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SUMMARY. This papor first di varicus grouping, \! imation mothoda in thy
EVMs. In doing 80 it gives an oxposition of aomo of '.!m rocant work dono in this aroa and oom.
pares thom. An imp: d osti i proposod end is paroc with othor esti Ttin

shown thot thin estizator is uniformly botter than tho othor estimators in tho s0nse of minimi.
zing saymptotio varianco within the olass of ostimators.

Socond, to prove an important resalt of the papor, it ia assumod that the rankn of the true
valuoe of tho rogressor aro known from an indopondent sourco. In this caso, an oplimum mini.
mum variance rank ostimator ia found. Tho optimisation of tho class of ostimators proposoed in
this papor loads to a simplo nad ologant approach which can ossily bo appliod in otbor similar
situations.

1. IN1RODUCTION

Various alternative methods of estimation in “Errors-in-Variables”
(EIV’s) models have been suggosted by researchers in this feld. These are
based on different sets of assumptions deponding on the specific situation.
Thus some assume X, the true rogressor, to be stochastic (structural models)
while others do not assume so (functional models). Consistent ocstimators
can be obtained if

(i) One has prior knowledge about the values of the error variances of
the respective true variables, or if

(i) “instrumental variables” (IV’s) are available with specific propertics.

Introduction of lagged values of regressors/reyressand may also be helpful
in finding consistent estimates of the parameters. But what happens if no
such prior information is available ? The question has long been answered
by Reiorsol (1850), who has proved that no consistent estimators of the
regression parameters are possible in the standard two-variable “EIV
models” (EVM’s) where the associated variables are assumed to be normally
distributed.! The OLS estimate is obviously biased and the bias does not
T 3 In the multivariate EVM also sush a result oxista (s00 Pal, 1088). i
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decrease to zero as the sample size i i itely. If one reg z
(the observed regressor) on y (the observed regressand), then the “reverse
least aquares” (RLS) estimator is also biased and inconsistent. However, the
Jimiting values of tho two cstimators bound the regression coefficient. The

existence of such bounds seems to be the only comfort in unidentified models.

The grouping esti in an unidentified model first proposed by
Wald (1940) is also binsed, but is much simpler than the other methods and
hencofor othorwise may casily bo applied in many practical cases. One more
advantage of the grouping mothod is that it can allow for errors in the regressor
to a cortain extent : If the rankings/groupings of z's are the same as those
of the underlying valuos (X's) then theso estimators are consistent. It is,
howoveor, true that thero is somo loss of efficioncy if OLS method is valid
(i.e., if tho regressor is free from orrors).

This paper first discussos various groupingfrank estimation methods
in EVM’s. In doing so it gives an exposition of some of the recent work
done in this area and comparcs thom. An improved estimator is proposed
and is compared with other estimators. It is shown that this estimator is
uniformly better than the other estimators in the sense of minimizing asympto-
tio variance within the class of estimators.

Second, to prove an important result of the paper, it is assumed that
ranks of the truc values of the regressor are known from an independent
source.* In this case, an optimum minimum variance rank-estimator is
found. The optimisation of the class of estimators propesed in this paper
leads to o simple and elegant approach which can easily be applied in other
similar situations.

2. TEE svuvey

For the standard two-variable EVM, Wald (1840) proposed grouping
timators of the reg coofficients in which the observed values (24, y),
i=1,2,...,n are divided into two equal groups according to the rank of the
z('s, and the centres of gravitics of the two groups in the scatter diagram
are then joined by a straight linc to find the slopo estimator. Later, Bartlett
(1949) suggested the uso of three groups with equal number of observations
in oach group according to the order of z’s. Here, the centres of gravities
of the two extreme groups are joined by & straight line to estimate the para-
moters. Supposs the group means of the two extreme groups are (%, §i)

%6.8., 8usosesive timo serics observations on growth of a plaat must bo of lnareasing order
loading to the obvious ranks 1, 2,....0t0.
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and (z,, #») respectively. The grouping estimator of §, the scale parameter,
is then defined by

