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On Cluster Validity for the Fuzzy c-Means Model

Nikhil R. Pal and James C. Bezdek

Abstract—Many functionals have been proposed for validation
of partitions of object data produced by the fuzzy c-means (FCM)
clustering algorithm. We examine the role a subtle but important
parameter—the weighting exponent m of the FCM model—plays
in determining the validity of FCM partitions. The functionals
considered are the partition coefficient and entropy indexes of
Bezdek, the Xie-Beni, and extended Xie-Beni indexes, and the
Fukuyama—Sugeno index. Limit analysis indicates, and numer-
ical experiments confirm, that the Fukuyama—Sugeno index is
sensitive to both high and low values of m and may be unreliable
because of this. Of the indexes tested, the Xie~Beni index provided
the best response over a wide range of choices for the number of
clusters, {2-10), and for m from 1.01-7. Finally, our calculations
suggest that the best choice for » is probably in the interval
[1.5, 2.5], whose mean and midpoint, m = 2, have often been the
preferred choice for many users of FCM.

1. INTRODUCTION

LUSTERING in  unlabeled data X =

{x1, X2, -, Xo} C RP is the assignment of
labels to the vectors in X and, hence, to the objects
generating X. If the labels are hard (crisp), we hope they
identify c natural subgroups in X. Clustering is also called
unsupervised learning, with the word learning referring to
learning the correct labels (and possibly vector prototypes or
quantizers) for good subgroups in the data. c-partitions of
X are sets of (cn) values {u;.} that can be conveniently
arrayed as a (¢ x n) matrix U = [uj]. There are three
sets of partition matrices

Mpen = {U ERTIO<Suy <1 Vi, k;

Ve, ux>0 3i 0<Y ug<n Vz'}; (1a)

k=1

Zu.-,,:l Vk} (1b)

i=1

Mpen ={U € Mgen|uie =0 or 1 Vi

Mfcn = {U € Mpcn

and k}. (lc)

Equations (1) define, respectively, the sets of possibilistic,
constrained fuzzy or probabilistic, and crisp c-partitions of
X. So, there are four kinds of label vectors, but fuzzy and
probabilistic label vectors are mathematically identical, having
entries between zero and one that sum to one over each col-
umn. These two types of labels, however, are philosophically,
conceptually, and computationally different. The reason these
matrices are called partitions follows from the interpretation
of their entries. If U is crisp or fuzzy, w;. is taken as the

membership of x;. in the ith partitioning fuzzy subset (cluster)
of X. If U in My, is probabilistic, u;. is usually the
(posterior) probability p(i|xy) that, given Xy, it came from
class i. And if U in M, is possibilistic, it has entries between
zero and one that do not necessarily sum to one over every
column. In this last case u;; is taken as the possibility that x,
belongs to class i. Observe that Mpcn, C My C Mpen.

An alternative characterization of any U in My, is in
terms of the c crisp subsets that are defined by the rows of
U. Specifically, we may write X = X; U --- X; U --- X,
where X; N X; = D whenever ¢ # j. The ith row of U
contains a one at each column k where x, is in class ¢ and
EL] Uik = Ny = IXi|°

When there is no U in M,,., associated with the data set X,
we call it unlabeled data. In this case there are three questions
about X:

Q1) Does X have cluster substructure at any value of c,
1l <c<n?

Q2) If X has substructure, how can we find the clusters?

Q3) Once clusters are found, how can we validate them?

Q1) is called assessment of clustering tendency, and we do
not pursue this problem here; see Jain and Dubes [1] or Everitt
[2] for formal and informal treatments.

Q2) is called cluster analysis. There are many models
and algorithms for clustering based on crisp [3], fuzzy [4],
probabilistic [S], and possibilistic methods [6].

Q3) is called cluster validity; once U(X) is found, do we
believe it? Better yet, can we use it? Is there a better one we
did not find? and so on. Just as tendency assessment depends
on how clusters are defined, validation depends on what we
mean by a good partition.

While we have specified Q1)-Q3) as if they were straight-
forward questions, they are vague. For instance, what is
meant by cluster structure? Different mathematical properties
can be used to define terms like this; they usually lead to
rather conflicting ideas about what we think data sets contain.
Q1)-Q3) are summarized in Fig. 1, which is a road map of
what you can do to and with unlabeled data. It does not include
all the special cases and does not tetl you what U can be used
for once you find it.

In the sequel we concentrate on constrained fuzzy c-
partitions of X. The question: which U € My, best explains
and represents the (unknown) structure in X? ¢ = 1 is
represented uniquely by the hard one-partition

Ln=[1 1-- 1]
, et M -
ntimes

which asserts that all n objects belong to a single cluster. At the
other extreme, for U € My.n, ¢ = n is represented uniquely
by U = I, the n x n identity matrix, up to a permutation
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of columns. In this case each object is in its own singleton
cluster. Choosing ¢ = 1 or ¢ = n rejects the hypothesis that
X contains clusters.

Fuzzy clustering algorithms are formally represented as
functions C: RP*" — My.,. Let P = {U:l < i < N}
denote N different partitions of a fixed data set X that may
arise as a result of clustering X with an algorithm C; at various
values of its parameters, or more generally, clustering X over
different algorithms {C;}, each with its parameters. Each of
the U’s in P is a realization of

U=CiX; (\P&, Pizs -+, pin,)] forsome i (2)

c

where {p;;} are the k; parameters of algorithm C;. The
handful of partitions that you can feasibly generate from an
unlabeled data set is a function of the algorithms {C;} you
choose to use, each of which is itself a function of its k;
parameters. The only common denominator of the algorithms
{Ci} is the parameter ¢, the number of clusters to choose;
that is why it is explicitly shown in (2). Moreover, for X
fixed, c is the most important parameter, in the sense that other
parameters of any C; really have what we might call second-
order effects on U compared to the effect of changing the
number of clusters sought in the data. Thus, the most effective
strategy for clustering is to first decide what seems to be the
most reasonable estimate of the correct number of clusters by
choosing one C; and fixing all of its parameters except c.! This
results in the problem most often called cluster validity: given

P ={Uilc) € Mgen:Us(c) = C; [X; (¢ pizy -+, pir)l;
fized fized
c=23, - Cmax} (3

find the best value for c. (There is little guidance in the
literature about ¢y,,«. A rule of thumb that many investigators
use i Cmax < /1)
If C; is guided by an objective function to the partitions
in P, at first glance it seems like values of the objective
'The choice of a particular C'; is guided, whenever possible, by your
expectations about possible structural geometries in X .

