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SUMMARY. A circularly symmetric directional distribution is obtained by showing that 

in the class of circularly symmetric distributions on circle it is the only distribution for which the 

circular median is a maximum likelihood estimate of the location parameter. Subsequently, 

quently, this result is extended to the spherical case. 

1. Introduction 

Teicher (1961) proved that under very mild conditions a translation 

parameter family of distributions on the real line must be normal if the 

sample mean is a maximum likelihood estimate of the translation parameter. 

Later, Ghosh and Rao (1971) solved the same problem with ?sample mean' 

replaced by 'sample modian' and obtained a characterization of the Laplace 
distribution. A proof of the latter result may be found in Kagan et al. (1973, 

413-414). 

The above two results in linear data were followed by a result of Bingham 
and Mardia (1975) in directional data which states that under mild conditions 

a rotationally symmetric family of densities on the sphere must be the von 

Mises?Fisher family if the mean direction is a maximum likelihood estimate 

of the location parameter. 

Wth the above mentioned results in mind, our aim in this paper is to 

characterize that rotationally symmetric directional distribution for which 

the median direction is a maximum likelihood estimate of the location para 

meter. In Section 2, we settle this problem for distributions on circle 

(Theorem 2.1). This result is extended to higher dimensional spheres in 

Section 3 (Theorem 3.1). Finally, some general remarks in this context 

appear in Section 4. 
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2. The circular case 

Definition 2.1. Let xv ..., xn e S1. Then any point XqcS1 is called 

a circular median of xl9 ..., xn if 

n n 

S gos-^xIxq) 
= min S cos-^o?^). 

... (2.1) 

[For 
? 1 < x < 1, cos~x(a;) is the unique angle 6 e[0, n] such that cos 6 ? 

x]. 

Remark 2.1. The sum appearing in the right hand side of (2.1) is a conti 

nuous function in ? so that it makes sense to talk of its minimum and define 

xQ accordingly. Observe, however, that a?0 may not be unique. 

Remark 2.2. The Definition 2.1 is actually the circular analogue of the 

spherical median given in Fisher (1985). It is also related to the one given in 

Mardia (1972, 28-33). 

Remark 2.3. Because circular median may not be unique, we adopt 
the following conventions about the choice of median direction for sample 
sizes n ? 2, 3 and 4 respectively. This choice is motivated by the natural 

requirements of a measure of central tendency. 

Notation. For two points a, b e Sl ; [a, b] denotes the arc of Sl with 

initial point a, end point b and taken in clockwise sense. 

A. Sample size n = 2. Assume, without loss of generality, that length 
of [xv x2] < length of [a?2, jpj. Then in this case the sum appearing in 

the right hand side of (2.1) remains constant for %e[xvx2]9 and moreover 

? e [xl9 #2], (i e Sx?[xv a?2] implies 

2 2 

S cos"1^ ?) < S cos-1^ jjt) 
i=i i=i 

Therefore, we agree to take the mid-point of [xv a?2], which is the same as 

the mean direction, as the median direction. 

B. Sample size n = 3. Write cos_1(a?J x2) 
= a and cos"1(a?? x3) 

= 
?. 

Then, 0 ^ cc < n and 0 < ? < n. Assume, without loss of generality, that 

either (a) 0 < a+? < n or (b) a < ?, a+? > n and a+2/? < 2n. 
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The two cases are illustrated in the following figures : 

Fig. 2.1 (a) Fig. 2.1 (b) 

It is now easy to see that in each of the cases 

3 3 i 
|ji e S1 : S cos"1^ u) = min 2 eos-^?) \ 

= 
{x2}. 

i=l ?eS1 i=l J 

Hence, in both the cases, we take x2 as the median directiln. 

C. Sample size n = 4. Write cos-1^*?^) 
? on, 1 < i < 3. Then, 

0 < at < 7T for every i. Assume, without loss of generality, that either 

(a) 0 < ocx-\-oc2-\-oc3 < 7T or (b) n < ocx~\-oc2-\~ocz^27T, a1+a2<7r and a2+a3<7r. 

The two cases are illustrated in the following figures : 

Fig. 2.2 (a) Fig. 2.2 (b) 

It turns out that in each of the cases 

I u e S1 : S cos^a^/c) 
= min 2 cos-^?) > = 

[x2, xz] 1 f=l ?eS1 ?=i J 

We agree to take the mid-point of [x2> x2] as the median direction. 
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Theorem 2.1. Let {p(x ; 8) =f(x' 8) |8 e S1} be a class of circularly sym 

metric non-uniform densities on S1. Suppose f(t) > 0 for every te(~l, 1) 

and moreover f(t) is right-continuous at t = ? 1. If the median direction be a 

maximum likelihood estimate of 8 for n -= 4 somples, then 

p(x 'e) = 
2?=F? 

e~a C0S'Hx'e)> x e *'a > ?- - (2-2) 

Proof. The fact that the median direction is a maximum likelihood 

estimate of 8 implies 

A f{x?x0)> nf(x?9) YSe?1, 
i=i i=i 

... (2.3) 

and for all samples (xv ..., xA) of size n = 4 ; xQ being the median direction. 

