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Nonparametric Genetic Clustering: Comparison of Validity
Indices

Sanghamitra Bandyopadhyay and Ujjwal Maulik

Abstract—Variable string length genetic algorithm (GA) is used for
developing a novel nonparametric clustering technique when the number
of clusters is not fixed a priori. Chromosomes in the same population may
now have different lengths since they encode different number of clusters.
The crossover operator is redefined to tackle the concept of variable
string length. Cluster validity index is used as a measure of the fitness of a
chromosome. The performance of several cluster validity indices, namely,
Davies—Bouldin (DB) index, Dunn’s index, two of its generalized versions
and a recently developed index, in appropriately partitioning a data set,
are compared.

Index Terms—Clustering, cluster validity, Davies—Bouldin (DB) index,
generalized Dunn’s index, genetic algorithms (GAs), pattern recognition.

I. INTRODUCTION

Genetic algorithms (GAs) [1], [2] are randomized search and opti-
mization techniques guided by the principles of evolution and natural
genetics, and have a large amount of implicit parallelism. They provide
near optimal solutions of an objective or fitness function in complex,
large, and multimodal landscapes. In GAs the parameters of the search
space are encoded in the form of strings (or, chromosomes). A fitness
function is associated with each string that represents the degree of
goodness of the solution encoded in it. Biologically inspired operators
like selection, crossover, and mutation are used over a number of gen-
erations for generating potentially better strings.

Clustering [3], [4] is a popular unsupervised pattern classification
technique which partitions the input space into I regions based on
some similarity/dissimilarity metric where the value of ' may or may
not be known a priori. The aim of any clustering technique is to evolve

a partition matrix U (X') of the given data set X (consisting of, say, n
patterns, X = {x1,x2,..., 2, }) such that

duk; 21 fork=1,....K
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The partition matrix U (X') of size K x n may be represented as U =
[ukj], k=1,...,K and j = 1,...,n, where uy; is the membership
of pattern x; to cluster C. In crisp partitioning ux; = 1 if x; €
C'k; otherwise u; = 0. Cluster validity is a measure associated with
different partitions that indicates their relative goodness.

In most real-life situations the number of clusters in a data set is not
known beforehand. The real challenge is to be able to automatically
evolve a proper value of the number of clusters and provide the appro-
priate clustering under this circumstance. Some attempts in this regard
can be found in [4] and [5]. The ISODATA algorithm [4] uses a combi-
nation of splitting, merging and deleting clusters to adjust the number
of cluster centers. Each of these operations depends on several user
supplied parameters, which are often very difficult to estimate a priori.
Recently, Ravi and Gowda [5] used a distributed GA based on the ISO-
DATA technique for clustering symbolic objects. However, this method
also suffers from the same limitations as present in the ISODATA clus-
tering technique.

Our aim in this paper is to develop a nonparametric clustering tech-
nique which will not assume any particular underlying distribution of
the data set, while it will be able to evolve a proper value of number
of clusters as well as provide the appropriate clustering automatically.
Variable string length genetic algorithm (VGA) [6], with real encoding
of the cluster centers in the chromosome [7], is used as the under-
lying search tool for this purpose. Several cluster validity indices viz.,
Davies—Bouldin (DB) index [8], Dunn’s index [9], two of its general-
ized versions [10], and a newly developed validity index are utilized
for computing the fitness of the chromosomes. The results provide a
comparison of these indices in terms of their utility in determining the
appropriate clustering of the data. Several artificial and real-life data
sets with different characteristics are used for performing the experi-
ments.

II. CLUSTERING USING VARIABLE STRING LENGTH GENETIC
ALGORITHMS

In this section, we describe the use of VGAs for automatically clus-
tering a data set. This involves determination of the number of clusters
as well as the appropriate clustering of the data. The technique, de-
scribed below, is subsequently referred to as the VGA-clustering (VGA-
based clustering).

String Representation and Population Initialization: In VGA-clus-
tering, the chromosomes are made up of real numbers (representing
the coordinates of the centers). If chromosome ¢ encodes the centers of
KI; clusters in N dimensional space I\; > 2, then its length /; is taken
to be N x K.