2Strict adherence to this rule is not recommended, however. In most
situations there will be some practical limit for emax that is known to the
user.

7

function should suffice to choose the best one. It is well known,
however, that even the global extremum of many objective
functions (such as J; for hard c-means) can lead to very
unrealistic partitions of X (see [4, p. 97] for an example
of this behavior). Moreover, some of the intuitively desirable
properties that we may want a partition to have cannot be
captured by a functional that is easily optimized. These are
arguably the two most compelling reasons for introducing
cluster validity functionals, v*: M., — R which can be used
to rank the validity of various partitions of X.

If U; € My, is hard, it defines real subsets in X, and
various validity criteria such as cluster volume and separability
can be measured in an attempt to rank U;. Measures of
validity on M), are called direct measures of cluster validity
because they assess clusters by examining crisp subsets of the
data. Indexes computed on partitions that are not crisp are
called indirect validity measures. As written, v™ is suitable for
examining partitions generated by any clustering algorithm.
In the restricted case shown at (3), one partition will be
considered at each value of ¢, so we may write v(c) = v*
[Ui{¢)]. In this notation fuzzy validity functionals v = v*
oU;:{2, 3, -+, cmax} — R depend only on c.

We will further specialize (3) in this paper by choosing C;
to be any algorithm Crpewm that optimizes the FCM (fuzzy
c-means) model defined in Section II. The FCM objective
function depends on a parameter m, 1 < m < oo called
the weighting exponent of the model. Furthermore, J;,, is a
function of not only U in M., but also an (unknown) vector
V = (vy, v, -+, V), vi € RP, of cluster centers for the
fuzzy clusters in X . These are used to specialize (3) as follows:

Pream ={[Vile), Vi(c)]
=Crem[X; (¢, m, pis, -+, Pu)ls
fized
C=2: 3; ©** Cmax; me(la OO)}. (4)
Now we can state the main objective of our paper: once
fuzzy clusters U € M., and cluster centers V in R are
found using

CreMm[X; (¢, m, pig, -+, Pir)]
fized

how can we validate them? We will study five methods for
doing this. Section II gives a thumbnail sketch of FCM.
Section III describes the validity functionals we study and
gives an analysis of their behavior for the limiting cases with
respect to c. Section IV analyzes the limiting behavior of
the validity indexes as m approaches its bounds. Section V
contains numerical examples that illustrate the use of and some
problems with validation indexes. And Section VI presents our
conclusions.

1. THE Fuzzy c-MEANS CLUSTERING MODEL

The most widely used objective function model for fuzzy
clustering in X is the weighted within groups sum of squared
errors objective function J,,,, which is used to define the
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TABLE 1

The Fuzzy c-Mecans Algorithm [FCM-AO)
Store Unlabeled Object Data X = Xy T, B I ko
®l<c<n * m>1 & T =iteration limit = 0 < e=termination criterion
Pick = Norm for J_ : (=.x), = Jxf} =x"Ax
= Norm for B, = lVl - V!_l!
Guess | Vp=Iv;0. Y50 . ¥p) € K7
Fort=1toT:
Calculate U[ with ¥, , and {(6a)
Iterate Calculate Vy with U, and (6b)
UE =fv-v | se
Stop and put (Ui‘ Vo= l:Ut o V[ ): Else
Next t
.G
Use Prototypes Vy  and/or Fuzzy Labels Up

constrained optimization problem

33 (uan)™ e v=-||i} )

min {Jm(U, V; X) =
k=1 i=1

w,v)

where U € My.,, V = (vq, va,---, v.) is a vector of
(unknown) cluster centers (weights or prototypes) v; € R? for
1 <i<cand ||x||4 = vxT Ax is any inner product norm.
Optimal partitions U/* of X are taken from pairs (U*, V*)
that are local minimizers of J,,. Approximate optimization of
Jm by the FCM algorithm is based on iteration through the
following necessary conditions for its local extrema.

Fuzzy c-Means Theorem [4]: If Dijgq = ||xx — Vi]la > 0
for all i and k, then (U, V) € My., x R? may minimize
Jn only if, when m>1

-1
c D; 2/(m-1)
Uik = Z ( M) s

o Dijka

1<i<e 1<k<n (6a)

and

v; , 1<i<e

E(uzk
_ =1
Z u:k)m

k=1

(6b)

Singularity in FCM occurs when one or more of the distances
llxx — vi|la = 0 at any iterate. In this case (rare in practice),
(6a) cannot be calculated. When this happens, assign zeros
to each nonsingular class and distribute memberships to the
singular classes arbitrarily subject to the constraints in (1b).

