such processes. The Distribution Test finds changes in the spectrum by comparing the distribution of

the periodogram ratios for different groups of frequencies. The ratios are split into two groups: one group with the

periodogram ratios for the low frequencies (νk ≤ 0.25) and one group with the high frequencies (νk > 0.25). This
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Fig. 4. Ratio of the spectrum of an AR1(0.4) process and that of an AR1(0.9) process.

means that we compare the “two samples”

R(ν1 , . . . , ν N
4
) =

[
P2(ν1)

P1(ν1)
, . . . ,

P2(ν N
4
)

P1(ν N
4
)

]

and

R(ν N
4 +1 , . . . , ν N

2
) =

[
P2(ν N

4 +1)

P1(ν N
4 +1)

, . . . ,
P2(ν N

2
)

P1(ν N
2
)

]
.

Our test statistic is the Kolmogorov–Smirnov (K–S) distance between the distributions of the two groups of ratios. The

K–S distance is denoted by K S(R(ν1, . . . , νN/4), R(νN/4+1, . . . , νN/2)). If the statistical properties of the process are

the same for the two segments, the distribution of the ratio of high and low frequencies will be the same. In the case

of a scale change of the spectrum (change only in the variance of the process), the two groups of ratios used in our

Distribution Test will have the same distribution, and no change will be detected by this test. Such a change will be

detected by the Mean Ratio Test.

A natural alternative choice of test statistic could be a one-sample Kolmogorov–Smirnov test, testing for deviations

from the F-distribution. This approach did not work very well, and the proposed test was chosen after examining a

number of other test statistics. Several different test statistics for testing the difference between two estimated spectra

have been proposed; see Coates and Diggle (1986) and references therein. Splitting the ratio vector in the middle is

motivated by looking at the ratio of the spectrum of an autoregressive process of order 1 (AR1 process) with zero

mean. Such an AR1 process is given by xt = φ · xt−1 + εt , where φ is the first-order autocorrelation coefficient and εt

is Gaussian white noise. The power spectrum of an AR1 process with correlation coefficient φ and residual variance

σ 2 is given by f (ν) = σ 2/(1 + φ2 − 2 · φ · cos(2 · π · ν)).

Fig. 4 shows the ratio of the spectra of two AR1 processes with correlation coefficient 0.4 and 0.9, respectively. The

ratio is monotonically increasing, and the plot demonstrates that the differences between groups of ratios are largest

when we compare the ratios for very high and very low frequencies. In this situation, the best way to detect a change

will be to compare the upper and lower halves of the periodogram ratios.

2.3. Multiple testing

One of the challenging parts in our testing procedure is adjusting for multiple testing. For each window width,

we are doing a lot of tests along the time series. The correct adjustment is hard to find when the distribution is not

specified. In our case, the tests are overlapping which makes the consecutive tests correlated. There is no standard

way to adjust for multiple testing over sliding windows comparing consecutive segments of the same series. The

false discovery rate, FDR, (Benjamini and Yekutieli, 2002) and Holm’s procedure (Holm, 1979) are two techniques

that may be used. Holm’s procedure controls the familywise error rate, but is less conservative than the Bonferroni
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Fig. 5. Data simulated from five different AR1 models, using φ = 0.5, −0.5, 0.9, −0.1 and −0.9, respectively. 1000 data points are simulated

from each model.

procedure. The FDR has a different interpretation and controls the number of false rejections of the null hypothesis.

The FDR is less conservative than Holm’s procedure. The simplest version of the FDR is equal to Simes’ procedure

(see Simes (1986), or Sarkar and Chang (1997)). Simes’ method controls the type I error nominal level and is always

more powerful than the Bonferroni procedure for dependent test statistics.

We have looked at three different approaches to the adjustment of simultaneous testing. In one approach, simulated

critical values are found by simulating the maximum over the same number of tests as will be performed in the

specific time series investigated. In this way the adjustment of the significance level is automatically taken care of. An

alternative approach is to use the critical value from the F-distribution for each single test and adjust for simultaneous

testing by the FDR or Holm’s procedure. The results are given in Sections 3.2 and 3.3.

2.4. Illustrations of the methodology—synthetic data

Technical details on the implementation of the methodology will be given in the next section. First, we are

presenting some simple illustrations of the methodology using simulated time series data. In all examples, simulated

critical values have been used to adjust for multiple testing. This section is essentially to demonstrate the methodology

so that the reader can be familiar with the output of the proposed method. This is why we have chosen very

simple examples that illustrate only the basic points about our change point detection methodology. There are more

simulations in Sections 3.2 and 3.3, where we learn much more about the performance of the methodology by looking

at the observed level and power. At the end of the paper, there are analyses of real data, where we discover features in

real time series and try to interpret and understand them.