Ta—
Fy—Fy

M

It is not necessary to take equal number of observations in each group. This
choice is, however, optimal in the Gauss-Markov set-up if the X's are equi-
spaced. In general, there is a problem of optimal choice of the three groups
if one decides to use an estimator of the form of b. Theil and Van Yzoren
(1956) have obtained the optimum group proportions for different distribu-
tions of X. The optimum proportions turned out to be approximately
0-3:04:0-3 for a variety of distributions considered by them.? The pre-
vailing opinion seems to be that the threo group estimator of Bartlett (with
equal groups) is nearly optimal in almost all cases. The conclusion is, how-
ever, based on inadequate amount of investigation. The distribution of X
examined so far (mainly by Theil and Van Yzeren) are mostly symmetric or
negatively skewed. In most empirical application in oconomics the X-
distribution is highly positively skewed. Hence the rule specified by Bartlett
and Theil and Van Yzeren may not be applicable in all cases.*

In Pel and Bhaumik (1881) the optimum group proportions assuming
that X follows (i) the lognormal distribution, and (ii) the gamma distribution,
were found by minimizing V (b) (variance of b). The most important finding
is that the optimum proportions in the three groups (in ascending order of X)
are quite stable around the values (0-40:0-45:0:15) for the commonly
ocouring lognormal or gamma type distributions of X. The estimators would
be highly efficient (about 80 per cent) relative to OLS if the group proportions
are near the optimum values. Further, the gain in efficiency appears to be
congiderable if one uses the optimum group proportions instead of equal
groups as in common Bartlett estimator.

A similar investigation was carried out by the author and others (see
Sil, Bhaumik and Pal, 1981) for the case where the disturbances are hetero-
scedastio. Actunslly, we studied the set-up where

V(e Xq) = AX% A>0, . (9

2 For tho caso whors orrors in X.valuoa tro A:ont, the Bartlott nallm;u; for ;.hn;ooq:l;l
groupa had boon proposod by Nair and Shri (1942), who i qui-spacod X.valuce.
Nair and Banorjeo (1943) lator showod that this romains officient oven if errors are presant.

¢ Only Gibson and Jowott. (1957) atudiod, among othor typoa, two partioular forms of gamms
distribution.
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as considered by Lancaster (1968), who exsmined the efficiency of Wald's
and Bartlett’s (equal-groups} estimators vi is GLS destimator., Here also
the opticaum estimators are found to be highly efficient vis-a-vis “‘generalized
least squares” (GLS) estimator which is BLUE. Tbeir efficiency is about
80 per cent, and further, the incresse in efficiency over Bartlett’s estimator
is quite considerable. Unlike the ) dastic cese, the opti group
proportious in tho heteroscedastic case are highly dependent on p, the degreo
of heteroscedasticity., As p increases, the first group proportion (lowest
X-values) decreases and the third group proportion (highest X-values)
increnses. But the sum of the two oxtreme group proportions is fairly stable.
This means that the choice of optimum group proportions should be made
in the light of some approximate idea rogerding p. In other respect, the
optimum group proportions seom to be nearly stable with respect to the types
of distributions or paramoters. The efficiencies of the grouping estimators
in most of the cases decrease as the coefficient of varation of X increases.

The grouping estimators have some obvious advantages. One little
known point is that variance of the GLS estimator contains terms like E(X~)
which may not oxist in all cases. There may be trouble even with OLS.
The distribution of X may be such that E(X'+P) or E(X*?) does not exiay
whereas E(XP) exists. Moreover, Lancastor showed the superiority of group-
ing estimators over OLS estimator in the heteroscedastic set-up for some
values of p.

The grouping methods due to Wald, Bartlett, and Theil and Van Yzeren
are special cases of 1V method. Durbin (1954) proposed an estimator where
the IV’s are ranks. Theil (1950), however, proposed a different type of
ostimator which is noither & grouping estimator nor a ranking estimator, but
is worth mentioning in this paper. He dofined

AGL G = (—ylzi—zy),  $=1,2...] .. (8)
ji=23..n
i

The sample median of the ( ; ) volues of A(s, j) was proposed as an ostimatar
of B the regression coefficient.

