


difference between the exact and approximate solutions for each example is plotted graphically to determine
the accuracy of numerical solutions. Also convergence of the method for the two classes of integral equations
is established rigorously.

2. The general method

We consider the integral equation of first kind given by
Z b

a

jðx; tÞ/ðtÞdt ¼ f ðxÞ; a < x < b; ð2:1Þ

where /(t) is an unknown function to be determined, jðx; tÞ is the kernel and f(x) is a known function. If jðx; tÞ
is a continuous and square integrable function, then the integral in (2.1) will be assumed to exist in the usual
sense. However, if jðx; tÞ has singularity at t ¼ x within the range (a; b), then the integral in (2.1) will be as-
sumed to be defined in some appropriate manner.

To find an appropriate solution of (2.1), /(t) is approximated in the Bernstein polynomial basis in [a; b] as

/ðtÞ ¼
X

n

i¼0

aiBi;nðtÞ; ð2:2Þ

where Bi;nðxÞði ¼ 0; 1; 2; . . . ; nÞ are Bernstein polynomials of degree n defined on [a; b] as

Bi;nðxÞ ¼
n

i

� �

ðxÿ aÞiðbÿ xÞnÿi

ðbÿ aÞn
; i ¼ 0; 1; 2; . . . ; n ð2:3Þ

and aiði ¼ 0; 1; . . . ; nÞ are unknown constants to be determined. Substituting (2.2) in (2.1), we obtain

X

n

i¼0

ai

Z b

a

jðx; tÞBi;nðtÞdt ¼ f ðxÞ; a < x < b: ð2:4Þ

Multiplying both sides by Bj;nðxÞðj ¼ 0; 1; . . . ; nÞ and integrating both sides with respect to x between x ¼ a

and x ¼ b, we obtain the linear system

X

n

i¼0

aicij ¼ bj; j ¼ 0; 1; 2 . . . ; n; ð2:5Þ

where

cij ¼

Z b

a

Z b

a

jðx; tÞBi;nðtÞdt

� �

Bj;nðxÞdx; i; j ¼ 0; 1; . . . ; n ð2:6Þ

and

bj ¼

Z b

a

f ðxÞBj;nðxÞdx: ð2:7Þ

The linear system (2.5) can be solved by any standard method to produce aiði ¼ 0; 1; . . . ; nÞ. These a
;

is when
substituted in (2.2) produce /(t) approximately.

Instead of the first kind integral equation (2.1), if we have the second kind integral equation given by

aðxÞ/ðxÞ þ

Z b

a

jðx; tÞ/ðtÞdt ¼ f ðxÞ; a < x < b ð2:8Þ

then the modification is obvious. In this case cij in (2.5) is given by

cij ¼

Z b

a

aðxÞ þ

Z b

a

jðx; tÞBi;nðtÞdt

� �

Bj;nðxÞdx; i; j ¼ 0; 1; . . . ; n ð2:9Þ

while bjðj ¼ 0; 1; . . . ; nÞ remains the same as in (2.7).
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If jðx; tÞ is hypersingular at t ¼ x in the sense that jðx; tÞ ¼ Lðx;tÞ

ðxÿtÞ2
where Lðx; tÞ is regular in x and t, then the

integral in (2.1) or (2.8) exists in the sense of Hadamard finite part of order two. In this case, /(x) must be such
that it vanishes at the end points and has the behavior

/ðxÞ � jxÿ cj
1
2; c ¼ a; b:

Then /(x) can be written as /ðxÞ ¼ fðxÿ aÞðbÿ xÞg
1
2WðxÞ, and W(t) will be assumed to have representation in

the form (2.2). The aforesaid method then can be applied with appropriate modification. The details are given
in the following section when two types of hypersingular integral equations are considered for finding approx-
imate numerical solutions.

3. Illustrative examples

Here, we illustrate the above method (or its modification) to obtain approximate numerical solutions of two
Fredholm integral equations of second kind and two hypersingular integral equations, one of the first kind
known as simple hypersingular integral equation and the other is of the second kind.

