On Joint Eigenvalues of Commuting Matrices

R. Bhatia * L. Elsner ${ }^{\dagger}$

September 28, 1994

Abstract

A spectral radius formula for commuting tuples of operators has been proved in recent years. We obtain an analog for all the joint eigenvalues of a commuting tuple of matrices. For a single matrix this reduces to an old result of Yamamoto.

1 Introduction, formulation of the result

Let $T=\left(T_{1}, \ldots, T_{s}\right)$ be an s-tuple of complex $d \times d$-matrices. The joint spectrum $\sigma_{p t}(T)$ is the set of all points $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \in C^{s}$ (called joint eigenvalues) for which there exists a nonzero vector $x \in C^{d}$ (called joint eigenvector) satisfying

$$
\begin{equation*}
T_{j} x=\lambda_{j} x \text { for } j=1, \ldots, s . \tag{1}
\end{equation*}
$$

If the $T_{i}^{\prime} s$ are commuting then $\sigma_{p t}(T) \neq \emptyset$. The joint spectrum can be read off the diagonal of the common triangular form: There exists a unitary $d \times d$-matrix U such that

$$
U^{H} T_{j} U=\left(\begin{array}{cccc}
\lambda_{1}^{(j)} & \ldots & \cdots & \cdots \tag{2}\\
0 & \lambda_{2}^{(j)} & \cdots & \cdots \\
0 & 0 & \ddots & \vdots \\
0 & 0 & 0 & \lambda_{d}^{(j)}
\end{array}\right) \text { for } j=1, \ldots, s
$$

[^0]Then

$$
\sigma_{p t}(T)=\left\{\lambda_{i}=\left(\lambda_{i}^{(1)}, \ldots, \lambda_{i}^{(s)}\right): i=1, \ldots, d\right\} .
$$

We order the joint eigenvalues according to their norms

$$
\begin{equation*}
\left\|\lambda_{1}\right\| \geq \ldots \geq\left\|\lambda_{d}\right\| \tag{3}
\end{equation*}
$$

Here $\left|\left|.| |\right.\right.$ denotes the Euclidean norm in C^{r} and will later on also denote the associated operator norm for matrices. We omit the reference to the dimensions.

The s-tuple T can be identified with a linear operator mapping C^{d} into $C^{s d}$. If $S=\left(S_{1}, \ldots, S_{m}\right)$ is another m-tuple of $d \times d$-matrices, we define as $T S$ the $s m$-tuple of matrices, whose entries are $T_{i} S_{j}, i=1, \ldots, s, j=1, \ldots m$, ordered lexicographically. Continuing in this way we define T^{m}, consisting of s^{m} entries, each of which is a product of m of the $T_{i}^{\prime} s$. Identifying again T^{m} with an operator mapping C^{d} into $C^{s^{m} d}, T^{m}$ has d singular values

$$
\begin{equation*}
s_{1}\left(T^{m}\right) \geq s_{2}\left(T^{m}\right) \geq \ldots \geq s_{d}\left(T^{m}\right) \tag{4}
\end{equation*}
$$

In this note we will prove
Theorem 1 For any s-tuple $T=\left(T_{1}, \ldots, T_{s}\right)$ of commuting $d \times d$-matrices

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(s_{j}\left(T^{m}\right)\right)^{\frac{1}{m}}=\left\|\lambda_{j}\right\| \quad j=1, \ldots, d \tag{5}
\end{equation*}
$$

For $j=1$ this has been proved in [2], hence we know

$$
\begin{equation*}
\left\|\lambda_{1}\right\|=\lim _{m \rightarrow \infty}\left(s_{1}\left(T^{m}\right)\right)^{\frac{1}{m}} \tag{6}
\end{equation*}
$$

We also remark that (6) has been proved in [1] for l_{p}-norms and in [5] for infinite-dimensional Hilbert spaces. If $s=1$ then T^{m} is the usual m -th power of $T=T_{1}$, and the joint spectrum is the usual spectrum. For this case
(5) has been proved by Yamamoto [6], who showed that for a $d \times d$-matrix T with eigenvalues λ_{i} ordered according to their moduli

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left(s_{j}\left(T^{m}\right)\right)^{\frac{1}{m}}=\left|\lambda_{j}\right| \quad j=1, \ldots, d \tag{7}
\end{equation*}
$$

We will prove Theorem 1 in the following section.

