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Optimization of product performance of
a paint formulation using a mixture
experiment

ABHIJIT GUPTA, Indian Statistical Institute, India

ABSTRACT A paint manufacturing company was facing the problem of Vehicle Separation
and Settling in one of its prime products. These two abnormalities are, in general, opposing
in nature. The manufacturer tried several modifications in the existing recipe for the
product but failed to control them. Experimentation was carried out using mixture design,
a special type of designed experiment, and quadratic response surface models were fitted
for both the responses. Finally, optimum jformulation was obtained by simultaneously
optimizing the two response surface models. During the determination of optimal formula-
tion, different methods were compared. The optimum formulation is currently being used
for regular manufacturing.

1 Introduction

In good painting practice, finishing coats are usually applied over an undercoat.
The function is to hide the surface and to provide a smooth, uniform foundation
for the finishing coat. Primer is a type of undercoat. If the primer fails to do the
job expected of it, then the finish will not be satisfactory.

Stoving Primer Surfacer is a widely used primer. It is a mixture of extenders
(such as Barrytes, Forcal S, etc), wetting agents (such as Soyalicithin, etc), anti-
settling agents (such as Nilset 117, Smaketon Gel, etc), colour pigments, resin,
solvent, and additives.

However, in this case, the primer was suffering from the problem of Vehicle
Separation and Settling and the manufacturer was receiving a number of complaints
from its customers. Separated vehicles (i.e. the liquid portion of the paint, in which
pigments and extenders are dispersed) can be dissolved by shaking, but settled
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pigments and extenders cannot be so dissolved. Moreover, these two abnormalities
are conflicting in nature, i.e. if corrective measures are taken to reduce the effect
of one, the effect of the other becomes more severe. Several modifications to the
existing recipe were tried out to overcome this problem, but none were able
to control both the abnormalities simultaneously. Under this circumstance, the
manufacturer decided to initiate a study to obtain a primer formulation, which
would minimize the occurrence of Vehicle Separation and Settling simultaneously.

2 Background process

The primer is manufactured by mixing different ingredients. The amount of each
ingredient is governed by a corresponding recipe. The recipe gives the amount of
ingredients in terms of percentage of the total weight. The pigments, extenders
and solvents are mixed in a mixer fitted with agitators to produce a paste. The
paste is then transferred to the dispersion mill (Bead Mill or High Speed Dispersion
Mill) on which further dispersion of the mixture is effected. The degree of
dispersion depends upon the character of the end product. The dispersed mixture
is then sent to the tanks where more resin, solvents and other additives are added
and the shade is adjusted with colour pigments. During this operation, the
mixture is continuously stirred using mechanical devices (agitators). One complete
production cycle takes about 72 hours of time. It may be noted that 124kg of
input material produces 100 litres of the Primer (specific gravity being 1.24).
Henceforth, the ingredients will be termed as components and will be expressed in
terms of the proportion of total weight only.

3 Objectives
The objectives of the study were:

(1) to fit response surfaces for both the responses, namely Vehicle Separation
and Settling, and

(ii) to find the optimum levels of the experimental components that would
minimize the occurrence of the problem.

4 Approach

Since the main objective is to find the optimum levels of the component propor-
tions, it was decided to carry out a mixture experiment—a special type of designed
experiment. Therefore, the following approach was considered to be appropriate:

e carrying out the mixture experiment,
o fitting of response surfaces, and
e optimization of the fitted responses.

For a good discussion on mixture design and the analysis of mixture data, see
Cornell (1990).

5 Identification of components

To determine the components responsible for settling and vehicle separation, a
brainstorming session was held with concerned technical and R&D personnel and
the following components were selected.
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TABLE 1. Components with corresponding bounds (in proportion of total weight)

Upper Bound Lower Bound

Component Code [U] [L]

Barrytes X 0.175 0.125
Forcal S %3 0.050 0.000
Soyalicithin & Nilset 117 [1:1] % 0.006 0.001
Smaketon Gel %5 0.020 0.000

(1) Soyalicithin: a wetting agent—if increased (decreased), the vehicle separation

is increased (decreased), and settling decreased (increased).

(i) Forcal S: an extender—if increased (decreased), vehicle separation is
increased (decreased), but there is no effect on settling.