The significant changes found by a test method are displayed in a significance plot where the horizontal axis shows

at which time points and the vertical axis shows for which scales (lengths of the time segments) a change is observed to

be statistically significant. If there is a significant difference between the observations in two time segments compared,

the pixel in the plot at the actual time point t∗ and window width N is coloured white. This means that white areas

in the plot show time points at time horizons where there are significant differences between the two time segments

compared and hence significant changes in the time series. The significance plot displays dark grey at time points

where the test does not find a significant change. Light grey is shown if there are less than N data points on one side

of t∗, which occurs near the boundaries.

2.4.1. Five AR1 models

Fig. 5 shows a time series where 1000 time points are simulated from each of five different AR1 processes. The

four change points occur at t = 1000, 2000, 3000 and 4000. By visual inspection of the plot, the three last change

points are easy to identify by eye, but not the first.
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Fig. 6. Distribution Test (left) and Mean Ratio Test (right) analysis of the AR1 data in Fig. 5.

The left part of Fig. 6 shows the significance plot obtained using the Distribution Test for the time series in Fig. 5,

when the time point tested is shifted by 20% of the window width. Simulated critical values are used to adjust for

simultaneous testing. We see from the plot that at a scale of 50 time points in the time window, no changes are

detected. This means that on a time horizon where the observations in two segments of 50 time points are compared,

the Distribution Test does not detect any of the changes. For window width 71, there is a white pixel at t = 2000

which means that the change occurring at this time point is detected. For window width 101, there are white pixels in

the plot around t = 1000, 2000 and 4000. These white streaks imply that a change is detected. From window width

144 and coarser, there are white pixels at and around all the known change points (t = 1000, 2000, 3000 and 4000).

Hence, all the change points are detected for a time horizon of 144 time steps or more.

An analysis using the Mean Ratio Test is shown in the right part of Fig. 6. Also the Mean Ratio Test detects all four

change points. The biggest difference between the two methods is for the change at t = 1000. Here the Distribution

Test detects a change for all window widths of 101 time points or more, while the Mean Ratio Test starts detecting

the change at window width 289. For the change points at t = 2000, 3000 and 4000 the window width for which

the change point starts to be detected differs only by one or two scale units. (Note that the scale unit is logarithmic.)

The Distribution Test has a slightly more distinct detection of the change points. For this kind of time series data,

the Distribution Test seems to work better than the Mean Ratio Test. This is as expected since the construction of the

Distribution Test is motivated by the spectrum of an AR1 process. (It is also in agreement with the power studies in

Section 3.3.)

As the window width increases, the number of time points where a change is detected increases. This is expected

since when the length of the two time segments compared increases, the number of time points where one of the

segments covers two different processes increases. Hence, a difference between two segments will be detected in a

longer time span around the change point.

2.4.2. Three AR02 models

Suppose the true underlying model is an AR2 model, given by xt = φ1 · xt−1 + φ2 · xt−2 + εt . Fig. 7 shows a time

series where 1000 time points are simulated from each of three different AR2 models where φ1 = 0 which means that

the first lag autocorrelation ρ = 0. (This is what we call an AR02 model.) By visual inspection, we observe that there

are two change points. The change at t = 2000 is very clear. It is also relatively clear that something is happening

around t = 1000, but the exact location of the change is not obvious.

Fig. 8, left part, shows a Distribution Test analysis of the time series in Fig. 7. The Distribution Test does not detect

any of the change points. This is because a change in φ2 mainly affects the variance of the process and the Distribution

Test is not able to detect such changes.

The right part of Fig. 8 displays the Mean Ratio Test analysis of the AR02 data. This test correctly detects a change

at t = 1000 and at t = 2000, and the changes are detected for all time scales.
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Fig. 7. Data simulated from three different AR2 models. 1000 data points are simulated from each model where φ1 = 0 and φ2 = 0.8, −0.9 and

0.2, respectively.

Fig. 8. Distribution Test (left) and Mean Ratio Test (right) analysis of the AR02 data in Fig. 7.

2.5. Implementational details

2.5.1. Time shifts

Recall that P1 and P2 are the periodograms of the N observations before and after, respectively, the time point

we want to test. Fig. 9 shows a plot of the correlation between consecutive ratios calculated from overlapping time

segments for several window widths. The shift, expressed as a percentage, is the number of time steps from one

checked time point to the next relative to the window width (N ). If the time shift is 40%, and the window width is

100, every 40th time point is checked. A shift of 40% also means that 40% of the observations in the periodogram

P1 are different from the observations in the P1 in the next test. In this case, the overlap from one pair of windows

(i.e. the 2N observations from which P1 and P2 are calculated) to the next is 80%.