Each string ¢ in the population initially encodes the centers of a
number I; of clusters, where K; is given by K; = rand( ) mod K™.
Here, rand( ) is a function returning an integer, and I'* is a soft esti-
mate of the upper bound of the number of clusters. Note that I’ is used
only for the generation of the initial population. The actual number of
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clusters in the data set is not related to K", and may be any number
greater than, equal to or less than K. The K; centers encoded in a
chromosome are randomly selected points from the data set.

Fitness Computation: The different cluster validity indices that have
been utilized for computing the fitness of chromosomes are described
in the next section. For each chromosome, the centers encoded in it are
first extracted, and then a partition is obtained by assigning the points
to a cluster corresponding to the closest center. The cluster centers en-
coded in the chromosome are then replaced by the centroids of the cor-
responding clusters. Given the above partition, and the number of clus-
ters, the value of the cluster validity index is computed. The fitness of a
chromosome is then defined as a function of the corresponding cluster
validity index.

Selection: Conventional proportional selection is applied on the pop-
ulation of strings. Here, a string receives a number of copies that is
proportional to its fitness in the population. We have used the roulette
wheel strategy for implementing the proportional selection scheme.

Crossover: For the purpose of crossover, the cluster centers are con-
sidered to be indivisible, i.e., the crossover points can only lie in be-
tween two clusters centers. The crossover operator, applied stochasti-
cally with probability z¢., must ensure that information exchange takes
place in such a way that both the offspring encode the centers of at least
two clusters. For this, the operator is defined as follows.

Let parents P and P> encode I; and K> cluster centers,
respectively. C;, the crossover point in P, is generated as
Cy = rand( )mod K'y. As before, rand( ) is a function that
returns an integer. Let C» be the crossover point in I, and it may vary
in between [LB(C2), UB(Cz)], where LB( ) and UB( ) indicate the
lower and upper bounds of the range of C», respectively. LB(Cz) and

B(C.) are given by

LB(C:) = min[2, max[0,2 — (K; — C1)]] and (1)
UB(C2) = [K> — max[0,2 — C1)]]. 2)
Therefore, C is given by
Cy = LB(C2) + rand( ) mod (UB(C2) — LB(C2)).

Mutation: Each chromosome undergoes mutation with a fixed prob-
ability s¢,,. Since floating point representation is considered in this
paper, we use the following mutation. A number ¢ in the range [0, 1] is
generated with uniform distribution. If the value at a gene position is
v, after mutation it becomes (1 £ 2 % ) * v, when v # 0, and £2 % 6,
when v = 0. The ‘+’ or ‘=’ sign occurs with equal probability.

III. SOME CLUSTER VALIDITY INDICES

This section contains the description of several cluster validity in-
dices that have been used for computing the fitness of the chromosomes
in the VGA-clustering scheme.

A. DB Index [8]

This index is a function of the ratio of the sum of within-cluster
scatter to between-cluster separation. The scatter within the ith cluster

is computed as
1/q
Siq = <|C’ - ~1||z ) 3)

and the distance between cluster C; and C; is defined as
dije = |lzi = zj|le. )

Si.q is the gth root of the gth moment of the |C;| points in cluster C;
with respect to their mean z;, and is a measure of the dispersion of the
points in the cluster. Specifically S; 1 used in this article, is the average

> Al

z€C;

Euclidean distance of the vectors in class ¢ to the centroid of class ¢.
d;j¢ is the Minkowski distance of order ¢ between the centroids z; and
z; that characterize clusters C; and C';. Subsequently, we compute

Siq+S;
R; .: = max iq 1,4
= S { dij. } ©)
The Davies—Bouldin DB index is then defined as
1 K
== ¥ g (©6)
=1

The objective is to minimize the DB index for achieving proper clus-
tering. Therefore, the fitness of chromosome j is defined as (1/DB;),
where DB; is the Davies-Bouldin index computed for this chromo-
some. Note that maximization of the fitness function will ensure mini-
mization of the DB index.