(iii) Barrytes: an extender of high Specific Gravity (4.3)—the popular belief was,
because of its high specific gravity, this will be more prone to settling.

(iv) Nilser 117: an anti-settling agent.

(v) Smaketon Gel: reduces settling with no effect on vehicle separation.

It was further decided, from technical consideration, that Soyalicithin and Nilset
117 will be used in a 1:1 ratio.

6 Selection of feasible experimental region

Following the discussion with the technical and R&D personnel, it was decided to
investigate the above components within the bounds given in Table 1.

It was further decided to restrict the sum of above four components to 0.1885.
Other ingredients, excepting solvents and additives, in the recipe were kept cons-
tant. Solvents and additives were suitably adjusted to bring the sum of all compo-
nents to unity.

7 Construction of the experimental design

Due to the presence of both lower and upper bounds, the feasible mixture region
is no longer a simplex, most commonly used mixture design, but will be some
polytope (or hyperpolytope) sub-region inside the original unconstrained simplex.
Therefore, standard simplex-type designs cannot be used directly. In such cases,
some type of computer-generated design is used.

There are several approaches to constructing designs for constrained mixture
experiments. A canonical form of a quadratic mixture model, as proposed by
Scheffe (1958), namely

4 3 4
EQG) =Y Bxi+ Y X B, ¢y
i=1 i=1j=i+1
was considered to be adequate to represent the variability in the responses. To
obtain a uniform spread of design points over the feasible mixture region, a
computer-generated Distance Based design was used for experimentation. See
Myers & Montgomery (1995) for a brief outline of distance-based design method-
ology. The model (1) has ten parameters that must be estimated. To check the
adequacy of the fitted model and to obtain an estimate of the experimental error
some additional runs were included in the design. Consequently, a design with 14
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runs was initially selected and, afterwards, three runs with high leverage values
were repeated to obtain a design with relatively uniform distribution of leverage.
Repeat points were also used to check the adequacy of the fitted model through
the lack-of-fit test. The G-efficiency of the above design was estimated as 66.30%.

Both the responses, namely Vehicle Separation (y,) and Settling (y,) were
observed for each of the 17 experimental runs. Primers prepared as per each
experimental run were kept in measured cylinders and the responses were observed.
Vehicle separation was measured in mm, with no separation (i.e. an observed value
of 0mm) as the most preferred situation, and settling was ranked between 0 to 10,
with 10 as the best and O as the worst.

The experimental design along with corresponding responses is given in
Appendix. The left side panel gives the actual proportions for the mixture compo-
nents used for each run in the design. The centre panel gives the mixture
proportions expressed in terms of pseudocomponents. If x; denotes the 7th original
component, then the corresponding pseudo-component X, is defined as:

= 9@;&’ where L; =lower bound of the 7th component.
0.1885 — X! | L,

i

This transformation vyields pseudo-components X,, such that 0<X;<1,
1=1,2,3,4 and XX; =1, which is the fundamental mixture requirement for
obtaining a model of type (1). The right side panel gives the observed values of
the responses.

8 Fitting the response surfaces

To reduce the effect of natural multicollinearity or ill-conditioning that is present
when the method of least squares is used for estimating the parameters, it was
decided to build the mixture response surface models in terms of pseudo-compo-
nents (see Montgomery & Voth, 1994). The adequacy of the fitted models was
judged through various summary statistics, including a lack-of-fit test, adjusted R?,
PRESS (PRediction Error Sum of Squares) and the R® prediction statistic (see
Myers & Montgomery, 1995, for definitions of the summary statistics). Data were
analysed using computer programs written by the author.

Table 2 shows the results of fitting linear and quadratic models sequentially to
the data on Vehicle Separation.