As expected, the correlation between the tests decreases when the time shift from one tested time point (t∗) to the

next increases. Shifting t∗ by 10%, we observe a correlation between 0.1 and 0.4. The correlation is highest for small

window widths, and it slightly increases with increasing autocorrelation of the time series process. The correlations

displayed in Fig. 9 represent window widths N = 50, 100, 200, 500, and 1000, time shifts of 10%, 20%, . . . , 200%,

and time series from three different time series models. The correlation decreases with increasing window width.

Looking at, for instance, the observed correlations using 10% shift, the lowest light triangle shows that the observed

correlation for the AR1(0.9) process is 0.1 when N = 1000. From Fig. 9 we see that the correlation decreases with

increasing time shift and crosses zero when the shift is 60%. For shifts between 70% and 130% the correlation is

negative and for longer time shifts the correlation is approximately zero.
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Fig. 9. Correlation between consecutive ratios using different time shifts of t∗.

Fig. 10. Upper: Distribution Test analysis of five AR1 processes, shifting t∗ by 20% of N (but not including neighbours). Lower: The same analysis

but including neighbouring segments in the test.

Analysing every single time point, there would be white areas broken by grey pixels around the change points. This

is because close to the change point a part of the change will occur in one of the data windows and the difference will

be on the edge of being significant such that some tests will turn out to be significant and some will not. By reducing

the number of simultaneous tests, we avoid most of the unstable detections around the change points and speed up the

calculations considerably. We have chosen to use a shift of 20% for our data analysis. The simulations shown in Fig. 9

indicate that 20% shift gives a correlation less than 0.2 for window widths bigger than 50.

2.5.2. Including neighbouring segments in the tests

The upper part of Fig. 10 shows the significance plot for the time series of five different AR1 processes displayed

in Fig. 5, when the time point tested is shifted by 20% of the window width.
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Fig. 11. Illustration of the time segments in the test including neighbours.

To get a clearer significance map with fewer grey streaks in the neighbourhood of the detected change points, we

also test simultaneously the neighbouring windows. The idea of testing neighbours is from Ligges et al. (2002) who

suggest a solution to the problem of finding locally stationary time segments in a series arising from a vocal sound

signal. They use a two-sample Kolmogorov–Smirnov test to test whether there is a difference between two consecutive

periodograms. For each tested time point, they also include the neighbouring periodograms from non-overlapping time

segments and accept significance if all the three tests show a significant change. Including the neighbours makes the

algorithm more robust.

Adjusting our tests based on comparisons of neighbouring segments is carried out as follows: The periodograms

P1 and P2, on each side of the tested time point, are calculated as before. In addition, the periodogram for the

observations from the window shifted by 20% of N to the right of P2, P2new, and the periodogram shifted to the left

of P1, P1old, are calculated. See Fig. 11 for an illustration. We now get the ratios Rold = P2/P1old, R = P2/P1 and

Rnew = P2new/P1. This means that the two periodograms used in the numerator and the denominator in a ratio are

calculated from time segments which never overlap, but the time segments used for periodograms P1old and P1, and

for P2 and P2new overlap. For each of the ratio vectors Rold, R and Rnew we calculate the test statistic for the Mean

Ratio or Distribution Test. The intersection of the three tests is tested, and significance is shown in the significance

plot only if all three tests show a significant difference. This means that our test statistic is given by the minimum

of the three test statistics, i.e. min
(
K S

(
Rold1 , Rold2

)
, K S (R1, R2) , K S

(
Rnew1 , Rnew2

))
(where subscripts 1 and 2

means the ratios for ν1 < ν ≤ νN/4 and νN/4 < ν ≤ νN/2, respectively) for the Distribution Test and

min
{

max
(

M̂Rold, M̂RI
old

)
, max

(
M̂R, M̂RI

)
, max

(
M̂Rnew, M̂RI

new

)}

for the Mean Ratio Test.

The lower part of Fig. 10 shows a Distribution Test of the AR1 process from Fig. 5 where the neighbouring

segments are included in the test. (The lower part of Fig. 10 is the same as that displayed in the left part of Fig. 6).

Compared to the upper part of Fig. 10, it shows that simultaneous testing of neighbours improves the result. For this

example there are no spurious detections and only two grey streaks near the detected change point at t = 2000. These

occur for window width 204 and 289, and the separation of the change points at t = 1000 and 2000 is better.