Dorfl and Gurland (1961), Housnor and Brennan (1848), Richardson and
Wu (1870) oto. wers among others who tried their hands on the grouping
problem. Our subssquent discussion will reveal some of their work whenever
necessary.
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3. TER MODEL
The olassical two varisble EVM forms the basis of several investigations
and receives considerable attention. This model is epecified as
Y, =a+pXi+e, i=12..,n

z = Xyt ()

yi=Yitw,

where @ and S are parsmeters to be estimated. € is the random normal
digturbance with mean zero and independent of other variables not involving
Y;. X; and Y are true but unknown variables. The observed variables
are z; and y; with unknown errors #; and v; respectively. w;, v; are EIV’s
independent of each other and of Xy, Y;and ¢ We assume that the successive
observations are drawn independently. Moreover, &;, u; aud v; are assumed
to be normally distributed, independent of each other and having zero means
and finite variances.

The above mentioned model is homoscedastic, because Vig|Xy) is
constant for all i =1,2,...,n. This model can further be generalized by
taking heteroscedastic disturbance of the following type :

Pleo Xy = AXP. A0, w8
where A and p are constanta. OQbviously, taking » = 0, one may reduce it to
the homoscedastic cese. The investigation by Katona et al. (1954), Gold-
berger (1064), and Lancaster (1968) reported p to be positive and especially
between 1 and 2 in all cases, though theoretically it may take negative values

also.
4. THR PROPOSED GENERAD GROUPING ESTIMATOR

Let X,, X, ...,X, be arranged in & non-decreasing order, ie,
X, < X,<..< X, Let there be k groups with number of observations

]
N4, Ny, ..., N TE8pectively such that £ n; = » and
-}
B=Lwx, ?=Llgzrii=n..k
Nyl CRTY

where, Iy = {n,+...+m_,+1, ny+... 45542, ..., ny+...+n). The proposed
olass of estimator is

k _ |k
Bo = ? n,Y,/? X, . (8)

3 / L
~p+ oy TaX, -
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13
such that Tay=10. A ing X to be non-stochastio, asymptotio variance
1
of fa in the heteroscedastio model is
Pipe) = a*V(a»/ (za3,)" - ®
E B
=) = xi)[(Sax
1 (a, n§ iely ) (‘a, ')
x B
= 2
= ‘l[. w,a,/(E a,f,) , . (9)
where wy = An;? T X{.

iely

Given the values of w’s, our job is to minimize V() with respect to aj's such

that £a; — 0. Assuming continvity sud differentiability of V(fa) with
1
respect to a8, the minimization condition red to (see appendix I)
yap)(X;—X°), j=1L..k . (10)

N x ) .
whero pj=1ljuwy snd X*= ( \l; X,/w,)/ ( ‘li, l/w,). Optimum  variance
then becomes

2.: wﬂ:"’(x,—x')‘

V)= +———<=
U [EaE-2T)
%P}(X;—x')’ ,
= 45 gince pj = 1/wy,
{ 22y~ X)T,)
1
or Vi) = ——— .

z 2 X,—X )'

£ 5% XY~ )
and fom . w (12)
T TpE-xy

Remark 1 : This is a weighted ion estimator where the weight for
the j-th group is pj. But there is mll a differonce. Instead of X, here we
have X* a woighted mean of group means which is different from the grand

mean (unless p = 0).
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Remark 2: Once the groups are specified, pj, X, ¥;, X*, ¥ becoms
known (assuming p to be known), and then one can easily calculate f, and
ita variance, which is optimum given the group specification.

Remark 3: In faot, one can further optimize the estimator. Given a
distribution of X and the number of groups to be taken, one can vary the
group proportions 8o as to arrive at a further minimum variance. This
global minimum will obviously give a better estimate.

Remark 4 : For the homoscedastic oase, one simply puts p = 0 and gets

pjany/n = py(say) and X* = X
Wp) = 1/ %y~ 2y )
k k
and p0=?Pl(xl—x)(y’—y-)/?p;(i;—x)'.