TABLE 2. Mixture model building summary statistics for Vehicle Separation (v,)

Lack-of-fit test

Model Sum of squares DF Mean square F-value Prob> F
Linear 350.913 10 35.091 93.58 0.0016
Quadratic 5.497 4 1.374 3.66 0.1574
Pure error 1.125 3 0.375

Summary statistics of model’s fit

Adjusted R-square
Source Residual DF  Root MSE R-square R-square PRESS prediction
Linear 13 5.20 0.2356 0.0592 547.611 (—)ve

Quadratic 7 0.97 0.9856 0.9671 43.120 0.9064
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TABLE 3. Mixture model building summary statistics for settling (v,)

Lack-of-fit test

Model Sum of squares DF Mean square F-value Prob> F
Linear 38.613 10 3.86 4.63 0.1169
Quadratic 0.351 4 0.088 0.11 0.9707
Pure error 2.500 3 0.833

Summary statistics of model’s fit

Adjusted R-square
Source Residual DF  Root MSE R-square R-square PRESS prediction
Linear 13 1.78 0.2627 0.0926 64.010 (—)ve
Quadratic 7 0.64 0.9489 0.8831 13.733 0.7537

Table 3 shows the results of fitting linear and quadratic models sequentially to
the data on Settling.

For both the responses, the quadratic model gave a higher adjusted R-square value
and lower PRESS value, thereby implying that a quadratic fit would be appropriate,
and consequently, a quadratic model was chosen. The quadratic response surface
models for Vehicle Separation and Settling, along with other important findings,
are given in Tables 4 and 5 respectively.

TABLE 4. Quadratic mixture model for Vehicle Separation (y,)

Variable Coefficient Standard error t-value

X, —475.86 38.38

X, —26.53 6.78

X 2766.25 349.65

X, —349.14 52.76

XX, 397.92 36.86 10.80
XX, 1302.74 515.71 2.53
XX, 4074.34 270.52 15.06

X, X, —2905.22 389.41 7.46

X, X, 651.36 95.94 6.79
XX, —2717.51 373.61 7.27
R-squared : 0.9856 Adjusted R-squared : 0.9671
PRESS : 43.120 R-squared prediction : 0.9064

ANOVA table of the fitted model

SOV DF SS MS F Prob> F
Model 9 453.937 50.437 53.32 0.000
Linear 3 108.521 36.174 38.24 0.000
Quadratic 6 345.416 57.569 60.86 0.000
Residual 7 6.622 0.946

Lack of fit 4 5.497 1.374 3.66 0.157
Pure error 3 1.125 0.375

Total 16 460.559
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TABLE 5. Quadratic mixture model for settling (v,)

Variable Coefficient Standard error t-value

X, —179.57 25.18

X, —-2.55 4.45

X, 1395.32 229.43

X, -156.94 34.62

XX, 115.29 24.18 4.77
XX 788.12 338.39 2.33
XX, 1289.57 117.50 7.27

X, X5 —1588.66 255.52 6.22

X, X, 270.14 62.96 4.29
XX, -1147.71 245.15 4.68
R-squared :  0.9489 Adjusted R-squared : 0.8831
PRESS . 13.733 R-squared prediction : 0.7537

ANOVA table of the fitted model

SOV DF SS MS F Prob> F
Model 9 52.914 5.879 14.43 0.001
Linear 3 14.652 4.884 11.99 0.004
Quadratic 6 38.262 6.377 15.66 0.001
Residual 7 2.851 0.407

Lack of fit 4 0.351 0.088 0.11 0.971
Pure error 3 2.500 0.833

Total 16 55.765

It is interesting to note from the model for settling, that the variable x; (i.e.
Soyalicithin and Nilset 117 combination) has a greater contribution towards settling
than x, (i.e. Barrytes). This goes against the popular belief that Barrytes is more
prone to settling.

The following diagnostic statistics (see Myers & Montgomery, 1995 for defini-
tions) were also calculated for each experimental run, corresponding to both the
obtained models:

(1) Studentized Residual,
(ii) Cook’s Distance,
(iii) R Student,
(iv) H Diagonals, and
(v) PRESS Residuals.