2.5.3. Critical values

As explained in Section 2.5.2, a change is accepted as significant if the tests of all the three ratios show significance.

Hence, we can compare the minimum of the test statistic for the three ratios with the appropriate critical value for this

test. The crucial question is how this critical value can be found. Our approach is based upon the fact that, for stationary

series where the weak dependency condition is met, the periodogram ratios P2/P1old, P2/P1 and P2new/P1 are

asymptotically distribution free in nature. By this, we mean that the components within any of the three above-

mentioned ratios are essentially independent and F2,2-distributed for a wide range of distributional models, including

the standard models such as IID normals and AR processes.

Note that this result only holds asymptotically, i.e. when the window width, N , is large. Simulations indicate,

however, that for a variety of stationary time series (e.g. IID or AR processes), the above result holds even for

small values of N . In other words, the periodogram ratios tend to have distributions that appear to be approximately

independent of the statistical properties in the time series. Hence, for a given window width N and time series length

T , the critical values in the test can be found by simulating time series from e.g. an IID N (0, 1)-distribution or

simulating ratios from an F-distribution. In our approach, we simulate realizations of length T from an N (0, 1)-

distribution. Then we calculate the test statistics for all chosen time points (for a given N ). For each simulated time

series of length T , we choose the maximum value of these test statistics. In this way we also automatically adjust for
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simultaneous testing. This procedure is repeated 10 000 times. Finally, for a test with target level α, the α-quantile,

qN ,T , for this (N , T ) pair is chosen as the value where α per cent of the 10 000 simulated test statistics values are

greater than qN ,T . Simulation results indicate that this approach is plausible as long as the dependence structure in the

original time series is not too strong. In e.g. the case of an AR1 process, the parameter φ should be less than 0.9 for

the above arguments to hold.

3. Results

3.1. Comparison to other methods

Scale-space approaches using wavelets represent an alternative to our approach. The concept of scale in our

approach is the same as in wavelet analysis in the sense that scale can easily be related to physical scale in the time

domain for both methods. For more details about the wavelet scale-space technique, see Percival and Walden (2000).

The paper by von Sachs and Neumann (2000) describes a wavelet procedure that gives an objective answer to the

question of whether and where non-stationarities occur in a time series. To this end, they use several scales to detect

changes in the covariance structure. Their aim is different from ours since we focus on the fact that the detected non-

stationarities on one scale can be very different from detected non-stationarities on another (very different) scale. In

contrast to our approach, von Sachs and Neumann (2000) limit their study to dyadic scales. Moreover, their correction

for multiple testing is very different from our procedure for handling this problem.
Ombao et al. (2001) describe a procedure, SLEX (smooth localized complex transform), which is related to

ours. The SLEX model uses the SLEX vectors which are orthogonal and localized Fourier vectors in the Cramér

representation of the spectrum. It does, however, differ from ours in at least two important ways. First, it is not an

issue in Ombao et al. (2001) that the non-stationarities found depend greatly on what scale the analysis is performed

on. Second, we detect non-stationarities in a more objective way than Ombao et al. (2001) since we are using

statistical quantiles, while Ombao et al. (2001) use subjectively chosen cost functions and limits, to decide when data

corresponding to two different time intervals come from two different models. For more information about SLEX, see

Ombao et al. (2002) and Huang et al. (2004).
Bai (1997) uses a test which is based on a parametric model and tests whether there is a change in one of the

parameters. If change points are found at a level, the new intervals have to be tested over again to see whether there

are significant change points using other samples from the time series. The examples given are based on a regression

model with two regressors. In our case, we just have a time series and no regressors. We want to avoid the need for

estimating parameters. Bai’s test splits a time series in pieces due to where there may be a change point according to

the Wald test. This means that Bai (1997) do not keep the sense of scale, just chop the time series into pieces.
Davis et al. (2006) consider the problem of modelling a class of non-stationary time series using piecewise AR

processes. The primary objective is to estimate structural breaks for a time series. The number and locations of the

piecewise AR segments, as well as the orders of the respective AR processes, are assumed unknown. The goal is to

find the “best” combination of the number of segments, the lengths of the segments, and the orders of the piecewise

AR processes. Assuming that the true underlying model is a segmented autoregression, this procedure is shown to be

consistent for estimating the location of the breaks. We want to avoid any model estimation, and our objective is to

focus on the importance of scale. This is not an issue in Davis et al. (2006). An approach similar to ours, including the

AR modelling of Davis et al. (2006), could be to find the best AR model for each window and compare the windows.