Perhaps the most popular algorithm for approximating so-
lutions of (6) is Picard iteration through (6a) and (6b). This is
the algorithm we use to generate approximate solutions of the
FCM problem at (5) found in Table L

This type of iteration is often called alternating optimization
(AO) as it simply loops through one cycle of estimates for
Vi.1 — U, — V, and then checks [|[V: — Vi_q]|err <
€. Equivalently, the entire procedure can be shifted one-
half cycle, so that initialization is done on Uy, and the
iterates become U;_; — V, — U, with the alternate
termination critetion ||U; — Us_i||err < &. The literature
contains both specifications; the convergence theory is the
same in either case. There are some obvious advantages to the

IEEE TRANSACTIONS ON FUZZY SYSTEMS. VOL. 3. NO. 3, AUGUST 1995

form given here in terms of speed and storage. The alternate
form that terminates on {/’s is more stringent, since many
more parameters must become close before termination is
achieved. It can happen that different results ensue by using
the same ¢ with both forms. The parameter list for FCM-AQ
is {c,m, T, 2. || = |la, || * llerr- Vo}. In this study we fix
T = 100, £ = 0.00001, || * || 4 is the Euclidean norm, || * ||¢rr
is the one-norm on NP, and V = ¢ randomly chosen distinct
points in X,

Conditions (6) are first-order necessary conditions for local
extrema of .J,,,. In principle then, any algorithm Crcy used to
solve (5) should generate candidates that satisfy (6). For exam-
ple, you might try to optimize .J,,, with dynamic programming
or perhaps a genetic algorithm; candidate solutions must still
satisfy (6). This is an extremely important point for our study
because equations (6) are the basis for our limit analysis of
the validity functionals studied in Section IV. So, although we
will use FCM-AO to generate (U, V) pairs for our numerical
examples, what can be learned about the behavior of any vF¢M
as a function of ¢ and m is independent of the method used
to find extrema of .J,,.

Some limiting properties of (6) that are important for this
study are given in [7]

-1
. S of Dirpg 2/(m~1) ~
-y Z (DjkA) -

m—1 F=1

i Diga < D]k..‘l V] #
0; otherwise

1<i<e 1<k<n.

—

(7a)

Using this result, we take the same limit in (6b), obtaining

z (u,-k)“"xk Z Xk

lim vi—k=; :xke':‘ , 1<i<e
5 ‘
m—1 Z (uik)nl 1
k=1
(7b)
where X = X U --- X;U -+ X, is the hard ¢-partition of X

defined by the right side of (7a) with "} _; uix = ni = | Xi|.
If we use these results in (5), we have

lim < min [ (U, V; X) ZZ(um [ —V:||A]
m—1 (?’;) k=1i=1
n e
= win, [J(U ViX) =30 3 wielbxi vlll";l-
(U, V) k=1 i=1

(3)

J1(U, V; X) is the classical within-groups sum of squared
errors objective function. Equation (8) is the hard c-means
(HCM) model. Moreover, the right sides of (7a) and (7b) are
the necessary conditions for local extrema of J;. It will be
important in Section IV to know that Jy(U/, V; X) can be
written as the trace of the within cluster scatter matrix of X
when partitioned by U, so we give the definitions here. Let
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X = {x11x23 "'axn} = Xl V] "'Xi U "'Xc be any
hard c-partition of X with sample mean vectors V = {v; =

2 x,ex; Xk/ni} and grand mean v = ), x/n. For any
pair (U, V) € My, x RP, we define

Si=| D (xk—vi){xx - V-’)T]

Xk €X;

= scatter matrix for X;; (9a)
c ]
SW = Z S,' = Z LZ (xk — vi)(xk = V,‘)T]
i=1 i=1 Lxy€X;
= within cluster scatter matrix. (9b)
Sg = z ni(vi = V)(v; =)
=1
= between cluster scatter matrix (9c)
and
Sp =8y + Sg = Z(Xk -V)(xi —¥)T
k=1
=total scatter matirix of X. (9d)

For any X = {xhxz,-",Xn},tl’[z}::l(xk)(xk)q"] =y
[|%x]|?. Using this with (9b)~9d) yields

tr(Sy) =tr {Z D (k= vilxx —Ve)T]}

i=1 kE€EX:
=> ( > Ik —Vz'||2)
=1 Xp€X;
=4 (U, V; X); (10)
tr (Sg) =tr |:Z ni(v; — V)(v; - V)T]
=1
=" nillvi - 91 (an
i=1
tr(S7) =tr [Z (xp — ¥)(xp — v)T]
k=1
=3 lIxi - 912
k=1
=Cx. (12)

The total scatter matrix S at (9d) is a function of X alone,
so its trace at (12) is the constant C'y which depends only
on X. Specifically, tr(St) is not dependent on (U, V).
Consequently, for a fixed data set tr (St) = tr (Sw)+tr (Sg)
= (U, V; X) +tr(Sg) = Cx, so when we minimize .J,,
we simultaneously maximize tr(Sg) which is a measure of
the between cluster scatter of any (U, V) € Mj.. x R?P.

Lastly, we need the limits of (6a) and (6b) as m approaches
infinity [7]

-1
e C\2/(m=1)
im { (S (_D"“A) » 4
m—oc = DjkA [
1<i<¢ 1<k<m (13a)

m
n n
(wik)™ Xk Y o xk
n,}i_’Pm v; = k=:1; - k=:1 =¥,
> (uar)
k=1
1<i<ec (13b)

where ¥ is again the grand mean of X.

III. CLUSTER VALIDITY FOR U IN My,

Validity methods associated with, but not specifically de-
signed for, the FCM model began with Bezdek’s partition
coefficient vpc [8] and partition entropy vpg [9] of any U
in M fen

Z Z A
vpc(U) = *=H— (14)

and
1 n c
vpp(U) =—= {Z > {uik log, (u,—k)]}. (15)
™ k=1 i=1
In (15) a € (1, cc) is the logarithmic base. Properties of
these two indexes as functions of U and ¢ were studied in
[8]-[10]. We repeat the main results
‘UPC(U) =1 ’UPE(U)
=0 U € Myen

is a hard c-partition of X; (16)
1
'Upc(U) = E =4 'UPE(U)
=log,(c) & U
= [1] =U. (17
c

