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PROBABILITY CONTENT OF A RECTANGLE UNDER
NORMAL DISTRIBUTION : SOME INEQUALITIES®
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and
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SUMMARY. The papor deals with the problem of finding the optimum location of o
roctangle B of specified volame for which PX€R) is msximized, where X ~ N,. Some epecial

casms are idercd for iizing the above p ility when the lengtha of tho sides of R
aro only specified.

1. INTRODUCTION

Let X be a px 1 random vector distributed as Ny(g, £). Consider the
problem of selecting the region of largest confidence level for p from all regiona
of fixed Lebesgne measure, based on a single observation X, ¥ being a known
positive-definito matrix. It follows easily from Neyman-Pearson lemma
that such an optimal region is given by the corresponding concentration
ellipsoid, if we restrict our attention to the class of translation-invariant
regions. However, in this paper, we focus our attention only to a class of
rectangular regions of fixed volume. The problem is of theoretical interest,
besides the fact that rectangular confidence regions are easier to apply.

2, OPTIMAL RECTANGULAR CONFIDENCE RECION
Consider a class of rectangular regions given by
R, a)={zeRP: |ys| €a,i=1,...p;
Y = (y, ..., yp) = I'X, T is orthogonal}.

The confidence region based on R(l, @), where & = (g, ..., ap)’, is defined
to be
X—psRie,
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¢ ¢ Rp. Our probl d to the following : To
Q(T', @, ¢) = P[X 6§ R+c: X~ Ny(0, £))
subject to 6,05 ...ap =k, @ given constant, by varying ', @ and e.
Our first theorem is & direct consequence of Anderson’s (1955) probability
inequality.
Theorem 1: Q(T', @, ¢) < G, @ 0)=G6,(T, @), for all ¢ ¢ Ry, aeRy
and all orthogonal pxp matrices T.

Without any loss of generality, we may assume T = diag(o?, ..., Y= A,
say. First, let us consider the case A = ¢2I;. Then

&r. @)= Nl Hafo),

where H(c) = O(c)—d(—c),

® being the c.d.f. of N(0, 1).
Lemma 1 : For ¢ > 0, log Hic) is a concave function of log c.
Progf : Note that

H(e) = P2 < cf) = Pllog 32 < 2logc].

It is eagy to check that the p.d.f of log x} (x? stands for the chi-square variate
with 1 degree of freedom) is log-concave. Thus it follows from Prekopa's
inequality (Das Gupta, 1976) that the c¢.d.f. of log x? is log-concave.

Theorem 2: For T = o%ly, G\, @) equals G,(Iy, @) which is mazimized
al oy =..=ap=Kk"?P when ay...0p=k.

Proof :  The first part of this theorem is trivial. Now write
H(mfo) = H,(by),
where by = log(ai/e). Then
P
Gy(T", @) = 11 H,(b)
[

is & (per ional) sy tric, log: function of (b, ..., bp). Hence
Bt 00 < By,
where b= (Ex byfp = log(kV»/o).
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Now let us oonsider the general case. Denote the covariance matrix of
Y = I'X by y snd note that ¢ = TAI". Denote the conditional distribution
of ¥p given Yy, ..., Yoy, by

-1
¥ ::_:l Yo 13).
Then T, ) = E[I( ¥il ai §=1,.p=1)

X_E:¢ (yvi EI/’MY‘- "':) d.’lv].

where I is the indicator function and the p.df. of N(g, o%) is denoted by
#(+, 1, 0%. It follows from Anderson’s (1855) probability inequality that

G\l @) < P[| Yy| € a), i =1, ..., p]-Hiaprp).
(75 > 0). Repeating this argument we get
or, @ < i Haujro.
Following the arguments given in the proof of Lemma 1, we get

‘lle(a,/r.) < 27",

where a® = (kf7y ... T5)VP.
However ool =detA=dety =711..7%
Hence a’ = (ko ... op)VP.

This leads to our main result given below.

Theorem 3: G(T, @, ¢) s mazimized for ¢=0, '=1; and
ajoy = 8’6 = 1, ..., p), where a* = (kfo, ... op)VP, given that T = diag(o} ... o?)
and ﬁ a=k

= 3. SOME PARTIAL BESULTS

The problem of maximizing G,(T', &) for fixed @ is quite involved. We
consider some special cases of this problem.

Suppose p = 2, and write

cos 0 8in 6

r= (aino —cos 8

) 6T @y =900, a).

We shall show that
9(6. @) < 9(0, @)

when 0y < 0y, 8,0, < &[0,
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To see this, recall that
G\(T, a) € H(a,/r\)H(a4/7,).
Note that g o}, 1,7 = 0,0,
Thus a3/7s <a4f0s € /0y < ayf7y.
Using Lemma 1, we get
Gy(T', @) < H(ay/1,)H(as/7y)

< H{ayfoy)H(ayJoy) = O\(Ip, a).

916, @y, a5) = g(m[2—6, 0y, ay).
Thus g(6, a) is maximized at § = 7/2 when

Next note that

a,/03 € 830y, 03 < 0y
However, we have not been able to find the optimum 6 when
oy < tifay < oyfoy (07 > 0y).
At best, we can say that 6 = 0 cennot be an optimum solution for all
@, @y, 0,, 0y satisfying 1 < ayfa, < 0y/0,. To see this, suppose 6, is the
limiting velue of a sequence of optimum values of 6, as ¢, 0.
min({a,/cos 8, a,/sin 6) < min(a,/cos b, a,/sin 6,).
for all 6. This implies tan 6, = ay/a,.
Consider the case a, = a, = a for ¢} > ¢f. Then

90,00 =E| ] $z Zoon0, i, [ glax; Zain b, o],

where Z ~ N(0,02—¢%). It follows from the result of Hall & al. (1980)
that the sbove expression within square-brackets is maximized at 6 = n/4.
Hence for a, = a, the optimum 6 is 7/4. It sees that the explicit expreasion
of the optimum & in the general case is quite involved.
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