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Abstract

Random coefficients may result in a heteroscedasticity of observations.
For particular situations, where only one observation is available per indi-
vidual, we derive optimal designs based on the geometry of the design locus.

1 Introduction

In the social sciences and biosciences random effects play a growing role, whenever
different individuals are involved in a study. While in fixed effects models typically
only additive errors are taken into account, the situation has to change, when the
coefficients of the regression function may vary randomly across those individuals.
Our approach here is motivated by a validation problem in intelligence testing,
when only one observation is made available per individual. Freund and Holling
(2009) analyzed the impact of reasoning and creativity on GPA based on data from
the standardization sample of the Berlin Structure of Intelligence Test for Youth:
Assessment of Talent and Giftedness (BIS-HB). Since the effect of both variables
on school performance may vary between different classrooms, a random effects
model incorporating the explanatory variables on two levels (level 1: students
and level 2: classrooms) was specified. Thus, the results allow for a more detailed
interpretation of the role of different variables in the context of predicting scholastic
achievement.

Such “sparse” observations have also been considered by Patan and Bogacka
(2007) in a population pharmacokinetics setup. In those applications the response
is usually non-linear. However, to solve the corresponding design problem it is
advisable to have some knowledge of the influence of random coefficients already
in the linear model setup. This is a further motivation of the present investigation.

In the linear setup the random coefficient model with single observations can
be reformulated as a heteroscedastic fixed effects model with a specific structure of
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the variance function. If all coefficients are substantially random it can be easily
verified that the corresponding standardized design locus is included in the surface
of an ellipsoid generated by the covariance matrix of the random coefficients. In the
case of high variability this ellipsoid may coincide with the smallest circumscribing
one. Then multiple solutions to the design problem are possible as indicated in
the discussion by Silvey (1972) and Sibson (1972). This phenomenon will be
demonstrated by some simple but illustrative examples.

2 Model description

We consider a random coefficient regression model Yi(xi) = f(xi)>bi. The de-
pendence of the observations Yi on the experimental settings xi is given by the
p-dimensional vector of known regression functions f and the independent vectors
bi of random coefficients, which come from a normal distribution, bi ∼ Np(β,D),
with mean vector β and dispersion matrix D. The design problem is to choose
the experimental settings xi from the design region X for estimating the location
parameters β, while the dispersion matrix D is assumed to be known.

In this note we assume that all observations Yi are independent, i. e. only one
observation is made for each realization bi of the random coefficients. Moreover,
we assume here that an intercept is included in the model (f1(x) ≡ 1) such that
additive observational errors may be subsumed into the random intercept.

This model can be rewritten as a heteroscedastic linear fixed effects model

Yi(xi) = f(xi)>β + εi, (1)

where εi = f(xi)>(bi − β) ∼ N(0, σ2(x)) and the variance function is defined
by σ2(x) = f(x)>Df(x). Within this heteroscedastic linear model for each single
setting x ∈ X the information equals M(x) = f(x)f(x)>/σ2(x). Then for a design
ξ, the standardized information matrix is defined by M(ξ) =

∑m
j=1 ξ(xj)M(xj),

where ξ(xj) is the proportion of observations at setting xj ,
∑m

j=1 ξ(xj) = 1. Note
that the covariance matrix for the weighted least squares estimator β̂, which is the
best unbiased estimator for β and coincides with the maximum likelihood estima-
tor in the present setting, equals the inverse of the information matrix. Hence,
maximizing the information matrix is equivalent to minimizing the covariance ma-
trix of β̂.