Equation (16) shows that vpc takes its maximum (and vpg
takes its minimum) on every hard c-partition. And vpc takes
its unique minimum (and vpg takes its unique maximum) at
the centroid U = [1/c] = U of My.,. U is the “fuzziest”
partition you can get, since it assigns every point in X to
all ¢ classes with equal membership values 1/c. These two
indexes essentially measure the distance U is from being crisp
(i.e., they measure the fuzziness in /). Normalizations of both
indexes based on nonstatistical [10] and statistical [11] criteria
help reduce their tendency toward being monotonic with c.
In the context of validation, it is clear that when an algorithm
produces a partition U that is close to U, that algorithm is
not finding very good cluster substructure in X. This may
be the fault of the algorithm, or the data may lack structure.
Consequently, the unique minimum vp¢ (or maximum vpE)
are very helpful in deciding when the structure is not being
found. It is less clear that when U approaches Mj.,, cluster
substructure has been found. Since vpc = 1 (vpgp = 0) for
every U in My, it is incorrect to assert that just because
vpe is near one (or vpg is near zero) that U is a good
clustering of X . Empirical studies vary: some have shown that
maximizing vpc (or minimizing vpg) over P at (3) or Pream
at (4) often (but not always) leads to a good interpretation of
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the data [8]-[11]; others have shown that different indexes
are sometimes more effective [12]-[14]. This simply confirms
what we already know: no matter how good your index is,
there is a data set out there waiting to trick it (and you).

vpc and vpg are examples of a class of validity functionals
that are functions of I in M., alone. A strong criticism of
indexes like these is that, while U = C;(X ) is a function of
the data set X, functionals such as vpc and vpg are only
implicitly functions of X. In other words, they do not use
the data itself. Moreover, many algorithms generate collateral
information or parameters—e.g., the cluster centers V from
the FCM model—that may be useful for validation.

Gunderson’s separation coefficient [15] was the first validity
index that explicitly used the three components (U, V; X )
where U € M., and V is a vector of ¢ prototypes that are
associated with the clusters in U. More recent indexes in this
class are the Xie-Beni [16] indexes vxp, vxp. m and the
Fukayama—Sugeno [17] index vpg.

Let U € Myc, and V = (vq, vy, ---, v,.) be a vector of
distinct points v; € R? for 1 < i < ¢ (for us they will usually
be cluster centers), and let ||x||* = xTx be the Euclidean
norm. The Xie-Beni index vxpg is defined as

ZZu?kHXk - vilf?
] R o
vxp(U, V; X) = - (@{v; = v;|12}H
i#j
=)
= |—=n/_
- |2 | (18)

Xie and Beni explained this index by writing it as the ratio
of the total variation ¢ of (U, V) and the separation sep (V)
of the vectors V

U, Vi X) =Y (Z uZ||xx — v;||2); (19)

i=1 k=1
sep (V) = min, {llvi = v;il*}. (20)
i#]

Note that if (I/, V) is an extrema of J,, then ¢ = Jo. A
good (U, V) pair should produce a small value of o because
u;x, is expected to be high when ||x) — v;|| is low. And well-
separated v;’s will produce a high value of sep (V). So, when
vxp(Ui, Vi; X) < vxp(Us, Va; X) for either of these
reasons (or both), U; is presumably a better partition of X
than U;. Consequently, the minimum of vx g over P at (3) or
Preaq at (4) is taken as the most desirable partition of X.

Xie and Beni state that vx g decreases monotonically when
¢ is close to n. Assume there is only one candidate pair (U,
V.)ateachc=2, 3, .-, n— 1. To avoid monotonicity, they
recommend plotting vx g(U., V; X) as a function of ¢ and
then selecting the starting point of the monotenic epoch as
the maximum ¢ (¢max) to be considered. Then the optimum
value of c is obtained by minimizing vxg(U,, V.; X) over
c=2,3,-, Cnax-

When (U, V) pairs optimize a criterion function {J) which
is very different from J5, Xie and Beni recommend modifying
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o to be compatible with J. In particular, they recommend
replacing ¢ with J,,, when (U, V) pairs optimize the FCM
model for m # 2. We will call this the extended FCM

: - FCM
Xie-Beni index vy,

[4 n
Y3 ultllxe — vill?
FCM

3 . i=1 k=1
UXB,m(U’ V; X) n (min {HV,'—VjIIz}}

i
__ ImUV:X) e
n (@i {|[vi - v;[1*})

i#j

Another functional that combines the three components (U, V;
X) is the validity function vgs, ,, of Fukuyama and Sugeno
[17]

vrs,m(U, V:X) =3 Y (ug)™

k=1 i=1
* (e = vl = {lvi = ¥l1%)
=Jn(U, V: X)
- {{Z (war)™ | [V -Vlii},
L1;=1 k=1 s

Km(U,ViX)

=Jn(U, V:X) = Kn(U, V:X)  (22)

where 1 < 'm < co. While vpg ,, was not explicitly designed
for searching only Pxcaq, it seems likely that this was the
motivation for its definition. The first term in (22) is J,,,, which
combines the fuzziness in U/ with the geometrical compactness
of the representation of X via the ¢ prototypes V. The second
term, K,, in (22), combines the fuzziness in each row of U
with the distance from the ith prototype to the grand mean
of the data. Fukuyama and Sugeno proposed that minima of
vrs,m over Prcaq at (4) pointed to good clusterings of X
(good in the sense of minimizing vrs, m. of course). vrs m
has been used to select the number of rules for a fuzzy
controller [18]. When (I/, V) is a pair that optimizes the FCM
model and J,,(U, V; X) < Ju(Us, V3; X), Unis likely to
be a more desirable partition of X than U, (but, like Jy, there
are examples where this is false [8]). The interpretation of K,
is not so obvious, but taking its limits with m will enable us
to get an idea of the meaning of this term.