Different Diagnostic Statistic values corresponding to the models obtained for
Vehicle Separation and Settling are given in Tables 6 and 7 respectively. It is
evident from the values of different diagnostics, corresponding to both the models,
that, in general, there is not much wrong with the data set. Analyses of Studentized
Residuals for both models are given in Figs 1 and 2. Studentized residuals were
used because the points in mixture design can have substantial differences in their
leverage values and studentized residuals account for leverage through the term
(1 — h;) that appears in its denominator. Both the normal probability plots,
generated by SPSS for Windows (1997), are satisfactory and revealed that there is
no apparent problem with normality. However, the plots of Studentized residuals
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TABLE 6. Values of different diagnostic statistics corresponding to the model representing variations in
Vehicle Separation

Expt Y Y Studentized Cook’s R Hat(H) PRESS
No. observed predicted Residual residual distance student diagonal  residual
1 13.50 14.0000 —0.5000 —0.7270 0.0529 —0.7000 0.5000 —1.0000
2 12.00 13.1712 —1.1712 —2.2309 1.2105 —3.8418 0.7086 —4.0198
3 7.50 6.5841 0.9159 1.3462 0.1891 1.4478 0.5107 1.8718
4 16.50 14.9188 1.5812 2.0692 0.2654 3.0741 0.3827 2.5615
5 10.00 10.5570 —0.5570 —0.7729 0.0491 —0.7482 0.4510 —1.0146
6 8.50 8.6930 —0.1930 -—0.4716 0.1034 —0.4437 0.8230 —1.0901
7 15.50 157172 —0.2127 —0.4378 0.0576 —0.4110 0.7504 —0.8522
8 21.50 20.9667 0.5333 0.7612 0.0538 0.7359 0.4812 1.0280
9 19.00 19.1664 —0.1664 —0.2497 0.0071 —0.2323 0.5309 —0.3547
10 11.50 11.9766 —0.4766 —0.8628 0.1564 —0.8450 0.6775 —1.4778
11 23.00 22.8891 0.1109 0.2497 0.0237 0.2323 0.7915 0.5320
12 7.50 7.7500 —0.2500 —0.3635 0.0132 —0.3398 0.5000 —0.5000
13 6.00 6.1925 —0.1925 —0.2869 0.0091 —0.2672 0.5240 —0.4045
14 10.00 9.7052 0.2948 0.9024 0.6406 0.8888 0.8872 2.6134
15 14.50 14.0000 0.5000 0.7270 0.0529 0.7000 0.5000 1.0000
16 20.50 20.9667 —0.4667 —0.6662 0.0412 —0.6374 0.4812 —0.8997
17 8.00 7.7500 0.2500 0.3635 0.0132 0.3398 0.5000 0.5000

TABLE 7. Values of different diagnostic statistics corresponding to the model representing variations in

Settling
Expt Y Y Studentized Cook’s R Hat(H) PRESS
No. observed predicted Residual residual distance student diagonal  residual
1 8.00 7.5000 0.5000 1.1080 0.1228 1.1296 0.5000 1.0000
2 10.00 9.7978 0.2022 0.5869 0.0838 0.5573 0.7086 0.6940
3 5.00 5.0613 —-0.0613 —0.1373 0.0020 —0.1273 0.5107 —0.1252
4 9.00 9.2868 -0.2868 —0.5719 0.0203 —0.5423 0.3827 —0.4646
5 6.00 6.2232 —0.2232 —-0.4720 0.0183 —0.4441 0.4510 —0.4065
6 4.00 3.9974 0.0026 0.0096 0.0000 0.0089 0.8230 0.0145
7 8.00 7.7539 0.2461 0.7717 0.1790 0.7470 0.7504 0.9858
8 8.00 8.0423 —0.0423 —0.0921 0.0008 —0.0853 0.4812 —0.0816
9 8.00 7.7883 0.2117 0.4844 0.0266 0.4562 0.5309 0.4514
10 7.00 6.8307 0.1693 0.4671 0.0458 0.4394 0.6775 0.5249
11 9.00 9.1412 —0.1412 —0.4844 0.0891 —0.4562 0.7915 —0.6771
12 4.00 5.0000 —1.0000 —2.2159 0.4910 —3.7549 0.5000 —2.0000
13 4.00 3.9273 0.0727 0.1652 0.0030 0.1533 0.5240 0.1528
14 6.00 6.1075 -0.1075 -0.5015 0.1979 —-0.4729 0.8872 —0.9531
15 7.00 7.5000 —0.5000 —1.1080 0.1228 —1.1296 0.5000 —1.0000
16 8.00 8.0423 —0.0423 —0.0921 0.0008 —0.0853 0.4812 —0.0816
17 6.00 5.0000 1.0000 2.2159 0.4910 3.7549 0.5000 2.0000

versus predicted responses indicated that variances of the responses do not depend
on the mean level of y and can be considered as constant.