To compare different designs we consider the most popular criterion, the D-
criterion, with respect to which a design ξ∗ is D-optimal, if it maximizes the
determinant of the information matrix. This is equivalent to the minimization of
the volume of a confidence ellipsoid for β. In the setting of approximate designs, for
which the proportions ξ(x) are not necessarily multiples of 1/n, where n denotes
the sample size, the D-optimality of a design ξ∗ can be established by the well-
known Kiefer-Wolfowitz equivalence theorem (see Fedorov, 1972, for a suitable
version): A design ξ∗ is D-optimal, if f(x)>M(ξ∗)−1f(x)/σ2(x) ≤ p, uniformly in
x ∈ X . When we substitute σ2(x) = f(x)>Df(x) into this relation and rearrange
terms, D-optimality is achieved, if

δ(x; ξ∗) ≥ 0 (2)
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for all x ∈ X , where δ(x; ξ) = f(x)>(pD−M(ξ)−1)f(x) is the suitably transformed
sensitivity function. Moreover, equality is attained in (2) for design points, where
ξ∗(x) > 0.

3 Linear regression on the standard interval

In the situation of linear regression we have observations Yi = bi0 + bi1x. The
vector of regression functions f is given by f(x) = (1, x)>, and we assume that the
setting x may be chosen from the symmetric standard interval X = [−1, 1].

For x1, x2 ∈ [−1, 1] we consider the uniform two-point design ξx1,x2 on x1 and
x2, which is defined by ξx1,x2(x1) = ξx1,x2(x2) = 1/2, with information matrix

M(ξx1,x2) =
1

2σ2(x1)σ2(x2)

(
σ2(x1) + σ2(x2) x1σ

2(x2) + x2σ
2(x1)

x1σ
2(x2) + x2σ

2(x1) x2
1σ

2(x2) + x2
2σ

2(x1)

)

(3)
and corresponding determinant det(M(ξx1,x2)) = (x1 − x2)2/(4σ2(x1)σ2(x2)).

First we consider the case that the random intercepts bi0 and the random
slopes bi1 are uncorrelated, where an easy geometric interpretation can be achieved.
The associated variances will be denoted by d0 = Var (bi0) and d1 = Var (bi1),
respectively, and the covariance matrix D = diag (d0, d1) of the random coefficients
is diagonal. Maximizing the determinant of M(ξx1,x2) with respect to x1 and
x2 ∈ [−1, 1] leads to the following solutions.

If d0 ≥ d1, the endpoints x∗1 = 1 and x∗2 = −1 are optimal. In this case the
information matrix results in M(ξ1,−1) = (d0 + d1)−1I2, where I2 denotes the
2× 2 identity matrix. Since 2D−M(ξ1,−1)−1 = diag (d0 − d1, d1 − d0) we obtain
δ(x; ξ1,−1) = (d0−d1)(1−x2), and the inequality (2) is satisfied, which proves the
D-optimality of the design ξ1,−1.

In the case d0 < d1 the solutions of the optimization problem are characterized
by the hyperbolic equation d0 + d1 x1x2 = 0, x1, x2 ∈ [−1, 1]. For each such pair
x∗1, x

∗
2 the information matrix reduces to M(ξx∗1 ,x∗2 ) = 1

2D
−1 and the inequality (2)

is obviously satisfied with δ(x; ξx∗1 ,x∗2 ) = 0 for all x, which proves the D-optimality
of the design ξx∗1 ,x∗2 . Note that for d0 < d1 the optimal choice is not unique. In
particular, we may choose a symmetric solution x∗1 =

√
d0/d1 and x∗2 = −x∗1.

In Figure 1 we exhibit the standardized design locus together with the smallest
circumscribing ellipse related to M(ξ∗)−1. The standardized design locus is itself
an arc of an ellipse generated by pD. For d0 ≥ d1 this arc touches the circum-
scribing ellipse only at its endpoints, while for d0 < d1 the arc is part of that
ellipse, which results in multiple solutions in accordance with the discussion by
Silvey (1972) and Sibson (1972).

Remark. The present design locus may be identified as a segment of the design
locus corresponding to a rescaled trigonometric regression without intercept. For
the latter model equally spaced design points would be optimal on the entire
ellipse, if the number of design points is, at least, three. Due to the lack of an
intercept in that model also equidistant design points on a semi-circle (modulo its
length) will be optimal, where now the number of design points has to be, at least,
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Figure 1: Standardized design locus (solid line), smallest circumscribing ellipse
(dotted line) and optimal design points (2) for d0 > d1 (left panel) and d0 < d1

(right panel)

two. This means, in particular, that in the original model, any two “equidistant”
design points will be optimal, if the length of the segment is sufficiently large.