In this way the scale-space could be added to the analysis.
Our focus is different from those of other methods for change point detection. We consider change points that are

statistically significant at different time scales. SiZer (Chaudhuri and Marron, 1999) and Dependent SiZer (Park et al.,

2004) are similar methods. SiZer assumes a regression model where the residuals are independent, and Dependent

SiZer assumes that the autocorrelation function is known. Both methods only detect changes in the mean. A Bayesian

multiscale approach is described in Øigård et al. (2006). Park et al. (2007) describe a scale-space method combining

wavelet analysis with the visualization tools SiZer (Chaudhuri and Marron, 1999) and SiNos (Olsen et al., in press).

A method that is fairly close and comparable to what we are doing is that of the algorithm described in Adak (1998).

Adak (1998) also uses a nonparametric procedure for change point detection, but Adak (1998) does not consider a

multiscale approach like ours. Adak (1998) segments the time series, running through several levels of a dyadic tree

which at each level divides the segments of the time series into two new segments of dyadic length. We have chosen

to make a comparison to the TASS procedure in Adak (1998).
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3.1.1. Comparison with the tree-based segmented spectrogram algorithm (TASS)

To illustrate the tree-based adaptive segmented spectrogram algorithm (TASS), Adak (1998) uses a stationary AR2

process to study the observed level. The same process, where one of the coefficients is changing, is used to study the

power. The terms observed level and power are not explicitly discussed in the paper. In Adak (1998) there are two

tables showing the distribution of how many nodes are detected, and the performance of the algorithm in finding the

stationary segmentation is discussed.
The first stationary AR2 process is given by xt = 1.69xt−1 − 0.81xt−2 + εt and the second is given by

xt = 1.38xt−1 − 0.81xt−2 + εt . In both cases the εt s are IID N (0, 1)-distributed. Adak (1998) uses the first AR2

model to study the observed level. For power studies, a process where the first AR2 model is changing to the second

AR2 model in the middle of the time series is used. The simulation studies are performed using 5000 simulations.
Using the stationary series, Adak (1998) detects more than one node in 17% to 48% of the simulations, depending

on the distance measure used, without using any penalty on the number of segments. Including a penalty parameter,

between 6% and 13% of the simulations detect more than one segment. This means that the observed level of the

TASS algorithm is between 6% and 13% for this series. A nominal level is not given as there is no use of “statistical

significance” in this sense in the algorithm.
The overall observed levels that we get for the two AR2 processes using our methods are quite different depending

on which of the two processes we choose. Adak (1998) only shows the results using the first AR2 model and not the

second. For the first AR2 process the DT and the MRT have observed levels of 25% and 41%, respectively, averaged

over 11 window widths using a nominal level of 5%. The observed level is strongly decreasing with increasing window

width for the MRT, and the largest window width gives an observed level of 11%. This indicates that for this process,

the convergence to the χ2-distribution for the squared periodogram values is slow. For the DT, the observed level

is low (6% and 11%) for the two smallest window widths, high for the mid-range window widths (up to 49%) and

decreases to 11% for the largest window width. Be aware that the apparently very bad observed level is the overall

level for each window width. For example, if the level is 50% this means that in 50% of the simulations there is at

least one time point for which a change is detected at the given scale. That is, a level of 50% does not mean that a

change is detected in 50% of the time points at a scale. If we look at a significance plot, it is relatively clear that these

detections are spurious detections. Hence, it is not straightforward to compare the numbers reported by Adak for the

TASS algorithm and our overall observed levels, directly. If we compare using the largest window width from our

procedure, the observed levels are fine and clearly compete with TASS.
If we look at the second AR2 process, the observed level averaged over the scale is 7.1% and 7.6% for the DT and

MRT, respectively. For the DT the level varies from 1% to 15%, converging to 5% for the largest window width. For

the MRT the level is 14% for the smallest window width, converging to 5% for window widths larger than 350. This

indicates that for this AR2 process the convergence to the χ2-distribution for the squared periodogram values is much

faster than that for the first AR2 process.
The power of detecting the change from the first AR2 model to the second is 79% for the largest window width in

the DT. For the MRT the power is over 90% for window width 140 and 100% for window widths of 230 or more. The

power of TASS is between 68% and 87%. This means that the power is better for our method, but again it is hard to

compare directly since TASS does not take the scale into account.
Another way to compare the performance of the methods is to run an analysis on the “same” process and compare

the results. Adak (1998) shows an example using the changing AR2 process described above, where the change occurs

after one third of the total time. The resulting segmentation tree is given in the left part of Fig. 12. TASS only makes

dyadic segmentations of the data, i.e. the splits in the data occur at dyadic points. The price that one must pay for the