Thus, it was concluded, based on all the above findings, that the quadratic
model for the responses were adequate to describe the variability in the correspond-
ing response surfaces.
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F1G. 1. Analysis of studentized residuals [Response: Vehicle Separation].

The fitted response surface models were:

For Vehicle Separation

v, =—475.86X, —26.53X,+2766.25X, —349.14X,+397.92X, X, +1302.74 X, X,
+4074.34X,X, —2905.22X,X;+651.36 X,X, —2717.51 X, X,

For Sertling

v, = —179.57X,—2.55X,+1395.32X, —156.94X,+115.29X, X, +788.12X, X,
+1289.57X, X, — 1588.66X,X,+270.14X,X, —1147.71X, X,
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FIG. 2. Analysis of studentized residuals [Response: Settling].

9 Optimizing the primer formulation

The main objective of the study was to find the optimum level of the components
X15 X5, X3 and x,, which would take care of both the abnormalities simultaneously
or, in other words, would optimize both the responses simultaneously. Such a
situation is widely known as optimization of dual response systems (DRS). Since
there were several methods for solving such problem, it was decided to use different
available approaches and accept the solution set that corresponded to the minimum
cost of production. The following approaches were considered:

(1) non-linear programming approach,
(i) loss function approach,
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(iii) distance function approach, and
(iv) desirability function approach.

9.1 Non-linear programming approach

Del Castillo & Montgomery (1993) used a non-linear programming algorithm to
solve such a system. In a DRS problem, the objective is to optimize a primary
fitted response surface Y, subject to the requirement constraint on the secondary
response surface Y,. Here, both the response surface models are assumed to be
second-order polynomials. The optimum levels were obtained in terms of the
pseudo-components [X;] and these values were transformed to corresponding
actual components using the transformation give below:

x, =[0.1885 — L] x X, + L,

So, to start with, vehicle separation was taken as the primary response, and the
problem was formulated as:

minimize y,,

subject to

YX;=1.0

and X;s [ = 1, 2, 3, 4] were allowed to vary within the experimental region bounded
by corresponding lower and upper bounds.

Afterwards, settling was taken as the primary response and the problem was
formulated as:

maximize y,,

subject to

ns<l
2X;=1.0

and X [[ =1,2,3,4] were varied within the experimental region bounded by
corresponding lower and upper bounds.

In the above two mathematical formulations y, and y, represent the models for
Vehicle Separation and Settling respectively, in terms of the pseudo-components
These two mathematical programming problems were solved using the SOLVER
routine of MS EXCEL (1997) package, which uses a Generalized Reduced
Gradient non-linear optimization method. SOLVER reported the same solution
for both models. The solution obtained, after reverting to actual components, was:
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x;, =0.1713  x, =0.0096

x; =0.0041 x, =0.0035

9.2 Loss function approach

Next, the problem was reformulated using the quadratic loss functions promoted
by Taguchi ez al. (1989). Let Y be the quality characteristic of a product and T its
target value, then according to the quadratic loss function, the quality loss is
given by

Loss(Y) =k(Y — T)?
where % is the quality loss coefficient. Neon Artiles-Leon (1996-97), defined % as
k = (2/(USL — LSL))?

so that loss becomes zero at T and uniry at USL or LSL. As these loss functions
are dimensionless, loss functions corresponding to the two quality characteristics
(i.e. responses) were added to obtain the total loss as

Total loss =4Y {(Y; — T.)/(USL; — LSL,)}>

Since the best value for Vehicle Separation and Settling were 0 and 10 respectively,
during total loss calculation, the following values of 7, USL and LSL were assumed
(see Table 8). Here, basic intention was to fix the target sufficiently close to the
corresponding best values.

TABLE 8. Target, LSL and USL values for the responses

Response Target LSL USL
Vehicle Separation 0.5 0 1.0
Settling 9.5 9.0 10.0

So the problem was then formulated as
minimize zotal loss
subject to
2X;=1.0

and X [[ =1,2,3,4] were varied within the experimental region bounded by
respective upper and lower bounds.