Example 1. We consider a Fredholm integral of the second kind given by

/ðxÞ ÿ

Z 1

ÿ1

ðxt þ x2t2Þ/ðtÞdt ¼ 1; ÿ1 6 x 6 1 ð3:1Þ

having the exact solution (cf. [3, p. 12])

/ðxÞ ¼ 1þ
10

9
x2: ð3:2Þ

Using the method illustrated in Section 2, if we approximate /(x) as

/ðxÞ ¼
X

n

i¼0

aiBi;nðxÞ; ð3:3Þ

then aiði ¼ 0; 1; . . . ; nÞ satisfy the linear system

X

n

i¼0

aicij ¼ bj; j ¼ 0; 1; . . . ; n; ð3:4Þ

where

cij ¼

Z 1

ÿ1

Bi;nðxÞBj;nðxÞdxÿ

Z 1

ÿ1

Z 1

ÿ1

ðxt þ x2t2ÞBi;nðtÞdt

� �

Bj;nðxÞdx

¼
1

22n
n

i

� �

n

j

� �

X

2n

k¼0

1þ ðÿ1Þ
k

1þ k
d
iþj;2n
k ÿ

X

n

k¼0

X

n

r¼0

1ÿ ðÿ1Þ
k

2þ k

1ÿ ðÿ1Þ
r

2þ r

("

þ
1þ ðÿ1Þ

k

3þ k

1þ ðÿ1Þ
r

3þ r

�

d
i;n
k dj;n

r

#

ð3:5Þ

with

d
i;n
k ¼

X

s

ðÿ1Þ
kÿs i

s

� �

nÿ i

k ÿ s

� �

; ð3:6Þ

the summation over s being taken as follows: for i < n < nÿ i, (i) s ¼ 0 to k for k 6 i, (ii) s ¼ 0 to i for
i < k 6 nÿ i, (iii) s ¼ k ÿ ðnÿ iÞ to nÿ i for nÿ i < k 6 n while for i ¼ nÿ i (n being an even integer) (i)
s ¼ 0 to k for k 6 i, (ii) s ¼ k ÿ i to i for i < k 6 n; for i > nÿ i, i and nÿ i above are to be interchanged, and

bj ¼
1

2n
n

j

� �

X

n

k¼0

1þ ðÿ1Þk

1þ k
d
j;n

k : ð3:7Þ
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The linear system (3.4) can be solved for aiði ¼ 0; 1; . . . ; nÞ by standard method and hence /(x) is obtained
approximately. In our numerical calculations, n is chosen as 4 and a0; a1; . . . ; a4 are obtained numerically. Val-
ues of /(x), calculated by using the approximate expression (3.3) for n ¼ 4, and also calculated by using the
exact expression (3.2) at the points x ¼ 0;�0:2;�0:4;�0:6;�0:8 are presented in Table 1. It is seen that the
approximate and exact values coincide up to five decimal places. In Fig. 1, a plot of the absolute difference
between the exact and approximate solutions is displayed. It is observed from this figure that the accuracy
is of the order 10ÿ13 with only five Bernstein polynomials.

Example 2. We consider another Fredholm integral equation of the second kind given by

/ðxÞ ÿ

Z 1

ÿ1

ðx4 ÿ t4Þ/ðtÞdt ¼ x; ÿ1 6 x 6 1 ð3:8Þ

having the exact solution (cf. [4])

/ðxÞ ¼ x: ð3:9Þ

If /(x) is approximated by (3.3), then aiði ¼ 0; 1; . . . ; nÞ satisfy the linear system (3.4) where now

cij ¼
1

22n
n

i

� �

n

j

� �

X

2n

k¼0

1þ ðÿ1Þk

1þ k
d
iþj;2n
k ÿ

X

n

k¼0

X

n

r¼0

1þ ðÿ1Þk

5þ k

1þ ðÿ1Þr

1þ r

("

ÿ
1þ ðÿ1Þk

1þ k

1þ ðÿ1Þr

5þ r

�

d
i;n
k dj;n

r

#

;