fast algorithm is that if a change in the spectrum occurs at a non-dyadic point, then the algorithm will try to estimate

the dyadic segmentation that best approximates the true partitioning of the data. For a non-trained eye, it is hard to

interpret how many segments TASS detects in this case.
The right part of Fig. 12 displays an MRT analysis of the same series. We see that there are two spurious detections,

one occurring at window width 50 and one at window width 307. The true change is detected for all window widths

from 141 and coarser.
We cannot say that any of the methods outperforms another since the methods are rather different and have different

qualities. TASS has better observed levels, but the spurious detections of our method are usually easy to separate from

the real detections. TASS does not take into account the issue of scale. If a change occurs on a large scale (slowly

developing), TASS would possibly detect that there are two segments, but not pinpoint for which time span or at
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Fig. 12. TASS (left) and MRT analysis of the changing AR2 process where the changes occur at t = 1/3 and t = 667, respectively.

Fig. 13. Observed levels for the Mean Ratio Test.

which scale the change occurs. According to the example, we think that our method gives a clearer picture of when

the change occur and in addition you get information about at which scale the change happens.

3.2. Observed significance levels

Figs. 13–16 display the observed levels for the Mean Ratio Test and the Distribution Test, respectively, for different

window widths in time series simulated from eight different models. The models are given by:

N (0, 1): Independent Gaussian random noise, xt = εt ∼ N (0, 1).

AR1(0.5): εt ∼ N (0, 1), xt = 0.5xt−1 + εt .

AR1(0.9): εt ∼ N (0, 1), xt = 0.9xt−1 + εt .

AR1(0.8), εt ∼ χ2
5 : xt = 0.8xt−1 + εt .

AR1(0.8), εt ∼ χ2
10: xt = 0.8xt−1 + εt .

AR1(0.8), εt ∼ Po(5): xt = 0.8xt−1 + εt .

Markov 1: Markov process, one state, 100 outcomes; p = 1/100. That is, xt discrete uniform xt ∼ U [1, 100].

Markov 2: Markov process, one state, 100 outcomes 1–35 and 66–100: p = 1/200, outcomes 36–65: p = 13/600.
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Fig. 14. Observed levels for the Mean Ratio Test.

Fig. 15. Observed levels for the Distribution Test.

For all processes 10 000 realizations of the given model have been used. All figures display a comparison of

the observed level using three different ways to adjust for simultaneous testing; quantiles simulated from the actual

number of tests, FDR and Holm’s method. From Figs. 13 and 14 we see that the observed levels for the Mean

Ratio Test are lowest using simulated quantiles, and using FDR gives the highest observed levels. For all processes

investigated except Markov 1, the observed levels are higher than the nominal 5% level. This means that using

simulated quantiles to adjust for simultaneous testing gives an observed level closest to the nominal level. If the

process is very skewed, like an AR1(0.8) with χ2
5 -distributed noise, the observed level is too high and about 16%

using simulated quantiles. Also, for the same process using χ2
10-distributed noise, the level is too high, but now the

average level is 9% using simulated quantiles. For the Markov 1 process, the observed levels are too low. For this

process, using Holm’s method to adjust for simultaneous testing gives an observed level closest to the nominal level
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Fig. 16. Observed levels for the Distribution Test.

and using simulated quantiles gives an average observed level of 3%. We observe that using Holm or FDR, the

observed levels are slightly increasing with increasing window width when the process is a Markov 1.

For the Distribution Test (Figs. 15 and 16), the observed levels vary quite a lot for different window widths,

particularly for small windows. Simulated quantiles give an observed level closer to the nominal 5% level than FDR

and Holm, as an average, for all distributions. This is true even if we exclude the two smallest and most unstable

window widths. It should be mentioned that the levels can be very bad for data more correlated than data from an

AR1(0.9) model. We also note that the curves of the observed levels look very similar for all the processes. This

means that the test is rather independent of the underlying process.

For almost all processes, using simulated quantiles is the adjustment method giving a mean observed level

(averaging over all given window widths) closest to the nominal level, and the mean observed level is close to the

nominal 5% level for both tests. Two exceptions occur for the Mean Ratio Test: For the Markov 1 process (U [1, 100])

the level is too low and lower using simulated quantiles than FDR or Holm. For an AR1(0.8), ε ∼ χ2
5 , the mean

observed level is 16%, but still closest to the nominal level using simulated quantiles. From the simulation studies we

conclude that using simulated quantiles gives the most correct observed level for both the Mean Ratio Test and the

Distribution Test.