The formulation obtained above was again solved using the SOLVER routine of
MS EXCEL (1997). The optimal values reported to by Excel, in terms of the
actual components, were:

x;, =0.1729  x, =0.0078

x; =0.0041  x, =0.0037

9.3 Distance function approach

Afterwards, the simultaneous optimum of the two responses was obtained using
the distance function approach suggested by Khuri & Conlon (1981). This distance
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function measures the distance of the vector of estimated responses from the
estimated ideal optimum, i.e. the vector of individual optimas. The optimum level
of components was then obtained by minimizing the distance function over the
experimental region.

Since one equality constraint [i.e. £X; =1.0] exists among the four mixture
variables, the number of mathematically independent mixture variables is 3.
Hence, any 3 mixture variables can be considered as mathematically independent
Therefore, the first three mixture components were considered independent and
the second order polynomial was fitted to the responses with X,, X, and X, as
controllable variables. The fitted polynomial models, in terms of the pseudo
components, were:

For Vehicle Separation

v, = —349.14 + 3947.61 X, +973.97X, + 397.88X; — 4074.34X? — 651.36 X2

+2717.51X3 —4327.78X,X, — 54.08X, X, — 839.07X, X,
For Sertling
v, = —156.94 +1266.94X, +424.54X, +404.56X; — 1289.57X} — 270.84X;

+1147.71X2 — 1442.42X, X, + 646.26 X, X, — 711.10X, X,

In each iteration, the distance between the ideal optimal (ideal optimal was taken
as 0 for Vehicle Separation and 10 for Settling) and the estimated responses
corresponding to a randomly selected point from the experimental region was
calculated. After a sufficiently large number of such iterations, the point that gave
the minimum distance was taken as the optimal point. The optimal values, in
terms of the actual components, were thus obtained as:

x; =0.1693 x, =0.0118

x; =0.0041  x, =0.0033

9.4 Desirability function approach

The simultaneous optimization of the two responses was obtained by maximizing
the overall desirability. Following the method suggested by Del Castillo er al.
(1996), an everywhere-differentiable desirability function was obtained for both
the responses. The geometric mean of the individual desirabilities was taken as the
overall desirability. In this formulation, the following minimum, maximum, target
values and corresponding desirability values were used.

Minimum Target Maximum
Response Value  Desirability Value  Desirability Value  Desirability
Vehicle Separation 0.0 0.0 0.5 1.0 2.0 0.0
Settling 8.0 0.0 9.5 1.0 10.0 0.0

The maximization of the overall desirability was again obtained through the MS
EXCEL (1997) spreadsheet. The optimal values of the components thus
obtained were
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x; =0.1703  x, =0.0107

x; =0.0041 x, =0.0034

This solution resulted in the overall desirability value of 0.8119.

10 Selecting the optimal formulation

With a view to selecting the best among the four product formulations obtained
above, it was decided to calculate the cost of these four product formulations.
Accordingly, the cost of the five ingredients considered for experimentation,
required to manufacture 100 litres of the product, was calculated for each of the
four product formulations. Table 9 below gives these cost estimates in addition to
other important information.

TABLE 9. Solution sets and corresponding estimated responses and cost/100 litres

Total cost of
the components

Estimated response

Component proportions

Solution Vehicle per 100 litres
set X X5 X3 %a Separation  Settling of paint

1 0.1713 0.0096 0.0041 0.0035 0.0215 10.0835 Rs. 129.34

2 0.1729 0.0078 0.0041 0.0037 0.1738 10.0652 Rs. 127.60

3 0.1693 0.0118 0.0041 0.0033 0.0325 9.7553 Rs. 131.61

4 0.1703 0.0107 0.0041 0.0034 0.6270 9.5046 Rs. 130.48

All these four product formulations were presented to the management personnel
of the organization and they favoured the second set, as it corresponds to the
lowest manufacturing cost (since other costs remain same). The finally accepted
components proportion were as follows:

Component Quality
Barrytes 0.1729
Forcal S 0.0078
Soyalicithin & Nilset 117 [1:1] 0.0041
Smaketon Gel 0.0037

Finally, it was decided to obtain an operating window around the accepted
formulation for the ease of control during manufacturing. Consequently, a discus-
sion was held with the technical personnel to obtain the ranges of Vehicle Separation
and Settling that would not create problems for the end-user. It was decided, based
on the criticality of the problems, that Vehicle Separation in [0, 4] and Settling in
[8,10] can be considered acceptable and this interval of acceptance was used for
generating the operating windows.