IV. LIMITING BEHAVIOR OF THE INDEXES ON FCM PAIRS

In this section (U, V) pairs are assumed to be optimal for the
FCM model at (5), so that they satisfy necessary conditions (6)
and limit conditions (7) and (13). We will indicate this by the
notation v¥°M(U, V; X). Although indexes such as vx g, m
and vps, ;m do incorporate collateral information about cluster
substructure that resides in V, when (U, V) pairs minimize
Jm, care must be taken to account for their limiting behavior
as a function of m. We will show that v§5M = and vESM,
can be strongly influenced by m. Paradoxically, it is precisely
because these two indexes use (FCM) centroids that they are
sensitive to m.
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Mindful of (7) and (13), we now take limits of the validity
functionals as m approaches one from above or infinity.
The results for the partition coefficient and entropy hold no
surprises.

Partition Coefficient, m-1+1 and m — oo:

: FCM _
hin1 {vpd (U, V; X)} =1,

m—

lim {vFE(U, V; X)} =1/c. (23)
Partition Entropy, m—1 and m — oc:
lim {vEM(U, V; X)} =
m—ol
Jim {vpg" (U, V; X)} = log, c (24)

These two indexes are independent of V, so their dependency
on m seems transparent. Qur examples, however, will show
what these limits suggest. First, for values of m very close
to one both indexes lose their ability to discriminate between
various values of c. This happens because the first limits in
(23) and (24) take the same value on all crisp U’s for every c.
At the other extreme, when m becomes large, they will both
select ¢ = 2 because of the second limits in (23) and (24).
That is, for example, the partition coefficient will maximize
at one-half because as m approaches infinity, the second limit

at (23) yields
s {i)
— =max 4 — ;.
2 ~le¢

2<e

Xie-Beni Index and the Extended FCM Xie—Beni Index,

+
m—1:

lim {58, v; X)} = tim {o5P.(U, V; X)}
m—~1 m-—1
oy ol NN —. (25)
n (min {|}v; — v,|?})
i#i

Since the denominator in (25) varies with V alone, it is very
possible that this index will validate different (I/,V) pairs than
J1(U, V) does. On the other hand, when we take the limit of
the Fukuyama-Sugeno Index, this is not the case.

The Fukuyama—Sugeno Index, m—s1

lim {vf%.(U, V; X)}

’“—:‘ hm {Jn(U, V:X) - K,(U, V:X)}
:mhm {Jn(U, V: X)} — lim {K,(U, V:X)}
m—»l m— b2 —1
= ]1m {Z S ()™ ||xk—v,,||2}
k=1 i=1

- llm {ii Uik) ||v,—v||2}.

k=1 i=1
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Now as m—1, every u;x — 0 or 1 as in (7a). Consequently

hm {ufSM (U, V; X)} = Z ( S ||xk—Vi||2)

m— i=1 \xx€X;
-3 (3 ).
i= X €X;

Applying (10) to the first term and (11} to the second term
now gives

lim {vESm(U, Vi X)}

m—1

= Jl(U, VX) —tr [i ’ni(Vi - V)(V,‘ — V)T]
=1ir (Sw) — tr (SB) .

= tI‘(Sw) — Itr(ST) — t[‘(Sw)]

— 2tr (Sw) — tr(Sz)

= 2J,(U, V: X) - Cx. (26)

In (26) Sw and Sg are the within cluster and between clusters
scatter matrices, respectively, of the limiting hard partition of
X shown in (7a). Equation (26) invites two comments for m
close to one:

i) J., is in some sense the fuzzy analog of the within cluster
scatter, and K, is the fuzzy analog of the between cluster
scatter.

ii) vESM, behaves very much like Ji, which does not

necessarily serve us well as a validity functional. In
other words, K,,—a measure of the between cluster
scatter—has a very negligible effect on the evaluation

of (U, V) for very small values of m.
Next, using the results at (13), we take limits as m ap-
proaches infinity.
Xie—Beni Index, m — oo: Recall
limm_,w {Vt'} =
index we have

from (13b) that
v. For the numerator of the Xie-Beni

. {G(U, Vi X)}
lim
n
m—oo
.1 o n
=~ Jim, {_ ; lkIIXk—ViH‘!}
1 . =
~ (72 e = VI
et/ i k=t
¢ n
. (W Hxe —"Hz
k=1
1
={— S
(2o
_ S
T ne’
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For the denominator in (18), however, we have

Jim, {sep(V)} = lim, (amin {|jv: - v;|[*})

™m—00 M—00 g‘;{j
= (in {|I¥ - ¥I1*})
1#d
=0.
Consequently

lim {VRFU, V: X))} = CXO/"" =

@n
This leads, and our examples will confirm, to numerical
instability for large values of m

The Extended FCM Xie—Beni, m — oo: The extended
FCM Xie-Beni index o531 (U, V; X) = {Jn. (U, V;X)/n
[sep(V)]} has a different limiting behavior than v§% because
the power of u;. in the numerator is m, not ﬁxed at two,
The denominator still goes to zero, but with (u;x)™ in the
numerator, it also goes to zero. To see this we take the limit of
the FCM objective function using (13) and the Euclidean norm

Jim, {Jm(U, ViX) =35 ()™ i — v,-||2}

m—oo k=1 i=1

(Z ||Xk~VI12) lim { }
=Cx (n}i,‘.*‘w {cml-l })

=0.

This leads to the indeterminate form

Jim {00,V 0} = 3

(28)
so the behavior of U;%I‘fm(U, V; X)) for large values of m is
not at all predictable.
1
em—1

The Fukuyama—Sugeno Index, m — co: Since

lim {Kn(U, V:X)} =|[v-¥|* lim {
m=0cC m—+00
=0:0=0

we have

lim_{oFSM, (U, V; X))

= lim {Jn(U, V:X) -
-(0-0)=0.

Kn(U, V: X)}
29

Consequently, this index loses its ability to validate (U, V)
pairs from FCM for large m.