3.3. Observed power

The observed power measures how often we are detecting a known change point. Figs. 17 and 18 summarize the

observed power estimated from 10 000 realizations of time series where there is a change from one process to another

at some point in the time series process. In each case there is exactly one change point. Four different processes are

used for the simulation studies:

Two noise levels : I I D N (0, σ 2) where σ changes from 1 to 2.

Two AR1 processes : xt = φxt−1 + εt , εt ∼ N (0, 1), φ changes from 0.1 to 0.6.

Markov 1, two states : Two-state Markov process, state 1: p = 1/100 for all outcomes 1–100, state 2: p = 1/200 for

outcomes 1–35 and 66–100.

Markov 2, two states : Two-state Markov process, state 1: p = 1/100 for all outcomes 1–100, state 2: p = 1/200 for

outcomes 1–25 and 76–100.

The observed power of detecting changes by the Mean Ratio Test for the distributional changes described above

is shown in Fig. 17. One should be careful interpreting these results because some of the changes detected might be
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Fig. 17. Observed power for the Mean Ratio Test.

Fig. 18. Observed power for the Distribution Test.

spurious as we cannot pinpoint the exact location of the change point. Some of the pixels detected as change points

might or might not be actual change points. This means that there is always a possibility of overestimating the power.

The observed power is highest using FDR to adjust for simultaneous testing. This is as expected since the observed

levels were highest using this adjustment. For an AR1 process where the correlation coefficient changes, the power of

the test is good only for very large window widths (>500).

Fig. 18 displays the observed power for using the Distribution Test to detect change points. The Distribution Test

is especially designed for AR1 processes. We see that the only process where the Distribution Test is able to detect

a change is for the AR1 process. For this process, the power is clearly better using the Distribution Test than the

Mean Ratio Test. FDR gives the highest power, though the differences between the three adjustment methods are

small.



L.R. Olsen et al. / Computational Statistics and Data Analysis 52 (2008) 3310–3330 3327

Fig. 19. Annual average temperature anomalies over the northern hemisphere for the last millennium.

Fig. 20. Distribution (left) and Mean Test (right) analysis of the annual temperature data in Fig. 19.

The three procedures used for multiple testing seem to be comparable in terms of their observed powers, while

quantiles simulated over the same number of tests have observed levels closer to the nominal levels than each of the

other two procedures. For the rest of the paper, we have restricted ourselves to using the simulated quantiles in order

to save computing time as well as space required for reporting the results.

3.4. Real data

3.4.1. Yearly average temperature data, northern hemisphere

Temperatures in the past can be estimated from thickness of the layers in ice cores drilled from glaciers, varves

from glaciers and tree rings (Mann et al., 1999). Fig. 19 shows the development of the average annual temperature

anomalies (deviations from the average temperature in 1902–1980) over the northern hemisphere during the last

millennium (1000–1980). The data are reconstructed by Mann et al. (1999). In Fig. 19 the most evident change

seems to be a sudden increase in the temperature around 1930. Since the mean of the time series (DC component)

is excluded in our analysis methods, the methods are not suitable for detecting changes in the mean if these changes

do not influence any other statistical properties of the time series. A change in the mean may, however, cause a low

frequent component in the spectrum. This will often make us able to detect also a change in the mean.

Fig. 20, left and right parts, displays the Distribution and the Mean Ratio Test analyses, respectively, of the

temperature data in Fig. 19. Using the smallest time scale, N = 50 years, both methods detect a change in 1900.

Normally, we are reluctant to interpret a change that is detected only for one window width at one scale as real, but in



3328 L.R. Olsen et al. / Computational Statistics and Data Analysis 52 (2008) 3310–3330

Fig. 21. Growth rate, US labour productivity.

Fig. 22. Distribution (left) and Mean Test (right) analysis of the labour productivity data in Fig. 21.

this case the two methods detect a change at the same time point and scale. Moreover, both methods detect a change

in the period 1700–1750. The Mean Ratio Test detects a change in 1350–1450. Looking at Fig. 19, we see that there

is a drop in the temperature, lasting from 1450 to 1470. A long period with lower temperatures known as the Little Ice

Age sensu lato took place in the period 1450–1850 which probably means that we detect the start of this period.

The change point at t = 1900 is only detected for the smallest scale. This means that this change is rather abrupt.

The two other change points are detected at large scales. This means either that the change is small, such that a certain

size of windows is needed to be able to detect the change, or that there is a long range change slowly developing. In

this case, we also need a relatively large window width to be able to detect the change. Note that none of the changes

are detected for all scales. This means that if we had been analysing for a fixed window width, we would not have

found all the changes.

3.4.2. Labour productivity

Fig. 21 shows the labour productivity for each month in the U.S. manufacturing/durables sector in the period

1950–2000. Looking at the productivity index, there seems to be an increase in the productivity from about 1993.