ð3:10Þ

d
i;n
k being same as in (3.6) above, and

bj ¼
1

2n
n

j

� �

X

n

k¼0

1ÿ ðÿ1Þ
k

2þ k
d
j;n

k : ð3:11Þ

Table 1

Approximate and exact solutions of Eq. (3.1)

x 0 ±0.2 ±0.4 ±0.6 ±0.8

/(x) (approx) 0:99999 1:04444 1:17777 1:40000 1:71111

/(x) (exact) 1:00000 1:04444 1:17777 1:40000 1:71111

-1 -0.5 0 0.5 1
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x 10

-13

 x
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b
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f

Fig. 1. Absolute difference between exact and approximate solutions of Eq. (3.1).
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Choosing n ¼ 4, aiði ¼ 0; 1; . . . ; 4Þ are obtained here and thus /(x) is obtained approximately. In Table 2,
approximate and exact values of /(x) at x ¼ 0;�0:2;�0:4;�0:6;�0:8 are shown. It is seen that the approxi-
mate and exact values almost coincide. In Fig. 2, the absolute difference between the exact and approximate
solution is plotted. This figure shows that here also the accuracy is of order 10ÿ13.

Example 3. Here, we consider a simple hypersingular integral equation of the form

/ðtÞ

ðt ÿ xÞ
2
dt ¼ f ðxÞ; ÿ1 6 x 6 1 ð3:12Þ

with the additional requirement that /ð�1Þ ¼ 0. In (3.12), the integral is in the sense of Hadamard finite part
of order 2 and is defined by

/ðtÞ

ðt ÿ xÞ
2
dt ¼ lim

�!0þ

Z xÿ�

ÿ1

/ðtÞ

ðt ÿ xÞ
2
dt þ

Z 1

xþ�

/ðtÞ

ðt ÿ xÞ
2
dt

"

ÿ
/ðxÿ �Þ þ /ðxþ �Þ

�

�

; ÿ1 < x < 1: ð3:13Þ

The exact solution of (3.12) is given by (cf. [5], [6]):

/ðxÞ ¼
1

p2

Z 1

ÿ1

f ðtÞ ln
xÿ t

1ÿ xt ÿ fð1ÿ x2Þð1ÿ t2Þg
1
2

�

�

�

�

�

�

�

�

�

�

dt; ÿ1 6 x 6 1: ð3:14Þ

For the special case when f ðxÞ ¼ 1, the exact solution of (3.12) is found to be

/ðxÞ ¼ ÿ
1

p

ð1ÿ x2Þ
1
2: ð3:15Þ

To use Bernstein polynomials to solve (3.12) we first represent the unknown function /(x) as

/ðxÞ ¼ ð1ÿ x2Þ
1
2WðxÞ; ÿ1 6 x 6 1 ð3:16Þ

Table 2

Approximate and exact solutions of Eq. (3.8)

x 0 ±0.2 ±0.4 ±0.6 ±0.8

/(x) (approx) 0 ±0.20000 ±0.40000 ±0.60000 ±0. 80,000

/(x) (exact) 0 ±0.2 ±0.4 ±0.6 ±0.8
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0

0.2

0.4

0.6

0.8
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Fig. 2. Absolute difference between exact and approximate solutions of Eq. (3.8).
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where W(x) is a well-behaved unknown function of x 2 ½ÿ1; 1�. The representation (3.16) is chosen due to the
known end point behaviors of /(x). Now W(x) is approximated in terms of Bernstein polynomials in the form