To summarize, very low or high values of . may infiuence
any validity index that uses membership values U from FCM.
Moreover, indexes that also use V from FCM may experience
additional problems because lim,,, o, {V;} = V. And indexes
such as i3, or vESM  that are explicit functions of m
and (U, V) may be very unreliable for small or large values
of m. For example, dependency on m makes v FgM or

vgng unreliable for high values of m. Finally, vE¢ 5 m 18 also
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Fig. 2. Schematic representation of Normal-4.

unpredictable for low values of m (very near one). Next we
will illustrate the force of these remarks with several numericat
examples.

V. NUMERICAL EXAMPLES ON CLUSTER VALIDITY

Perhaps you are wondering what a low or high value of m
is? After all, the limits in Section IV are hardly applicable in
practical situations. Most users of FCM choose values of m in
the range (1, 10] (we are aware of one or two studies that have
examined m up to about 30, but values of m < 5 or so are
more usual, and m = 2 is by far the most common choice).

To study the indexes, we use two data sets named Normal-4
and IRIS. Normal-4 is a sample of n = 800 points consisting
of 200 points each from the four components of a mixture of
¢ = 4, p = 4-variate normals. The population mean vector
and covariance matrix for each component of the normal
mixture were pu; = 3e; and ¥; = I, i = 1,2, 3, 4, ¢; =
(0,"',\1’-1,"',0).

Itis heipful to picture the geometric structure of Normal-4,
which is (a sample of) 200 points each centered at three units
from the origin along each of the four coordinate axes, with
unit variance for each sample in all four directions. Fig. 2
shows what this data looks like to the mind’s eye if the
sampling of each component is very nice. Because the standard
deviation of each population component is one, we can only
expect about 68.2% of each 200 samples to be within one unit
of their mean. Just add another axis in your mind to visualize
Normal-4.

IRIS has n = 150 points in p = 4 dimensions that represent
three physical clusters each with 50 points [19]. We say
physical because although IRIS contains observations from
three different physical classes of flowers, in their numerical
representation two of the classes have substantial overlap,
while the third is well separated from the other two. Thus,
one can argue in favor of both ¢ = 2 and ¢ = 3 for IRIS.

For each data set we made several runs of FCM for different
values of m. As a reminder, in this study all other parameters
of FCM were fixed: T = 100, ¢ = 0.00001, {| * {|4 is the
Euclidean norm, || * || is the one-norm on R, Vg = ¢
randomly chosen distinct points in X. For a particular ¢ and
data set the same initial centroids were used for all runs.
Experiments have also been done with different initializations
not reported here; those results were very similar to the ones
given.

Table II displays the values of the five validity indexes for
¢ = 2 to 10 for terminal (I/, V) FCM pairs of NORMAL-
4 for the weighting exponents m = 1.2 and m = 7. We
have highlighted and shaded the optimal value of ¢ chosen by
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TABLE I TABLE III
INDEX VALUES ON NORMAL-4 FOR ¢ = 2 T0 10: m =12 AND m = 7 INDEX VALUESON IRIS FOR ¢ = 2 TO 10: ' m = 1.2 AND m = 7
c Joo| K v:scm -J -K |2Jm_cx1 oFEM ' s ¢ J I K, \wm -J -K | 2J "cx| yFeM lwﬁu{ yFCM | g FeM
m " Ym T X8 XBm fSm Tm Um| o ™ XB PC PE
m=1.2 ms= 1.2
2 | 4777 | 1722 3054 990 0.55 060 |0.89 019 2 {2599 |529.49 - 503 -629 | 001 0.01_ |0.00 |0.02
3 | 1983 | 3573 | -15%0 - 4596 0.16 020 {0.92 |0.15 3 |62.59 |600.72 - 538 556 | 0.12 0.13 1098 |0.04
4 | 2320 | 5442 | -3122 - 3923 0.16 0.17 _ |0.85 |0.09 4 [46.89 |619.93 - 573 -587 | 0.8 0.19 096 |0.06
5 | 2128 | 5558 | -3429 - 4307 0.41 047 _ |0.92 [0.15 5 |46.18 |623.64 - 577 -589 | 048 051|095 |0.08
6 | 2106 | 5649 | -3542 - 4350 0.68 080 [0.89 [0.20 6 |44.74 |624.34 - 579 -591 | 0.72 0.77__|0.95 |0.09
7 | 2015 | 5736 | -3720 - 4533 0.70 0.85 |0.86 |0.25 7 _|45.55 | 625.49 -579 -590 | 112 1.20 1095 |0.09
8 | 2175 | 5870 | -3694 - 4213 0.67 0.80 |0.87 [0.25 8 |44.58 |625.33 - 580 -592 | 208 2.19 095 |0.09
9 | 1971 | 5929 | -3058 - 4621 0.67 0.85 |0.83 030 9 [3046 |637.34 - 606 -620 | 1.40 1.50 096 |0.08
10| 1882 | 6015 | -4182 - 4798 0.66 083 1084 [031 10]25.79 | 641.37 -615 -629 | 116 1.27 {094 |0.11
m=7 ma7
2 _|66.91 | 0.00 66.91 NA _|1.87E08| 58468 | 0.50{ 0.69 2 | 303 |2969 | -26.85 NA | 0.10 00013 | 0.54] 0.8
3 783 | 000 7.83 NA _|2.48E06 | 10224 | 033] 1.10 3 |035 |493 - 4.58 NA | 062 0.0016 | 0.37 | 1.05
4 | 157 | 000 1.57 NA |B74F08| 8543 | 025 1.39 4 |oo7 | 117 -1.10 NA | 113 0.0006 | 0.27 | 1.34
5 | 044 | 000 0.44 NA [334E05| 1069 | 020] 161 5 (002 |02 -0.20 NA | 798 0.0015 | 0.22 | 156
6 1015 1000 0.15 NA _|3.22E08 414 | 017] 1.79 6 |o01 |oos -0.04 NA  [26326 20163 | 0.18] 1.75
7 |oo0s |000 0.06 NA _|8.86E08 527 | 014 195 7 000 |oo03 -0.03 NA | 32470 1.0905 | 0.16| 190
8 | 003 | 000 0.03 NA [117E0s 357 | 013 2.08 8 [000 |o013 -0.12 NA  |808502 [14.4105 | 0.14| 208
9 J001_|000 0.01 NA _ |9.55E08 161 | 0.11] 2.20 9 |ooo |205 -2.05 NA 17599 | 0645 | 0.13] 212
10] 001 | 0.00 0.01 NA_ [963E06] - 98 |0.10] 230 10000 |735 -7.35 NA | 254 0.0000 | 0.14] 2.19