This is the usual weighted regression cstimator as found by Dorff and Gurland
(1981) and Richardson and W, (1970).

Remark 5: For K = 2 and p = 0; S5 becomes

_altal,
X +6X,’
such that a,+a, =0, ie.,
_ N7
B X,—X, ’
This does not involve any unknown parameter, and hence the question of
optimization simply does not arise in this case. One can of course optimize
it through variation of groups.
Remark 6 : Dorfl and Gurland investigated some special situations
in the homoscedaatic case. These situations help us to have a better insight
to the estimators considered by Wald and Bartlett (b, and bs, say).

Ba (14)

(i) Suppose Xy=B—-4 ifi=12..,N[3
=B if i =N[3+1,...,2N[3
=B+4 ifi=2N[3+],.., N,
then Bartlett's estimator is optimum.
(i) Againif X,=4 fi=1,2.., N2
=B if s = Nj2+1, .., V.
Then Wald’s estimator is optimum.
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(iii) Suppose X's are equally spaced (i.e., X¢,—Xs= constant ¥ s),
then Bartlett's estimator is optimum among its class.

Dorff and Gurland (1861) also pointed out that V(bp) (also V(by): due
to Housner aud Brennan)® does not greatly exceod V(4,) unless the X,'s are
highly skewed or bunched. by (= bp) is in this respect more robuet than
bw aod bg.

Kiefer and Wolfowitz (1956) have suggested a ML estimator for the
non-normal model with one regressor (sco also Wolfowitz, 1952). Neyman
(1051) also provided a istent estimator for the n mal structural
model with one regessor. Tho formulue and approach suggested by them
are too complicated to be useful in practice. The practical methods like

t or Jant esti s have o large variance in some cases. These
observation suggest that grouping cstimator may be used in these cases.

The aim of the present investigation is to find optimal weighted grouping
estimators for lognormal and gamma-typo distributions of X for a wide rengs
of p ters. Earlier, grouping estimators wore optimized only through
group variations. The prosent study also allows weights to each group.
The estimator thus obtainod must be superior to the other grouping estimators.
For illustration we take two distributions for X to see how much better the
present method is. We take only three groups for this purpose.

b. AN ILLUSTRATION

Table 1 and Table 2 show the efficiencies of the weighted optimum group-
ing estimators and tho usual unweighted optimum Bartlett type grouping
ostimators with respect to OLS estimator (V./V* and V./V, respectively)
for different parameters of lognormal and gamma distributions. It should
be noted here that both Bartlett and Theil and Van Yzeren considered the
classical get-up for two-variable linear regression where z is free from errors.
The same approach is followed in this investigation also. Note also that if
2 ia free from error OLS estimator is BLUE. The optimum weights of the
second group (4,) are also tabulated. The weights for other groups can be
found once we note thet 4,+ 4,+ 4 = 0 and 4, is normalized to 1. F; and
1—F; are the proportions of first and laat groups respeotively for the weighted
grouping optimum estimator. For Bartlett type optimum grouping esti-
mator, the corresponding figures are tabulated under the heading F§ and
1—F9J respectively.

The following observations may be made from Table 1 and Table 2 :

®p is the Durbin’s renk-estimstor. _’}hil. in faot, waa esrlier proposed k;y Housn;r and
Broanan (1048).

B 1-13
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(1) The increase in efficiency due to weights is about 3 to B per cent
over optimum Bartlott estimator. The efficiency in both the coses decreases
a8 LR or CV increases, but the gain in efficiency increases as LR or CV increases,

(2) As o* of lognormal distribution increases, the lorenz ratio (LR),
coefficient of variation (CV), coefficient of skewness (y,) and Kurtosia (y,)
increase, whereas r of gamma distribution increases, LR, CV, y, and v,
decrease. The optimum first group proportions (F; and FY) increages as o?
in lognormal distribution increases and r in gamma distribution decreases.
Hence it can be thought to be a property of LR or CV.8ie., As LR or CV
increases the proportion of first group increases and the proportion of third
group decreases for both tho distributions,

(3) The optimum weighted first/third group proportions are respectively
uniformly higher/lower than those of tho corresponding optimum Bartlett
group proportion for the lognormal and gamma distributions. The optimum
weight of the second group varics with LR or CV in case of lognormal dis-
tribution whereas it is not so noticcable in the gamma distribution.