Write cos-^flBi+x) 
= ai for ? = 1, 2, 3. Define ^(?)=/(Cos ?)> 

0 < t ̂  7T. Then, our choice of the median direction (described in part C 

of Remark 2.3) and (2.3) above, applied to several choices of 8, imply the 

following : 

for every 0 < al9 a2, a3 < n with 0 < ai+<*2+a3 < n9 

9 (<Xi+^+x) g (y+x) 9 (y~X) (J (?+a?_a:)? 

> 

0 < * < |2 

* (?i+?M * (?+*) * (*-tMt+**-*) ? 

?<*<?+?, 

</ (a1+f+*) , (f+*) </ (*-f ) ? (*-?-?,) 

... (2.4.1) 

(2.4.2) 

f+?,<*<*-(?!+?) 
- (2"4-3) 

A 1-10 
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for every 0 < ocx, oc2, oc3 < n with n < ocx-\-oc2+oc3 < 2n, ocx+oc2 < n 

and oc2-\-ocz < 7r, 

... (2.5) 

Observe that if we choose ocx 
= 

a3 
= 0 in (2.4.1), we obtain 

?4 (?) > g2(i*+x)g2 (?-*)for 
? <x < ? 

=> <72 
(y ) 

> flr(y) flr(os-y) for 0 < */ < a2 ... (2.6) 

Therefore, if g(y) 
? oo for some 0 <; y < n, then (2.6) implies that for every 

oc2e(y, n) either g(oc2?y) 
? 0 or g (-~\ 

? oo. The former condition cannot 

be satisfied because of the restriction on / put forth in the statement of the 

theorem and the latter condition cannot be satisfied on a act of positive lebes 

gue measure. Therefore, 

g(t) < oo for every 0 <; t < n ... (2.7) 

We also have g(t) < 0 for every 0 < t < n. Observe further that if we 

choose ocx = oc2 = oc3 = in (2.4.3), we obtain 

g*(Q) > g\x), for every 0 < % < n, 

which implies 

9(0) > 0, 

oterwise g(x) 
= 0 for ail 0 ^ x ^ it, a contradiction to the fact that / is a 

density on S1. Therefore, we can define 

h(t) 
= 

logg(t),0<t<n. 
... (2.8) 

With little modification, the conditions (2.4.1), (2.4.2) and (2.5), alongwith 

(2.8), now imply the following : 
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for every 0 ^ ocx, ocd < at, 0 ^ a2 < n with 0 ^ ai+#2+a3 < n, 

*(?,+?)+?(?)+*(?+?,.) 

h(ai+^x)+h(^+x)+h(^-?)+h(^at-x), 

> 0 < x < J (2.9.1) 

*(?i+|!+*)+*(f,+*)+*(*-f)+*(f+?b-?), 

for every 0 < alt a2, Oj < n with ?t < 0^+0^+ot^ < 2n-, ax+aa < n 

and aa-(-a3 < at, 

> ? ( ?i+f+*) +? (f+*) +* (f -*) +h ( f+?,-*), 
0 < x < f 

... (2.10) 

With the previous steps in mind, we now proceed to the main steps of 

our 
proof. 

At first we prove that 

h is concave on 
[? !] (2.11) 

To see this, choose and fix tx, t2e \\0, 
^1 

with tx < t2. Now use (2.9.1) with 

t2?tx 
ax 

= 
a3 

== 
0, oc2 

= 
tx+t2 

and x = 
2 

to obtain 

h 
(-^-)> ^{Kk)+h(t2)}, 

establishing (2.11). 

Next we prove that 

IT 
h(t) = ? at+b for 0 < e < 

y 
, (2.12) 

for two constants a and 6. 
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As a consequence of (2.11), we know that h is differentiable on ? 0, ~^j 

except (possibly) on a subset ? of 10, = 
J, 

which is at most countable. Write 

j? = 
( 0, -s J?J&. 

Choose and fix tv t2 e ji with t? < t2. Choose moreover 

ts e j? with t3 < tv In (2.9.1), take now ax 
= 

tx?-ts, oc2 
= 

2tz and a3 
= 

tx?13 
to obtain 

h(t1)+2h(ts)+h(t2) 

> A(fl?+ii)+Afe+^)+A(^3?#)+A(?2?#), 0 < x < ?3. 

Thus the function A* : [0, ?3]?> 7t? defined by 

?*(a?) 
= 

?^+^+A^g+^+?^g?x)+h(t2?x) 
is maximized at x = 0. Moreover, A is differentiable at each of tv t2 and f3. 