each index (recall that they are all to be minimized except the
partition entropy). Since the desired value is ¢ = 4, we see that
four of the five indexes point to the correct choice at m = 1.2,
and none of them indicate ¢ = 4 at m = 7. Observe that while

vEG agrees (incorrectly) with vEGM and vEEM at m = 7,
the extended Xie-Beni index vFCM points to ¢ = 10; this
behavior is consistent with the fact that limits at (27) and (28)
are different. Moreover, the values of vF %“ at m = T show
a dramatic decrease with ¢. From the trend in this column,
you might suspect that ¢ is approaching zero much faster than
Xie and Beni conjectured that it will, since n = 800 here.
Another point worth considering is the magnitudes of V{37 at
m = T, which are very large. This is due to the behavior of the
denominator shown at (27); some of the values ||v;—v;|| — 0.

The column headed (2.J,, — Cy) in Table II is shown
adjacent to vEE to check the limit in (26), which asserts
that v} — (2, — Cx) as m — 1 from above. As is
evident, the values are not very close (although they certainly
exhibit the same trends). We will study this aspect of the limit
process in Table IV. At the other extreme, we may conclude
that for this data set and these algorithmic parameters m = 7
is too high for good FCM pairs. Notice especially that the
Fukuyama-Sugeno index vffg\ln points to ¢ = 10 for both
values of m! Other (I, V) pairs from FCM using, for example,
different initializations, could certainly alter these results. But
for this example, and for others like it not reported here, our
experience has been that the Fukuyama—Sugeno index v}
is very unstable for low and high values of m.

Table III lists the outputs of the five indexes on (U, V)
pairs from FCM applied to the IRIS data for the same two
values of m. For m = 1.2 all indexes point to ¢ = 2 except
the Fukuyama—Sugeno index, which again points to ¢ = 10. In
view of our remarks about the geometric structure of IRIS, we
take ¢ = 2 as a good choice, so the behavior of the five indexes
at n = 1.2 is exactly the same for the data sets Normal-4 and

IRIS. We have again shown values for 2./,,, — C'x, the limit
of vESM from above, and again, we see that they are not
very close.

The behavior of the Xie-Beni indexes as functions of ¢
for m = 7 is very peculiar. For example, v§S%" is 0.10 for

= 2, grows to 808502 at ¢ = 8, and then plummets back to
ncarly zero (2.54 is nearly zero relative to the values in this
column) at ¢ = 10. Looking at the trend of values, one is left
with the very correct impression that there is a very strong
and unpredictable interaction between ¢ and m; moreover,
this behavior is not consistent across different data sets. These
remarks should serve as a strong warning about what you can
and cannot infer from cluster validation indexes.

Unlike their performance in Table II, not all of the indexes
fail for IRIS. Indeed, viG;, vEEM, and vEEY ail secure ¢ = 2
at both values of m. This again emphasizes how important it
is to remember that the data set X determines the quality of
inferences that can be made from validity studies. Normal-
4 is a fairly well-structured data set, but all indexes fail for
m = 7, while three work well for IRIS at m = 7. The
partition coefficient and entropy exhibit the behavior shown
in the second limits at (23) and (24) for IRIS. The partition
coefficient, for example, maximizes at 0.54, a little above
1/e = 1/2. All other values of vEEM are similar—ijust a
few hundreths above 1/c. We should observe that while the
partition coefficient and entropy both indicate ¢ = 2 (the
preferred value) for IRIS at every m in Table I, there is
some m above which, because of this limiting behavior, that
their success is accidental.

Equation (26) asserts that vig", — (2 —Cx)asm — 1
from above. How close to one is close enough to see this
behavior even approximately? Table IV compares values of
vEEM to 2J,, — Cx for m = 1.2, 101, and 1.005 on (U, V)
pairs generated by FCM.
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TABLE IV
VALUES OF vEGM  aND 20, — C'x oN IRIS: m = 1.2, 1.05, anD 1.005
me=1.2 m= 1,01 m = 1.005
R AR AR
2 - 503 - 629 - 500 - 624 - 661 - 675
3 - 538 - 556 - 538 - 553 - 940 -954
4 -573 - 587 - 576 - 586 - 930 - 932
5 - 577 - 589 - 586 - 591 - 928 - 929
3 - 579 - 591 - 588 - 591 - 931 - 931
7 - 579 - 590 - 589 - 592 48 - 955
8 - 580 - 582 - 589 - 590 - 938 - 939
9 - 606 - 620 - 615 - 626 - 939 - 939
10 -818 - 629 - 628 - 626 - 941 - 939
TABLE V

OPTIMAL VALUES OF ¢ FOR NORMAL-4 AND
IRIS CHosEN BY EacH INDEX: ¢ = 2-10

Normal-4 : preferred value = 4
m FCM FCM C!
Ysm |V | Y | Yo | e
1Ol | 10 4 @
1.1 10 4 [
1.2 0 1 3 r
1.5 4 [
T.8 3 Y
2.0 4 4 2 2
2.2 4 ] 2
2.5 r [ 2 2
28 4 2 2
30 T0 4 1 2 2
35 10 2 10 3 3
40 10 3 10 2 F)
70 10 2 0 2 3
IRIS: preferred value = 2
m FCM FOM o ¥ e
Ysm | Yo | Yom | % | Y
TO1 ] | 2 (@) ()
1.1 10 2 2 2 2
1.2 10 ) p) F] 2
15 1 2 p) 2
1.8 3 2 2 2 2
2.0 3 2 2 21 27
232 3 | 3 2 ) ]
25 2 p 2 :
PR 2 p 2
3.0 p "3
35 p 2
4.0 2 2 2
7.0 T 10 2