Other potential changes are hard to detect by visual inspection.

Hansen (2001) finds that there are significant changes around 1963, 1982 and 1994 with confidence limits: [1959,

1971], [1977, 1988], [1992, 1996]. The Distribution Test, shown in the left part of Fig. 22, detects a change in 1970,

1981–83 and 1991. We see that the two first detections correspond relatively well to the changes found by Hansen

(2001). In Hansen (2001), there is a plot of the Chow Test Sequence as a function of breakdate with the corresponding
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χ2-critical value plotted. Using this as the critical value, a change point in 1970 could be claimed and supports the

change found by the Distribution Test. The χ2-critical value is not used for the Chow Test if the change is not known

a priori. For detecting an unknown change, Andrew’s critical value should be used as described in Hansen (2001).

Using Andrew’s critical value, a change in 1970 would not be claimed.

The Mean Ratio Test, shown in the right part of Fig. 22, detects changes in 1953, 1962, 1966–70 and in 1995. The

only change the Distribution and Mean Ratio Test agree about is the change around 1970. But the change in 1991

detected by the Distribution Test and in 1995 by the Mean Ratio Test could be early and late detections of the 1994

change from Hansen (2001). The change detected around 1953 is more difficult to explain. Our suggestion is that

since the change is detected on three different scales, this is a real change even if it has not been detected by Hansen’s

methods.

Looking at the five changes we detect, we see that the change point in 1962 is only detected for small scales.

This indicates that it is a short range change. The changes detected in 1953, 1966–70 and in 1999 are all detected

for intermediate scales and could possibly be short (or intermediate) range changes too. Note that we stop detecting

these changes when the data windows start covering more than one change. This means that one should be careful

about the interpretation of these change points in terms of short and long range changes. Possibly they are changes

not depending on the scale, but still we would have lost detecting some of them if we had chosen one single scale for

our analysis.

4. Discussion and concluding remarks

We have demonstrated that the number and location of change points in a time series depend heavily on what scale

the analysis is performed. An excellent example of this fact is given by the northern hemisphere data set in Fig. 20,

where none of the changes were detected for all time scales, and all changes would not have been found if one “opti-

mal” scale had been chosen for the analysis. Due to some technical advantages, our scale-space approach for detecting

change points is performed in the frequency domain. Our default procedure is entitled the ‘Mean Ratio Test’, and it

detects change points on short and long scales for a broad range of random processes. Since the autoregressive process

of order 1 occurs frequently in practice, we have designed one method particularly for this situation. This method is

entitled the ‘Distribution Test’, and it outperforms the Mean Ratio Test when the observed time series is of AR1 type.

For other processes, our analyses of observed level and power indicate that the Mean Ratio Test is preferable.

Changes detected on small scales are more or less abrupt changes. Changes detected on large scales may be long

term changes, but these are difficult to separate from abrupt, but small changes. For small abrupt changes a larger data

window is needed to get enough power to detect the change. For the synthetic data examples discussed in Section 2.4,

all the change points, when detected, are detected on most of the scales considered, and sometimes they are not

detected at all on any scale depending on the method. For these examples, the method does not identify the change

points as short and long range change points. This is expected given the way these synthetic time series data are

generated. For real data analyses in Section 3.4, the situation is different from what we have seen in the case of

synthetic data. In both examples, we indeed see some change points that are visible on some smaller scales, but not

visible on larger scales. We also see some change points only visible on larger scales. For these data, we detect both

short range and some long range change points.

Our method is based on an objective measure of whether a change is significant or not, and there is no need for

any subjective choice of thresholds or limits. We do not estimate any parameters, and modelling is not a part of

the objective for the method. The change points are easy to find visually as they are marked with white pixels in a

grey–white plot, and there is no need for judgement about whether a change point is there or not. This is an advantage

compared to Adak (1998) or SLEX (Ombao et al., 2002) where one needs some experience in interpreting the plots to

be able to make judgements about how many change points there are. The main difference between our method and

the traditional existing change point detection methods is that we are focusing on the importance of which (time) scale

the changes are detected on. The interpretation and/or presence of change points may be very different depending on

which scale they occur.

All the programming is done using Matlab. The computation time is very short since the quantiles are simulated in

advance. Analysing a time series of T = 2000 data points takes 0.4 s, while it takes 1.2 s analysing T = 10 000 data

points. This is achieved using Matlab 7.3.0 on a HP Intel(R) Core(TM)2 CPU T7200 @ 2.00 GHz 997 MHz, 2.00 GB

RAM.
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