Next we consider the design problem for linear regression on the standard
interval with an underlying general covariance matrix

D =
(

d0 d01

d01 d1

)
,

where d01 = Cov (bi0, bi1) denotes the covariance of the two random coefficients. In
this situation the geometric interpretation is slightly less persuasive. As before we
maximize the determinant of the information matrix (3) for the uniform two-point
designs ξx1,x2 , x1, x2 ∈ [−1, 1].

For d0 ≥ d1 again the endpoints x∗1 = 1 and x∗2 = −1 are optimal. As in the
uncorrelated case we obtain 2D−M(ξ1,−1)−1 = diag (d0−d1, d1−d0), which does
not depend on d01, and the D-optimality follows from (2).

In the case d0 < d1 the solutions for the optimization problem are now charac-
terized by the hyperbolic equation d0 + d01(x1 +x2)+ d1x1x2 = 0. Some easy but
tedious computations yield that for each such solution x∗1, x

∗
2 the information ma-

trix equals M(ξx∗1 ,x∗2 ) = 1
2D

−1 also in this situation, which proves the D-optimality
of the design ξx∗1 ,x∗2 in view of (2). In total we obtain the following result.

Theorem 1. In the heteroscedastic model (1) of linear regression on the standard
interval X = [−1, 1] with dispersion matrix D the design ξx∗1 ,x∗2 is D-optimal, where
x∗1 = 1 and x∗2 = −1 for d0 ≥ d1, and x∗1, x∗2 satisfy d0 +d01(x1 +x2)+d1x1x2 = 0
for d0 < d1, respectively.

The optimal settings are not unique for d0 < d1, but it turns out that the
symmetric pair x∗ and −x∗, where x∗ =

√
d0/d1, constitutes a solution, whatever

the magnitude of the covariance d01 is.

Corollary 1. In the heteroscedastic model (1) of linear regression on the standard
interval X = [−1, 1] with dispersion matrix D the design ξx∗,−x∗ is D-optimal,
where x∗ = 1, if d0 ≥ d1, and x∗ =

√
d0/d1, if d0 < d1.
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4 Linear regression: General case

Within the setup of the previous section we pass now to the situation where the
design region may be an arbitrary interval, X = [a, b], where a < b. The model
equation and all notations are as in the previous section.

For obtaining D-optimal designs we use the standard linear transformation
technique to map the standard interval [−1, 1] onto [a, b]: Define g : [−1, 1] → [a, b]
by g(x) = a+b

2 + b−a
2 x. This mapping induces a linear transformation of the

regression function, f(g(x)) = Af(x), where

A =
(

1 0
(a + b)/2 (b− a)/2

)
.

The information under the mapping g then results in

M(g(x)) =
f(g(x))f(g(x))>

σ2(g(x))
=

Af(x)f(x)>A>

f(x)>A>DAf(x)
= AM̃(x)A>,

where M̃(x) denotes the corresponding information for the linear regression model
on the standard interval with dispersion matrix D̃ = A>DA. Since the transfor-
mation matrix A does not depend on x the design problem on [a, b] can be solved
by applying the results of the previous section to the heteroscedastic model (1)
with induced dispersion matrix

D̃ =
1
4

(
4d0 + 4(a + b)d01 + (a + b)2d1 (b− a)(2d01 + (a + b)d1)

(b− a)(2d01 + (a + b)d1) (b− a)2d1

)
.

and then transforming the optimal design by the mapping g.
In order to apply Theorem 1 we have to compare the diagonal entries of the

dispersion matrix D̃, which leads to the following result.