A simulation program was therefore developed, where each set of optimal
component proportions is varied between *+20% of the respective optimal values,
subject to the corresponding bounds, i.e. between = min {20% of x{®*, U; — x**,
xPt — L.}, where x{** is the optimal value of the 7th component. During simulation,
observations were simulated assuming components follow a normal distribution
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TABLE 10. Operating window for the accepted formulation

Operating window

Component name Desired value Maximum Minimum Width
Barrytes 0.1729 0.1749 0.1697 0.0052
Forcal S 0.0078 0.0166 0.0004 0.0162
Soyalicithin & Nilset 117 [1:1] 0.0041 0.0044 0.0037 0.0007
Smaketon Gel 0.0037 0.0050 0.0030 0.0020

with a mean at the respective optimal value and with variability as decided above.
The simulation program was run for each solution set and, in each run, 1,00,000
realizations were made. The values of the four component proportions, for which
the calculated responses were found to fall within the respective acceptable interval,
were recorded. The range of those recorded proportions for each component gave
the operating window for that component. The operating window for the accepted
formulation is given in Table 10.

11 Implementation

Three batches were prepared at the pilot plant of the manufacturer to verify the
performance of the accepted formulation. None of those batches were found to
have either the Vehicle Separation or the Settling problem. Accordingly, regular
production was carried out. The results were also evaluated at the end-user’s
premises. The primer was found to be fully satisfactory.
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Appendix

Experimental design (in actual components, x; and pseudo-components, X;) and responses (Vehicle
Separation and Settling)

Expt. M V2
no. x, X, %5 % X, X, X, X, [V.S] [Sett.]
1 0.1750 0.0050 0.0035 0.0050 0.8000 0.0800 0.0400 0.0800 13.5 8.0
2 0.1250 0.0500 0.0010 0.0125 0.0000 0.8000 0.0000 0.2000 12.0 10.0
3 0.1250 0.0500 0.0035 0.0100 0.0000 0.8000 0.0400 0.1600 7.5 5.0
4 0.1250 0.0462 0.0010 0.0163 0.0000 0.7400 0.0000 0.2600 16.5 9.0
5 0.1250 0.0450 0.0035 0.0150 0.0000 0.7200 0.0400 0.2400 10.0 6.0
6 0.1250 0.0500 0.0060 0.0075 0.0000 0.8000 0.0800 0.1200 8.5 4.0
7 0.1250 0.0438 0.0060 0.0138 0.0000 0.7000 0.0800 0.2200 15.5 8.0
8 0.1312 0.0500 0.0010 0.0063 0.1000 0.8000 0.0000 0.1000 21.5 8.0
9 0.1300 0.0500 0.0035 0.0050 0.0800 0.8000 0.0400 0.0800 19.0 8.0
10 0.1250 0.0425 0.0010 0.0200 0.0000 0.6800 0.0000 0.3200 11.5 7.0
11 0.1288 0.0500 0.0060 0.0038 0.0600 0.8000 0.0800 0.0600 23.0 9.0
12 0.1325 0.0500 0.0060 0.0000 0.1200 0.8000 0.0800 0.0000 7.5 4.0
13 0.1250 0.0400 0.0035 0.0200 0.0000 0.6400 0.0400 0.3200 6.0 4.0
14 0.1250 0.0375 0.0060 0.0200 0.0000 0.6000 0.0800 0.3200 10.0 6.0
15 0.1750 0.0050 0.0035 0.0050 0.8000 0.0800 0.0400 0.0800 14.5 7.0
16 0.1312 0.0500 0.0010 0.0063 0.1000 0.8000 0.0000 0.1000 20.5 8.0

17 0.1325 0.0500 0.0060 0.0000 0.1200 0.8000 0.0800 0.0000 8.0 6.0
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