B. Dunn’s Index [9]
Let S and T be two nonempty subsets of R*Y . Then the diameter A
of S and set distance 6 between S and T are
A(S) = max{d(z,y)}

z,yES
min
~~

and

6(8, 1) = {d(z,y)}

zeS,yeT
where d(x, y) is the distance between points = and y. For any partition,
Dunn defined the following index:

vp = min min (Ce,iCs)
o = _ ey
~~ ~~ max {A(Cy)}
1<i<K |1<j<K i |~~~
1<k<K

0

Larger values of vp correspond to good clusters, and the number of
clusters that maximizes vp is taken as the optimal number of clusters.

C. Generalized Dunn’s Index vap [10]

The generalized Dunn’s index was developed in [10] after demon-
strating the sensitivity of the original index v, given by (7), to changes
in cluster structure, since not all of the data was involved in the com-
putation of the index. Let 6; be any positive, semi-definite, symmetric
set distance function and A; be any positive, semi-definite diameter
function. Then the generalized Dunn’s index, vap is defined as

YGD = min min M ®)
~ ~— max {A;(Cr)} '
1<s<K | 1<t<K t#s | =~

1<k<K

Five set distance functions and three diameter functions are defined in
[10]. Of these, we have used two combinations 63 and Ag (which is
recommended in [10] as being most useful for cluster validation) in
one and 65 and Asj in the other. The three measures viz., 63, 65, and
A, are defined as follows:

As(S) =2 (72,1@5 dz, :5)) )
5]
85(8.T) = 51 Z d(x,y) and (10)
ISIIT , Ser
55(5T) m <Z(I o3 ZT —+ yGZT(I ,.5)) 5 (11)

Here zs = (1/|S]) 32, cs @, and 2z = (1/|T]) 32, <7 y. The two
generalized Dunn’s indices v33 and v53 are generated by replacing A;
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by Az (in the denominator) and 6; by 63 and 85, respectively (in the
numerator) in (8).

D. Results

The VGA-clustering algorithm is applied on the real and artificial
data sets described below.

The artificial data sets are AD_5_2, AD_10_2, and AD_4_3, where
the first two data sets are in two dimensions with five and ten clusters,
respectively, and the last one is in three dimensions with four clusters.
Figs. 1-3 show the three data sets. Table I presents the number of points,
dimensions, and the number of clusters in each data. Note that the artifi-
cial data sets are generated in such a way that they present different de-
grees of difficulty for clustering. For example, although AD_4_3 (Fig. 3)
appears to be visually simple, the presence of noisy points in it (situ-
ated exactly between two distinct clusters) can mislead the clustering
technique, and/or the validity indices. On the other hand, AD_5_2 can
be seen to be highly overlapped, and AD_10_2 is overlapping with large
number of clusters.

Two real-life data sets considered are /ris and Breast Cancer. These
are described below.

Iris Data: This data represents different categories of irises char-
acterized by four feature values [11]. It has three classes Setosa, Ver-
sicolor, and Virginica, with 50 samples per class. It is known that two
classes (Versicolor and Virginica) have a large amount of overlap while
the class Setosa is linearly separable from the other two.

Fig. 3. AD_4.3.
TABLE 1
DESCRIPTION OF THE DATA SETS
Name | No. of | No. of | No. of | Points per
points | clusters | dim. clusters
AD_5.2 250 5 2 50
AD.10.2| 500 10 2 50
AD_4.8 402 4 3 101,101,
100,100
Iris 150 3 4 50
Cancer 683 2 9 444,239
Breast Cancer: Here we use the Wisconsin Breast

Cancer data set consisting of 683 sample points, available at
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Each pattern
has nine features corresponding to clump thickness, cell size
uniformity, cell shape uniformity, marginal adhesion, single epithelial
cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses.
There are two categories in the data: malignant and benign. The two
classes are known to be linearly inseparable.

VGA-clustering is implemented with the following parameters:
pe = 0.8, pr, = 0.05, and K = 20 (see Section II). The population
size is taken to be 50 and a maximum of 50 iterations are executed.

As can be seen from Fig. 5 for AD_5_2 data, while the two general-
ized versions of the Dunn’s index identify, incorrectly, four clusters to
be appropriate, the DB and Dunn’s index correctly identify five clus-
ters in the data (see Fig. 4).