Theorem 2. In the heteroscedastic model (1) of linear regression on [a, b] and
dispersion matrix D the design ξa,b is D-optimal, if d0 + (a + b)d01 + abd1 ≥ 0.
Otherwise the design ξx∗1 ,x∗2 is D-optimal, where the design points x∗1 and x∗2 satisfy
4d0+4(a+b)d01+(a+b)2d1+(b−a)(2d01+(a+b)d1)(x∗1+x∗2)+(b−a)2d1x

∗
1x
∗
2 = 0.

Remark. In the latter case particular solutions x∗1 and x∗2 are given by

1
2

(
a + b±

√
4(d0 + (a + b)d01)/d1 + (a + b)2

)
.

Note that for diagonal D the design ξa,b concentrated on the endpoints a and
b is D-optimal as long as d0 + abd1 ≥ 0. This condition is automatically satisfied,
if the endpoints a and b have the same sign, i. e. if the design region is completely
contained in the positive (or the negative) half axis.

5 Multilinear regression

In this section we will extend the linear regression model of Section 3 to K factors
which can be chosen from the design region of the symmetric standard hypercube



6 U. Graßhoff, A. Doebler, H. Holling, R. Schwabe

X = [−1, 1]K in the special case of a diagonal dispersion matrix D. In this situation
we have observations Yi(x) = bi0 +

∑K
k=1 bikxk with x = (x1, ..., xK)> ∈ X =

[−1, 1]K . The vector of regression functions is given by f(x) = (1, x1, ..., xK)>.
The covariance matrix D = diag (d0, d1, ..., dK) of the random coefficients bi

is assumed to be diagonal. Hence, the variance of each design point is equal to
σ2(x) = d0 +

∑K
k=1 dk x2

k. Without loss of generality we may also assume that
the factors are arranged according to an ascending order in the magnitude of the
variance components, i.e. d1 ≤ ... ≤ dK . This can be achieved by a suitable
relabeling of the indices of the factors.

As candidates for optimal designs we consider uniform full factorial 2K- designs
ξx = ξx1,....,xK on the points = (±x1, ....,±xK) generated by x = (x1, ...., xK),
which assign equal proportions 1/2K to each of these 2K design points.

In order to characterize D-optimal designs for this model we introduce the
cumulative averages

cm =
1

m + 1

m∑

k=0

dk

of the variance components, m = 0, ..., K, for which the following lemma holds.

Lemma 1. For d0 ≥ 0 and 0 ≤ d1 ≤ ... ≤ dK < dK+1 = ∞ there exists a unique
index m such that

dm ≤ cm < dm+1 . (4)

The proof of Lemma 1 is deferred to the appendix. We are now ready to specify
optimal design in the present situation.

Theorem 3. In the heteroscedastic model (1) of multilinear regression on the unit
hypercube [−1, 1]K with diagonal dispersion matrix D = diag (d0, d1, ..., dK), where
d1 ≤ ... ≤ dK , the design ξ∗ = ξx∗ = ξx∗1 ,...,x∗K is D-optimal, if x∗k = 1 for k ≤ m

and x∗k =
√

cm

dk
for k > m, respectively, and where m satisfies dm ≤ cm < dm+1.

Proof. First we note that σ2(x) = d0 +
∑K

k=1 dkx2
k for any x = (x1, ..., xK)

and that for the corresponding full factorial design ξx the information matrix
M(ξx) = σ2(x)−1diag (1, x2

1, ..., x
2
K) is diagonal. Inserting the values x∗1, . . . , x

∗
K

yields σ2(x∗) =
∑m

k=0 dk + (K −m) cm = (K + 1) cm and consequently

M(ξ∗)−1 = (K + 1) cm diag (1, 1, ..., 1, dm+1/cm, ..., dK/cm) ,

which implies

pD−M(ξ∗)−1 = (K + 1) diag (d0 − cm, d1 − cm, ..., dm − cm, 0, ..., 0)

as p = K + 1. Thus we obtain for the sensitivity function

δ(x; ξ∗) = (K + 1)

(
d0 − cm +

m∑

k=1

(dk − cm)x2
k

)

≥ (K + 1)

(
d0 − cm +

m∑

k=1

(dk − cm)

)
= 0 ,
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since dk − cm ≤ 0, for k = 1, ...,m, and x2
k ≤ 1, which proves the D-optimality of

ξ∗ in view of (2). 2

Note that in Theorem 3 the optimal settings are not unique, if m < K, and may
be replaced by non-symmetric solutions. Moreover, for K > 2 the full factorials
may be substituted by fractional factorials such that the number of required design
points reduces to O(K).