WðxÞ ¼
X

n

i¼0

aiBi;nðxÞ; ÿ1 6 x 6 1: ð3:17Þ

Then Eq. (3.12) produces the relation

X

n

i¼0

aiAiðxÞ ¼ f ðxÞ; ÿ1 6 x 6 1; ð3:18Þ

where

AiðxÞ ¼
1

2n
n

i

� �

X

n

k¼0

d
i;n
k ÿpðk þ 1Þxk þ

X

kÿ2

m¼0

1þ ðÿ1Þ
m

4

Cðmþ1
2
ÞCð1

2
Þ

Cðmþ4
2
Þ

ðk ÿ mÿ 1Þxkÿmÿ2

" #

; ð3:19Þ

the summation inside the square bracket being understood to be absent for k < 2.
The unknown constants aiði ¼ 0; 1; . . . ; nÞ can be found by a collocation method as has been done by

Mandal and Bera [7] who used an expansion for W(x) in terms of simple polynomials instead of the Bernstein
polynomials. However, here we follow the method described in Section 2 above. Multiplying both sides of
(3.18) by Bj;nðxÞðj ¼ 0; 1; . . . ; nÞ we obtain

X

n

i¼0

aicij ¼ fj; j ¼ 0; 1; . . . ; n; ð3:20Þ

where now

cij ¼

Z 1

ÿ1

AiðxÞBj;nðxÞdx ¼
1

22n
n

i

� �

n

j

� �

X

n

k¼0

X

n

r¼0

d
i;n
k dj;n

r

� ÿpðk þ 1Þ
1þ ðÿ1Þ

kþr

k þ r þ 1

"

þ
X

kÿ2

m¼0

1þ ðÿ1Þ
kþrÿm

k þ r ÿ mÿ 1

1þ ðÿ1Þ
m

4

Cðmþ1
2
ÞCð1

2
Þ

Cðmþ4
2
Þ

ðk ÿ mÿ 1Þ

#

ð3:21Þ

and

fj ¼

Z 1

ÿ1

f ðxÞBj;nðxÞdx; j ¼ 0; 1; . . . ; n: ð3:22Þ

We note that when f ðxÞ ¼ 1,

fj ¼
1

2n
n

j

� �

X

n

k¼0

1þ ðÿ1Þ
k

1þ k
d
j;n

k ; j ¼ 0; 1; . . . ; n: ð3:23Þ

The constants d i;n
k appearing in (3.21) and (3.23) are defined in (3.6).

In our numerical computation here, f(x) is chosen to be 1, and n to be 3. The constants aiði ¼ 0; 1; 2; 3Þ are
calculated by solving the linear system (3.20) for n ¼ 3 and fjðj ¼ 0; 1; 2; 3Þ given by (3.23). Thus, the function
W(x) is found approximately and hence, by using the relation (3.16), /(x) is obtained approximately. A
comparison between this approximate solution and the exact solution given by (3.15) is presented in Table 3
for x ¼ 0;�0:2;�0:4;�0:6;�0:8. It is seen that the approximate and the exact values are same and they
coincide. The absolute difference between exact and approximate solutions is plotted in Fig. 3. It is found from
this figure that the accuracy here is of the order of 10ÿ17.

Table 3

Approximate and exact solutions of Eq. (3.12)

x 0 ±0.2 ±0.4 ±0.6 ±0.8

/(x) (approx) ÿ0.318310 ÿ0.311879 ÿ0.291736 ÿ0.254648 ÿ0. 190986

/(x) (exact) ÿ0.318310 ÿ0.311879 ÿ0.291736 ÿ0.254648 ÿ0. 190986
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Example 4. Here, we consider a hypersingular integral equation of second kind as given by

/ðxÞ ÿ
a

p

ð1ÿ x2Þ
1
2

/ðtÞ

ðt ÿ xÞ2
dt ¼ f ðxÞ; ÿ1 6 x 6 1 ð3:24Þ

with end conditions /ð�1Þ ¼ 0. This is a generalization of the elliptic wing case of Prandtl’s equation. Express-
ing /(x) in the form (3.16) above, we find that W(x) satisfies

WðxÞ ÿ
a

p

ð1ÿ t2Þ
1
2

WðtÞ

ðt ÿ xÞ
2
dt ¼ F ðxÞ; ÿ1 6 x 6 1; ð3:25Þ

where

F ðxÞ ¼
f ðxÞ

ð1ÿ x2Þ
1
2

: ð3:26Þ

If W(x) is represented in terms of Bernstein polynomials in the form (3.17), and the following the same pro-
cedure as in Example 3, we find that, in place of (3.2) we obtain the linear system