AD_10_2 is generated with ten physical clusters, some of which are
compact and separated, while others are overlapping. The clusterings
obtained when DB and Dunn’s indices are used are shown in Fig. 6
when both of them provided eight clusters (resulting from merging of
some physically separate clusters to yield cluster numbers 2 and 5 in
the figure). Interestingly, and quite unexpectedly, both 33 and v53 pro-
vided two clusters, which are shown in Fig. 7. Since this indicates a
gross deviation from the actual scenario, we investigated the values of
the indices for different partitionings of AD_10_2, including the one that
we know to be correct, i.e., with ten clusters. It was found that the values
of v33 were 0.986 103, 1.421 806, and 1.388 861 0 for the clusterings
in Figs. 6 (into eight clusters) and 7 (into two clusters), and the correct
partitioning into ten clusters, respectively. Similarly, the values of 53
were 0.963 560, 1.367 821, and 1.347 380, respectively, for the three
cases. Thus, among the partitionings that were investigated, the values
of v33 and v53 actually got maximized for the case of two clusters (i.e.,
corresponding to Fig. 7). This indicates that it is not the limitation of
the VGA-clustering technique which was responsible for providing two
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clusters; on the contrary, this is the result of a limitation of the index
definition.

Fig. 8 shows that the genetic clustering with DB index, v33 and vs3,
can correctly evolve the appropriate partitioning for AD_4_3, while the
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Fig.7. AD_10-2 clustered into two clusters when v/33 and 53 indices are used
for computing fitness. The centers are shown with “x’

1
11,
e
14 "
8 L
N 1 1
164
1
14
12 33
h 33,9
10 33 3
3 3
84
6
IN T
4.4
2J 4,

Fig. 8. AD_4_3 clustered into four clusters when DB, v33, and vs3 are used
for computing fitness. The centers are shown with “x’. (Only 20 points per class
are plotted for the sake of clarity.)
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Fig. 9. A4D_4_3 clustered into two clusters when vp is used for computing
fitness. The centers are shown with “x”. (Only 20 points per class are plotted for
the sake of clarity.)

original Dunn’s index vp fails in this regard (Fig. 9). On investigation it
was found that vp for two clusters is larger than that with four clusters,
and hence the former is preferred over the latter. Note that this problem
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TABLE 11
ACTUAL AND COMPUTED NUMBER OF CLUSTERS FOR THE DATA SETS

Data Set Actual # clusters with

# clusters VGA clustering using
DB | vp | vy | vss | Z(K)

AD.5.2 5 5 5| 4 4 5
AD_10.2 10 8 8 2 2 10
AD_4.8 4 4 | 2|41 4 4
Iris 3 2 21242 3
Cancer 2 2 21212 2

arises since all the points are not taken into consideration when com-
puting vp by (7). This limitation is removed in the two generalized
versions of the Dunn’s index used in this paper.

For Iris, the VGA-clustering always provides two clusters irrespec-
tive of the validity index used for computing the fitness. Although it is
known that the data has three physical classes, two of them have a sig-
nificant amount of overlap. Thus many automatic clustering methods
reported in the literature have often provided two clusters for this data
[10], [12]. Fig. 10 shows for the purpose of demonstration the /ris data
set partitioned into two clusters when DB index is used for computing
the fitness. As seen from Table II (columns 3-6), the VGA-clustering
produces two clusters in all the cases for Cancer data.

Table II shows, in a nutshell, the actual number of clusters, and that
provided by the genetic clustering when the different indices are used
for computing the chromosome fitness. The DB index provided the cor-
rect number of clusters in three out of the five cases, while vp, v33, and
vs3 do so in two cases each.

Fig. 11 shows the variation of the number of clusters (of the best
chromosome) deemed to be optimal when DB index is used with the
number of generations while Fig. 12 shows the variation of the value
of (1/DB index) of the best chromosome with the number of genera-
tions. The figures show that although the final number of clusters (=8)
is attained by the VGA-clustering with DB index in generation seven,
the appropriate partitioning keeps on evolving till around generation
30.