Even at 1.005 there are values of ¢ for which [vEE,

(2J, —Cx)| is not small. For example, at ¢ = 7 this difference
is nine. So, limit really means limit. Note, however, that v,
selects ¢ = 7 for m = 1.005, while it selects ¢ = 10 at
m = 1.2 and 1.01. This again illustrates how sensitive this
index is to changes in m.

Finally, Table V lists the value of ¢ chosen by each of the
five validity indexes for 13 values of m ranging from 1.01-7
for each of our data sets, when ¢ ranged over the integers from
2-10. We have shaded those cells of the table that agree with
the preferred value of ¢ for each data set. The values in Table
V invite several comments.

i) The Partition Coefficient and Partition Entropy: At m =
1.01 (and any m closer to one than this) the values of
vEEM and vEGM on every (U, V) pair from ¢ = 2 to
> = 10 were identical for each data set (separately).
Why? For values of m very close to one, both indexes
lose their ability to discriminate between various values
of ¢ because the first limits in (23) and (24) take the same
value on all crisp U’s for every c. This results in a tie (up
to this level of accuracy), so we call these undecidable
cases, marked in the table by (?). What this indicates
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is that for m = 1.01, the partitions U/ from FCM (U,
V) pairs are so close to some vertex of My, that they
are, for all practical purposes, crisp partitions of the data.
Both indexes prefer ¢ = 2 for IRIS at every m except
1.01. This is very consistent with our understanding of
these two indexes. When m becomes large, we have
pointed out that they will both select ¢ = 2—regardless
of the data set in question—because of the second limits
in (23) and (24). Apparently for Normal-4, large means
m > 1.8!

ii) The Xie—Beni Index: The Xie-Beni index v{E" indi-
cates ¢ = 4 for Normal-4 over the range 1.01-3.0 for
m and over 2-10 for c¢. And it is perfect, ¢ = 2, for all
values of ¢ and m on IRIS. This is a very good showing.

iii) The Extended FCM Xie-Beni Index: v§3, does very
nearly as well as 53", making only one more mistake
(at ¢ = 10 at o = 7 for IRIS). This may be an indicant
of its limiting behavior manifested by the choice ¢ = 10
for high values of m for both data sets.

iv) The Fukuyama-Sugeno Index: viGM, . which selects
the correct value of ¢ only if m lies between 1.5 and 2.8
is the least effective of the five indexes on Normal-4. Its
limiting behavior is seen for this data, since it indicates
¢ = 10 for both low and high values of m. vEE", does
a somewhat better job on IRIS, indicating the preferred
value of ¢ over the range 2-7.

VI. DISCUSSION AND CONCLUSIONS

We have illuminated the role of model parameters as they
affect attempts to validate clusters. Clustering outputs are
at the mercy of three things: the data they process, their
model parameters, and their algorithmic protocols. We have
no control over the data, so when we try to validate outputs
of clustering algorithms, it is very important to remember
the parameters and the protocols. What our study has shown
is that some validity indexes have surprising and sometimes
unpredictable dependency on elements of the solution that
seem at first glance to be rather unrelated to their job—which
is to tell you whether or not to believe the outputs.

Specifically, we have analyzed the role of weighting ex-
ponent m in the FCM model as it affects the quality of
inferences we can make about the validity of FCM (U, V)
pairs produced by any algorithm that attempts to optimize
Jm, the fuzzy c-means objective functional. We have seen
that, among the indexes tested and for the data sets and
protocols used, the Fukuyama—Sugeno measure is much more
unreliable, because of its limit properties, than the others. And
the same set of experiments suggest that the Xie-Beni index
is the most reliable. A useful by-product of our study is this
recommendation. Approach FCM (U, V) pairs generated as
extrema of the fuzzy c-means model for values of m less
than about 1.5 or greater than about 2.5 with even more
caution than the level needed for m in [1.5, 2.5]. As with
all empirical studies, of course, the next data set tested might
suggest otherwise.

How general are the conclusions? We have ignored other in-
dexes—for example, Gunderson’s separation coefficient [15],
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Windham’s proportion exponent [12] and uniform data func-
tional [13], and Bensaid’s generalization of the Xie-Beni
index [20]. The method displayed, however, is quite general.
The limit analysis given here can—and should—be applied
to any index that is used to evaluate FCM-optimal (U, V)
pairs because it is based on necessary conditions for .J,.
And more generally, of course, the idea of analyzing the
influence of secondary (beyond c) parameters of any clustering
algorithm on the validity functions that will be used to evaluate
its outputs is very important and should be done whenever
possible.

To conclude, we offer this observation. Even if the objects
being clustered are well separated into ¢ recognizable subsets,
there are many reasons why we may not discover this structure
through clustering. For example, the numerical representation
of the objects may not possess adequate information to dis-
criminate between clusters of objects. Further, even if the data
possess the desired substructure, the algorithm used may not
extract it from the data. (For example, an algorithm which
looks for hyperspherical clusters will not extract shell type
clusters.) Finally, the objects may have structure, the data may
represent it, and the algorithm may be capable of finding it,
but the appropriate parameters

(pi1 piz, -+, Pir,)

[~

of the algorithm that yield a successful interpretation of X are
never used. And, even if all of these obstacles are met, validity
indexes may fail to tell you that the great clusters you have
are indeed great! Our goal? Do not give up.
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