X

n

i¼0

aid ij ¼ F j; j ¼ 0; 1; . . . ; n; ð3:27Þ

where

d ij ¼
1

22n
n

i

� �

n

j

� �

X

2n

k¼0

1þ ðÿ1Þ
k

1þ k
d
iþj;n

k ÿ
1

2
cij; ð3:28Þ

where c
;

ijs being the same as given in (3.21), and

F j ¼

Z 1

ÿ1

F ðxÞBj;nðxÞdx: ð3:29Þ

Once the linear system is solved, the approximate solution is obtained.
For the special case when a ¼ p

2b ðb > 0Þ, and f ðxÞ ¼ 2pk
b
ð1ÿ x2Þ

1
2, Eq. (3.24) reduces to the Prandtl’s

equation and has the exact solution given by (cf. [8])

/ðxÞ ¼
4k

1þ 2
p
b
ð1ÿ x2Þ

1
2: ð3:30Þ
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Fig. 3. Absolute difference between exact and approximate solutions of Eq. (3.12).
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In this case, for b ¼ k ¼ 1,

F j ¼
p

2jÿ1

n

i

� �

X

n

k¼0

d
j;n

k

1þ ðÿ1Þk

1þ k
: ð3:31Þ

Choosing n ¼ 3, the coefficients a0, a1, a2, a3 are found. In Table 4, approximate and exact values of /(x) at
x ¼ 0;�0:2;�0:4;�0:6;�0:8 for b ¼ k ¼ 1 are given. The approximate and exact values almost coincide. Also
in Fig. 4, a plot of the absolute difference between the approximate and exact solutions (for b ¼ k ¼ 1) is
given. This figure shows that the error is of the order of 10ÿ6.

4. Error analysis

4.1. Fredholm integral equation

For the Fredholm integral equation, written in the operator form,

ððI ÿ KÞ/ÞðxÞ ¼ f ðxÞ; ÿ1 6 x 6 1; ð4:1Þ

where I is an identity operator and (K/)(x) denotes the integral
R 1

ÿ1
Kðx; tÞ/ðtÞdt.

The Bernstein polynomials are not orthogonal. However, these can be expressed in terms of some orthog-
onal polynomials, such as the Chebychev polynomials Un(x) of second kind (cf. [9]). It can be shown that

Bi;nðxÞ ¼
1

2n
n

i

� �

X

n

s¼0

d i;n
s

1

2s
X

½s2�

m¼0

s

m

� �

ÿ
s

mþ 1

� �� �

U sÿ2mðxÞ: ð4:2Þ

Thus, an approximation pn(x) of the function /(x) in terms of the Bernstein polynomials in the form

/ðxÞ ’ pnðxÞ ¼
X

n

i¼0

aiBi;nðxÞ ð4:3Þ

Table 4

Approximate and exact solutions of Eq. (3.24)

x 0 ±0.2 ±0.4 ±0.6 ±0.8

/(x) (approx) 2.444061 2.394682 2.400197 1.955250 1. 466437

/(x) (exact) 2.444060 2.394680 2.400180 1.955248 1. 466436
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Fig. 4. Absolute difference between exact and approximate solutions of Eq. (3.24).
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is eventually expressed as

pnðxÞ ¼
X

n

j¼0

bjU jðxÞ; ð4:4Þ

where bjðj ¼ 0; 1; . . . ; nÞ can be expressed in terms of aiði ¼ 0; 1; . . . ; nÞ and vice-versa. If ujðxÞ ¼
ffiffi