IV. NEwW CLUSTER VALIDITY INDEX

In this section we describe a new index 7 developed recently by the
authors. It is defined as follows:

1 E,

ﬂMz(FxE;me (12)

Number of Clusters
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Fig. 11. Variation of the number of clusters with the number of generations
for AD_10-2 using DB index.
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Fig. 12. Variation of the value of (1/DB index) with the number of
generations for AD_10_2.

where I is the number of clusters and p is any real number greater
than or equal to 1. Note that p controls the contrast between different
cluster configurations. Here

n

K
EK = ZZ“’“JHF? — Zk“ and

k=1j=1

(13)

Dic = max ||z — %l (14)
Q=

n is the total number of points in the data set, U(X) = [ur;]x x» isa
partition matrix for the data, and z;, is the center of the kth cluster.

As can be seen from (12), the new index Z is a composition of three
factors, namely, 1/, E'1 / Ex , and D . The first factor decreases lin-
early as /" increases. Therefore, this factor will try to reduce Z as I is
increased. The second factor consists of the ratio of E'y, which is con-
stant for a given data set, and E'xc, which decreases with increase in Ii".
Hence, because of this term, 7 increases as Ex decreases. This, in turn,
indicates that formation of more number of clusters, which are compact
in nature, would be encouraged. Note that although the choice of E;
does not affect the performance of Z( (), it is used as some sort of
normalizing factor in order to avoid extremely low values of the index.
Finally, the third factor (which measures the maximum separation be-
tween two clusters) will increase with the value of &'. However, note
that this value is upper bounded by the maximum separation between
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Fig. 13. AD_10-2 clustered into ten clusters when 7 is used for computing
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Fig. 14. Iris Data clustered into three clusters when Z is used for computing
fitness. The centers are shown with “x’.

two points in the data set. Thus, the three factors are found to compete
with and balance each other critically. While the first factor will try to
decrease I{, the second and third factors will try to increase I\ (thereby
encouraging formation of compact and well separated clusters).

A. Results of Genetic Clustering Using Z(K)

The variable string genetic clustering technique where the fitness is
computed using the new index 7 is applied on the data sets that have
already been described in the previous section. Table II (column 7)
presents the number of clusters computed by the VGA-clustering when
Z(K) is used for computing the fitness of the chromosomes. We have
kept p equal to 2. Encouragingly, in this case, the correct number of
clusters is found for all the data sets; thereby indicating the significant
superiority of the new index vis-a-vis the ones described in Section I11.

Figs. 13 and 14 show the clusterings obtained for AD_10_2 and Iris.
Note that we are showing only the above two cases, since none of the
indices mentioned in Section III have been able to provide the correct
partitioning for these data sets.

V. DISCUSSION AND CONCLUSION

In this paper the searching capability of VGAs is exploited for the
formulation of a clustering methodology when the number of clusters
is not known a priori. The chromosomes encode the centers of the clus-
ters. Instead of using conventional binary chromosomes, we have used
real numbers to represent the cluster centers since it is conceptually
closest to our problem domain. The crossover and mutation operators
are newly defined for tackling variable string lengths and real encoding.
DB index, Dunn’s index, and its two generalized versions are used for
measuring the goodness of a set of clusters.

In this context, a new cluster validity index is also described whose
maximum value across the hierarchy indicates the optimum number
of clusters. Use of this index encourages the formation of compact
and separated clusters, while attempting to reduce the number of clus-
ters. Comparative study of the different validity indices, when used in
the VGA-clustering technique, for automatically clustering a data set
demonstrates the significant superiority of the new index with respect to
the other ones. Several artificial and real-life data sets with the number
of dimensions varying from two to nine, and the number of clusters
varying from two to ten have been considered. The new index is found
to provide the correct number of clusters for all the data sets, while the
other ones sometimes fail to do so. In this regard an extensive study,
from both theoretical and empirical points of view, needs to be under-
taken with respect to the new validity index as well as VGAs. The clus-
tering algorithm may also be compared with other popular methods.
Such investigations are currently being undertaken by the authors.
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