2 Proof of the Theorem

It is convenient to introduce a Kronecker-type matrix product " $\tilde{\otimes}$ " in the following way:

Let A and B be two (r.s) and (t, u) block matrices

$$
A=\left(A_{i j}\right)_{i=1, \ldots, r, j}, j=1, \ldots, s \quad B=\left(B_{i j}\right)_{i=1, \ldots, t, j}, j=1, \ldots, u
$$

where the $A_{i j}$ and $B_{i j}$ are $d \times d$ matrices. Define

$$
A_{i j} B=\left(A_{i j} B_{k l}\right)_{k=1, \ldots, t, l=1, \ldots, u}
$$

and the $r t \times s u$-block matrix

$$
A \tilde{\otimes} B=\left(\begin{array}{ccc}
A_{11} B & \ldots & A_{1 s} B \tag{8}\\
\vdots & & \vdots \\
A_{r 1} B & \ldots & A_{r s} B
\end{array}\right)
$$

of dimension $r t d \times$ sud . This product is associative. For $d=1$ this is the usual Kronecker product, which we will denote by " \otimes ", following the customary notation (see e.g. [4]). Except for $d=1$ however $A \tilde{\otimes} B$ is different from $A \otimes B$ which is an $r t d^{2} \times s u d^{2}$ matrix. So the product depends on d. However in order to avoid an overload of indices and as we keep d fixed throughout, we refrained from stressing this fact in the notation.

The main relation for \otimes carries over to $\tilde{\otimes}$, namely

$$
\begin{equation*}
(A \tilde{\otimes} B)(C \tilde{\otimes} D)=A C \tilde{\otimes} B D \tag{9}
\end{equation*}
$$

if all the blocks in B commute with those in C, and the dimensions are fitting. For this it suffices that $A C$ and $B D$ can be formed. We observe that T^{m}, as defined in the first section, has the representation

$$
T^{m}=T \tilde{\otimes} \ldots \tilde{\otimes} T
$$

as the m -fold product of T with itself.
First we show that we can transform T to a simpler form without changing the magnitudes involved in (5). Then we prove the Theorem for this simple form using (6) and (7).

Let S be a nonsingular $d \times d$-matrix,

$$
\tilde{T}_{i}=S T_{i} S^{-1} \quad i=1, \ldots, s,
$$

and

$$
\tilde{T}=\left(\tilde{T}_{1}, \ldots, \tilde{T}_{s}\right) .
$$

Obviously the $\tilde{T}_{i}^{\prime} s$ commute too, and $\sigma_{p t}(\tilde{T})=\sigma_{p t}(T)$. We show

$$
\begin{equation*}
s_{i}\left(\tilde{T}^{m}\right) \leq\|S\|\left\|S^{-1}\right\| s_{i}\left(T^{m}\right) \quad i=1, \ldots, d, \tag{10}
\end{equation*}
$$

which implies that the lefthand side of (5) is not changed if we replace T^{m} by \tilde{T}^{m}.
T^{m} consists of s^{m} blocks of $d \times d$ matrices $C_{i}, i=1, \ldots, s^{m}$, each of which is a product of m of the $T_{i}^{\prime} s$. Hence the corresponding block \tilde{C}_{i} of \tilde{T}^{m} satisfies $\tilde{C}_{i}=S C_{i} S^{-1}$. Thus

$$
\begin{align*}
\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m} & =\sum_{i=1}^{s^{m}} \tilde{C}_{i}^{H} \tilde{C}_{i} \tag{11}\\
& =\left(S^{-1}\right)^{H}\left(\sum_{i=1}^{s^{m}} C_{i}^{H} S^{H} S C_{i}\right) S^{-1} \tag{12}\\
& \leq\|S\|^{2}\left(S^{-1}\right)^{H}\left(T^{m}\right)^{H} T^{m} S^{-1} \tag{13}
\end{align*}
$$

Here " \leq " is the Loewner partial ordering. Let $z \in C^{d}$ and $x=S z$. The last inequality implies

$$
\begin{equation*}
\frac{x^{H}\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m} x}{x^{H} x} \leq\|S\|^{2}\left\|S^{-1}\right\|^{2} \frac{z^{H}\left(T^{m}\right)^{H} T^{m} z}{z^{H} z} \tag{14}
\end{equation*}
$$

Using the Courant-Fischer representation of the eigenvalues $\mu_{1} \geq \ldots \geq \mu_{d}$ of a hermitean $\boldsymbol{d} \times \boldsymbol{d}$ matrix B (e.g. [4])

$$
\mu_{i}=\min _{\operatorname{dim} V=d+1-i} \max _{x \in V, x \neq 0} \frac{x^{H} B x}{x^{H} x}
$$

for $B=\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m}$ and then for $B=\left(T^{m}\right)^{H} T^{m}$ and taking (14) into account, (10) follows.