2
p

q

U jðxÞ,

then ujðxÞðj ¼ 0; 1; . . . ; nÞ form an orthonormal polynomial basis in ½ÿ1; 1� with respect to the weight function

wðxÞ ¼ ð1ÿ x2Þ
1
2. Thus, (4.4) can be further expressed as

pnðxÞ ¼
X

n

j¼0

cjujðxÞ with cj ¼

ffiffiffi

p

2

r

bj: ð4:5Þ

It is proved in Golberg and Chen [10, p. 178] that if Kðx; tÞ 2 Cr and f 2 Crðr > 0Þ, then

k/ÿ pnkw < c0n
ÿr
; r > 0

where klkw �
R 1

ÿ1
flðxÞg

2
wðxÞdx and c0 is some constant. Thus, the convergence is very fast if r is large. In our

two examples on Fredholm integral equations, both K and f are C1-functions, and as such, the method con-
verges rapidly. This is also reflected in the numerical computations.

4.2. Hypersingular integral equation

The simple hypersingular integral equation (3.12) has the representation in the operator form

ðHWÞðxÞ ¼ f1ðxÞ; ÿ1 6 x 6 1 ð4:6Þ

where H is the operator defined by

ðHWÞðxÞ ¼
1

p

d

dx

Z 1

ÿ1

ð1ÿ t2Þ
1
2

t ÿ x
WðtÞdt

" #

; ÿ1 � x � 1; ð4:7Þ

the integral within the square bracket being in the sense of Cauchy principal value, and

f1ðxÞ ¼
1

p

f ðxÞ: ð4:8Þ

Since

ðHU nÞðxÞ ¼ ÿðnþ 1ÞU nðxÞ; n P 0;

where H can be extended as a bounded linear operator (cf. [10, p. 306]) from L1(w) to L(w), where L1(w) is the
space of functions square integrable with respect to the weight function wðxÞ ¼ ð1ÿ x2Þ

1
2 in [ÿ1, 1], and L1(w)

is the subspace of functions u 2 LðwÞ satisfying

kuk
2
1 ¼

X

1

k¼0

ðk þ 1Þhu; uki
2
w < 1; ð4:9Þ

where

hu; ukiw ¼

Z 1

ÿ1

ð1ÿ x2Þ
1
2uðxÞukðxÞdx: ð4:10Þ

Now the function W(x) satisfying Eq. (4.6) is approximated in terms of the Bernstein polynomials Bi;nðxÞ in
the form

WðxÞ ¼ pnðxÞ;

where pn(x) is the same as in (4.3). In terms of the orthonormal Chebychev polynomials uj(x), pn(x) can be
expressed in the form (4.5). If f1 2 Cr½ÿ1; 1�; r > 0, then it follows that (cf. [10, p. 306])

kWÿ pnk1 < c1n
ÿr
;

B.N. Mandal, S. Bhattacharya / Applied Mathematics and Computation 190 (2007) 1707–1716 1715



where c1 is a constant. Thus, as before, the convergence is quite fast if r is large. In our example, we have cho-
sen f1 to be a constant and thus f1 2 C1½ÿ1; 1�. Hence, convergence is very rapid and this has been reflected in
the numerical computation.

The second kind hypersingular integral equation (3.24) or rather (3.25) can be written in the operator form

ððI ÿ aHÞWÞðxÞ ¼ F ðxÞ; ÿ1 6 x 6 1: ð4:11Þ

The proof of the convergence of the series representation of W(x)in terms of Bernstein polynomials follows
almost immediately by the same arguments. The details are omitted.

5. Conclusion

A simple method of approximating unknown function in terms of truncated series involving Bernstein poly-
nomials is proposed here for solving several classes of integral equations. The method is illustrated by simple
examples for which the exact solutions of the integral equations are available in the literature. The approxi-
mate solutions are compared with exact solutions numerically as well as by plotting the absolute difference
between the approximate and exact solutions. Excellent agreement is seen to have been achieved between
the exact and approximate solutions computed numerically by choosing a few terms for the truncated series.
Also an error analysis is presented for a general Fredholm integral equation of the second kind and the two
types of hypersingular integral equations. The method employed here can be probably extended to obtain
approximate numerical solutions of integral equations arising in various areas of mathematical physics.
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