As an example we will derive the design points of the D-optimal design ξ∗ in
case of the bilinear regression, i.e. in the case K = 2.

Corollary 1. In the heteroscedastic model (1) of bilinear regression on the unit
square [−1, 1]2 with diagonal dispersion matrix D = diag (d0, d1, d2) the design
ξx∗1 ,x∗2 is D-optimal, where

x∗1 = x∗2 =

(1, 1) 1 1 if d0 + d1 ≥ 2d2 and d0 + d2 ≥ 2d1,

(1, x∗2) 1
√

d0+d1
2 d2

if d0 ≥ d1 and d0 + d1 < 2d2,

(x∗1, 1)
√

d0+d2
2 d1

1 if d0 ≥ d2 and d0 + d2 < 2d1,

(x∗1, x
∗
2)

√
d0
d1

√
d0
d2

if d0 < d1 and d0 < d2.

Note that we have, here, refrained from the assumption d1 ≤ d2, which leads
to the distinction of the cases (1, x∗2) and (x∗1, 1).

For the four alternative situations in Theorem 3 the parameter regions for the
variance ratios d1/d0 and d2/d0 are depicted in Figure 2.
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(1,x2)*

(x1,1)*
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d1 d0

d2 d0

Figure 2: Parameter regions of the variance ratios d1/d0 and d2/d0 for optimal
designs in bilinear regression

Whether these results can be extended to more general dispersion matrices
involving correlations is not, yet, clear and requires further investigations.
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6 Discussion

In the heteroscedastic regression models considered here the standard optimal
designs for the homoscedastic case remain optimal, if the random variations of the
slopes are small compared to that of the intercept. If, however, the variability
of the slopes are large, the optimal design points may become narrower, and the
optimal design is no longer unique.

This phenomenon occurs due to the fact that design points, where the observa-
tions have high variability, are penalized. It is also observable in more complicated
models, for example in quadratic regression as indicated by Mielke (2009).

7 Appendix

Proof of Lemma 1. Denote by m the smallest index ` such that c` < d`+1.
Note that m ≤ K since cK < dK+1 = ∞. Now c0 = d0 and cm−1 ≥ dm for m > 0,
which implies

cm =
∑m

k=0 dk

m + 1
=

mcm−1 + dm

m + 1
≥ dm .

Hence, in either case dm ≤ cm < dm+1 as required.
To see that m is unique, suppose that there exist m < n, such that m and n

both satisfy (4). From (4) we deduce that cm < dm ≤ dn ≤ cn. Hence, by the
definition of the cumulative averages, we obtain

cn =
(m + 1)cm +

∑n
k=m+1 dk

n + 1
<

(m + 1)dn + (n−m)dn

m + 1
= dn ,

which leads to a contradiction since dn ≤ cn, and, thus, establishes the uniqueness
of m. 2

References

[1] Fedorov V.V. (1972) Theory of Optimal Experiments. Academic Press, New
York.

[2] Freund Ph. A., Holling, H. (2008). Creativity in the classroom: A multilevel
analysis investigating the impact of creativity and reasoning ability on GPA.
Creativity Research Journal , 20, 309–318.

[3] Mielke, T. (2009) D-optimal designs for paired observations in quadratic re-
gression. J. Statist. Plann. Inference (submitted).

[4] Patan M., Bogacka B. (2007) Efficient sampling windows for parameter es-
timation in mixed effects models. In mODa 8 – Advances in Model-Oriented
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