Another transformation of T which doesn't change the numbers $\left\|\lambda_{i}\right\|$ is the following:

Given a unitary $s \times s$-matrix $U=\left(u_{i j}\right)$, let $W=U \otimes I_{d}$, where I_{d} is the unit matrix of dimension d, and

$$
\begin{equation*}
\hat{T}=W T, \tag{15}
\end{equation*}
$$

i.e.

$$
\hat{T}_{i}=\sum_{j=1}^{s} u_{i j} T_{j} \quad i=1, \ldots, s
$$

Then it is obvious that the joint spectrum of \hat{T} is given by the vectors $\hat{\lambda}_{i}=$ $U \lambda_{i}, \quad i=1, \ldots, d$, where $\lambda_{i} \in \sigma_{p t}(T)$. Hence $\left\|\hat{\lambda}_{i}\right\|=\left\|\lambda_{i}\right\|, \quad i=1, \ldots, d$. Also by using (9) we get

$$
\begin{align*}
\hat{T}^{m} & =(W T) \tilde{\otimes} \ldots \tilde{\otimes}(W T) \tag{16}\\
& =(W \tilde{\otimes} \ldots \tilde{\otimes} W)(T \tilde{\otimes} \ldots \tilde{\otimes} T) \tag{17}\\
& =: W^{(m)} T^{m} . \tag{18}
\end{align*}
$$

Again by (9) we see that $W^{(m)}$ defined in the last eaquation is a unitary mapping of $C^{s^{m} d}$ into itself, hence

$$
s_{i}\left(\hat{T}^{m}\right)=s_{i}\left(T^{m}\right), \quad i=1, \ldots, d .
$$

Having now assembled our tools, we invoke a result in ([3], Vol.I, p. 224), by which there exists a nonsingular $d \times d$ - matrix S and positive integers s_{1}, \ldots, s_{t} with $\sum_{i=1}^{t} s_{i}=d$, such that

$$
\tilde{T}_{i}=S T_{i} S^{-1}=\operatorname{diag}\left(\tilde{T}_{i}^{1}, \ldots, \tilde{T}_{i}^{t}\right) \quad i=1, \ldots, s,
$$

where

$$
\tilde{T}_{i}^{\nu}=\left(\begin{array}{ccc}
\tilde{\lambda}_{i}^{\nu} & \ldots & \ldots \tag{19}\\
0 & \ddots & \ldots \\
0 & 0 & \tilde{\lambda}_{i}^{\nu}
\end{array}\right) \text { for } i=1, \ldots, s \quad \nu=1, \ldots, t
$$

is an $s_{\nu} \times s_{\nu}$ - matrix, upper triangular with constant diagonal. Observe that also $\left(\tilde{T}^{m}\right)^{H} \tilde{T}^{m}$ is block diagonal with $s_{\nu} \times s_{\nu}$ blocks. This shows that we have to prove (5) only for $T_{i}^{\prime} s$ of the form (19). Clearly then $\left\|\lambda_{1}\right\|=\ldots=\left\|\lambda_{d}\right\|$. Also by applying a suitable transformation of the form (15), we can assume that T_{2}, \ldots, T_{d} have zero diagonals, while the diagonal of T_{1} is $\left\|\lambda_{1}\right\|$.

Now from

$$
\left(T^{m}\right)^{H} T^{m} \geq\left(T_{1}^{m}\right)^{H} T_{1}^{m}
$$

we get

$$
\left(s_{1}\left(T^{m}\right)\right)^{\frac{1}{m}} \geq\left(s_{i}\left(T^{m}\right)\right)^{\frac{1}{m}} \geq\left(s_{d}\left(T_{1}^{m}\right)\right)^{\frac{1}{m}} \quad i=1, \ldots, d .
$$

But the leftmost term converges to $\left\|\lambda_{1}\right\|$ by (6), while the rightmost term converges to $\min \left|\lambda_{i}\left(T_{1}\right)\right|=| | \lambda_{1} \|$ by (7). Hence (5) holds for $i=1, \ldots, d$.

This finishes the proof.

References

[1] R. Bhatia and T. Bhattacharyya On the joint spectral radius of commuting matrices Preprint
[2] M. Cho and T. Huruya, On the joint spectral radius Proc. Roy. Irish Acad. Sect. A 91, 39-44(1991)
[3] F.R. Gantmacher,The Theory of Matrices Chelsea, (1977)
[4] M. Marcus and H. Minc A Survey of Matrix Theory and Matrix inequalities Prindle, Weber and Schmidt, Boston (1964)
[5] V. Müller and A. Soltysiak Spectral radius formula for commuting Hilbert space operators Studia Mathematica 103(1992), 329-393
[6] T. Yamamoto On the extreme values of the roots of matrices J. Math. Soc. Japan 19, 173-178 (1967)

[^0]: *Indian Statistical Institute, Delhi centre, 7, SJS Sansanwal Marg, New Delhi 110016, India. Supported by Sonderforschungsbereich 343 "Diskrete Modelle in der Mathematik".
 ${ }^{\dagger}$ Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.