(4) In Engel curve analysis, o typical parameter for o2 is 0-3 and in that
case F = 0-60, 1 —F; = 007 and 4, = 14, i.e., ono should take 60 percont
in the first group, 33 percent in tho socond group and the remaining 7 per cent
in the Jast group, the weights being —2-4, 14 and 1 respectively in the first,
second and third groups.’

8. ESTIMATION WHEN TRE RANKS OF THE TRUE REGRESSOR ARE KNOWN
In this section we take only the homoscedastic model, i.e., the standard
two-variable EVM. Morcover, we supposo that there exists an IV Z such that
rank(X) = rank(Z,)¥.

Without loss of generality we may assumo Z, < Z; € ... € Z,, and hence
X, € X;< ... € X,. The proposed estimator is

b (Xi—X)y
b= 2o ... (18)

T R x-D)m
1

"
Z iy
=— such that 3 = 0. e (168)

Z hxy
1

%y, and y; con not bo teken as Indicators. This bocomos ovident once we take
aymmotrio distribution.

7Tho hoteroscodastio modol wns also invoatigatod. But the inoreaso in officioncy in this
caso was not very substantial,
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Our problem is to minimize V(b) (the asymptotic varianco of 6) such that
Zh=0and ], h< ... Iy Now,
v()

V) o Vi X, ) o (1)
the estimated P(3) is then
14U]
Dby i . (18)
Tu the classical IV set up one assumes
X = Yot nZitw, . (19)

with standard assumptions. The ML estimate of this model is the median
of OLSE, Reverse LSE and IVE if all of them have the same sign (Leamer,
1978). But in our cass the relation between X, and Z; is not known. As a
first approximation one may assume equation (19) to be true and arrive at
the ML estimate. As a second approximation one may take

X = —p1Zi+po2ifoter . (20)

Even if we assume that all ¢;’s are zero, the condition for rank (X() = rank
(Z;) for all i is that

min{Zg} > p,/ps. - (2D)
One may take similar relations botween X and Z and arrive at optimum
estimotors.

It may so happen that the functional relation between X and Z is not
known. The value of Z may even be unknown. The only known thing is
the rank of X; for all i. In this case ono has to minimize V(b) subject to
X, < ... € X,. In other words,

P, b4 .
minimize (_Ez‘;l,)’ subject to B = 0snd , K, < ... < I,
Lemma 1: Suppose h<lii<..< 13 are the distinct values (such that

I

3= ln*'---+u-q_,+l = l'1+...+f,_,+a =

1]
1y = n) which minimizes T I £ = ) subjectto %h:(mnd% 71 =0 then
1 1

2
=V ¥i=bouk and 2

X,l+..‘+1,_|+1 +"'+XIA"‘“""'.I
]

=
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Proof :  See appondix L.

Lemma 2: Suppose l} < ... < are the dislinct values of I's thus ellained
as slated in Lemma 1, then

— k a 'y
V)y=1 / %! .
®=1/ (i)
The proof is straight forward.

So, minimization of ZI¥/(Zzk)? subject to Tl = 0 and Bz = 0 reduces

2
to maximization of (Zr,l" ) L.e., maximization of ZIf such that

() Zh=0 e (22)
i) 4 <. <y . (29)
(iii) whenever ; <li,, =..=l<l,, . (29)

b = . =l = (@t ).
Theorem : Consider the seq of lati ag
Iz

Ty BFR (=T, BEUER (), L (=T

Suppose the minimum of T, Ty, ... T isallained atiy, ..., i, places suchihat

T,l =..= T"x and i) <ip < ... < ih (=r), say).
:::.-l;-‘..-i-:c,I
Put h=h=..=lh= ———'———-(=2l,my).
1

Next consider tho sequence
Zy 12 4e Z,a

_ _ totz,
T::fn = I,Iﬂ;—2 (= T;‘lfn), [ Tr, (=T)

We thon find the minimum of T("I)ﬂ, vy TV, Supposo it is attained at
£ 5 oy, lacon such that T4 = .. = ) and i} < iy < .o <ig(=rine
say). Put

T, z,
Pty 4 Trpkd _
l'lﬂ = =ly,= - — (= %y say) and so on.

Thus we get

Z, (ry times) < Z, (ry times) < ... < Za(rx times) for J;'s.
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Correspondingly

M

k
=3 ra} =V, (say).
1

We do the same for the soquence
—Zyy —Zgy ey — Ty

and get corresponding Tif to be 7y (say).

Then, maximization of I} subject to (22), (23) and (24) mentioned above
reduces to choosing the maximum valuo botween ¥, and ¥,.

Proof : Sce appendix II.

In most of the cases it becomes clear which of V', and V, gives the minimum
valuo as one compares the ranks of z;'s and z’s. But it is still a problem whether
positive corrolation between ranks of z;'s and z{'s leads to the minimum value
ot Py

Appendix I
(i) To minimize ¥ = - 2% qubjoct to Za; = 0.
(ZaXy)*
Suppose, the minimum value is attained at aj,ay,...,a5. Define &
new seb of values a;, ..., @, such that

a; = a}+e
c e
4, = aj—¢
a, = ay forr %4 orj.

Twia® _ Twyoi*+ 200w+ 26" 2eajuy

Honce =
(2"1';1)’ {zalxl‘l“(xl_xl)i).
= f(6), say.

Since f(e) is minimum 8t a}, ..., ay

g _

e =
or alw—ajw— Ty (X—X;) =o.

d fht} a] x’

or ayw—CXy = ajuy—CX; = D (say),
or . D+OX,

a,
i3 w
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Now, adding over all 4 one gets,
C = Za} = DE'w+CEX fu

QED.

or D = —C(EX,jw)[Z(1}w;)
afapi(X;—X*)
where P} = ljwand X* = (T X /w)/(S1/w).
(i1) Proof of Lemma 1: Define s new sot of values Jy, ..., J, such that
h=1I+te
h=li—¢

L =1 fort#iorj.
Trdy2 4 2elir+ 263 — 25';7,

Then, T = f(¢), say
Now, '—i‘;,;(:—) o 0 implies

Br—ljr;—Clr&—rZ) = 0 for some constant C.

or Iir—Cr¥ = D, say.
Summing over all + one gets
= —C0Zrg; =0
Hence, I = C—'rrlf' = Czaz.
Appendix IT
To maximize ZI} such that
i) Zk=0
@ h<. .. <1y
(i) k<hy==h<bha=lhn=..=}

Gttty co g
= 7= , for j >i.

QED.

Suppose 23, 3, ..., 7y, are the values of I, ..., !, attributed as stated in the
theorem. zj, ..., z, are some othor values of 1, ..., ], eatisfying (i), (i) and

(iii). Obviously af, ..., z; are satisfy (i), (ii) and (iii).
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From the construction it follows that

. . z,+...+:c,l
= =g, = T = 2, (say)

R . Tpptt ot T ayy -
R i %K = %, (say).

. Byttt o2
z,l+”_+"_!ﬂ+...+z: = _ﬁ_ = 2y (say).

Similarly for z}’s we get
%,(4; times), ..., Z,, (i times) such that
Lttt ==+
Let us draw the step functions for 2*’s and z"a to make the picture alear,
K3

i’

7

Fig. 1

Since %If is a convex function, any transfer from right to left will lower
down it's value. Henoe our job is to show thab from s we can arrive at
z's by transferring values from right to left. Equivalently one may show
that

ilzf( £ z; for all j=1,...,8
{=1 -1
It suffices to show that , ,
g L
t=1 =1
for only those j’s for which
% <zj <y
Fix any such j. Suppose
j=rtetnte e <mp
= 4t th
B l-14
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The condition X z} < I z;
(=1 (=1

Ty rybedry

= '_fi Zy+CZeyy < ‘3 L N s

which is obviously true from the way it was constructed. QED
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