Hence, 

Km. ̂>-^?) < 0 

Interchanging the role of tt and t% in the argument above, we obtain 

and consequently, for every tv t^e J? we obtain 

This implies, in view of the concavity of A on 
(o, 

? 
J 

and the definition of jt9 

that A is differentiable everywhere on 
^0, ?J 

with a constant derivative. 

Thus 

h(t) 
= -at+b, 0<t < -. ... (2.13) 

To complete the proof of (2.12), we how prove that A(0) 
= b. To see this, 

first choose three small positive numbers ocl9 a2, oc3, and for this choice of 

oci% use (2.9.1) with x = -~- to obtain 

?(ai+a22)+2?(?)+?(?+a3) > %i+a2)+%2)+M0)+A(a3), 

which implies, in view of (2.13), 
b > ?(0). 
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Similarly, if we choose two small positive numbers ocx, a3, and oc2 
= 0, and 

for this choice of ocxs, use (2.9.2) with x = 
03 to obtain 
z 

A(0) > 6. 
Thus (2.12) follows. 

Next we prove that 

h is concave on ( ?, n) 
... (2.14) 

Choose and fix tx, t2e (-^-> n) 
such that tx < t2. Now use (2.10) with 

ax 
? 

a8 
= 

?1? a2 
= 

?2~^i> an(^ # = 
^?r^ ^? obtain 

2h 
( 
?l??a 

)+2A ( ^ ) > ?(*8)+?(i8-i1)+A(0)+?(i1), 

which implies (2.14), since from (2.12) we have 

2? 
( ^ ) 

= A??.-y+A?O). 

The next assertion is analogous to (2.12). We prove that 

h(t) 
= -ct+d for 

J- 
< * < 7T, ... (2.15) 

for two constants c and d. This is an immediate consequence of (2.14) and 

of arguments similar to those required to establish (2.12). 

Now we prove that 

h is convex on 
(-J-*, ?-+*)> 

- (2-16) 

7T 
if we choose 5 to be a sufficienty small positive number, say # = ?. So 

(7J- 

77 \ 

w?8,-^-\-8J 
with ?i < ?2. Choose now 

OL OL 

ax, oc2, a3 e 
(0,7r) such that tx 

= 
ocx+ ~, t2 

= 
a3+-i)2> a3?a1<a2, a1-fa2<7r, 

and a2+a3 < ^? such a choice is possible since S is assumed to ho a small 

positive number. Now with these quautities ocx, oc2, a3 and x = 
-^?1 use 

(2.9.1) if tx+t2 < 77, (2.10) if tx+t2 >7T to obtaiu 

*(*,)+? ( f ) +AC) > ? ( ^ ) +* ( J + V1) +? (f 
- 
^3) 

...^'(2.17.1) 
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However, we may choose o^'s in a way so tuat both 
-?-3 9 

* 
and 

V+ ^2?1 
are in ?0, ?)' 

w^0^ implies, in view of (2.12), 

2 

2A 
(fM(?+^-')+*(?-^). 

... (1.1.71) 

The assrtion (2.16) is now an immediate consequence of (2.17.1) and (2.17.2) 

Employing arguments simitar to those required to establish (2,12), 
we now obtain from (2.9.1), (2.10) and (2.16) that the graph of A on 

(7T 

7T \ 
-?r?S, ~2~+^/ 

is a straight line. In view of (2.12) and (2.15), this implies 

a = c, b = d, 

where a, b, c, d are the constants obtained iu (2.12) and (2-15). 

We have thus proved that 

h(t) = ?at+b for 0 < t < n 
i.e. 

g(t) = exp (?at+b) for 0 < t < n, 

for two constants a and b. Morover, right continuity of/(?) at t = ?1 inplies 

left-continuity of g(t) at t = n. Hence, 

g(t) = exp (?at+b) for 0 < t < n. 

Observe now that in view of the fact that g (0) ?> g(x) for every x e [0, n] 

and stipulated non-uniformity of /, we obtain. 

a> 0 

From what we have done so far it is now clear that 

p(x ; 8) 
= # e'a 

cos"1 
(x'6), xeS\a>0. 

The fact that eP = ??jz--^- is an easy exercise in integration and so we 
2(1? e~an) 

J 

omit it. This completes the proof of the theorem. 

Remark 2.4. The theorem is false if we require the median direction to 

be a maximum likelihood estimate of 8 for n = 0 samples. To see this, con 

sider the following class Sc1 of circularly symmetric non-uniform den 

sities on S1 : 

&,=:{p(x;6)=f(x'e)\eeSi}, 
where 

f(t) = K exp {AiCos-11)}, -1 < t < 1 
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with 
A : [0, 7t]?> 72 being defined as 

7T 
h(u) 

= 
?au-\-b, 0 < u < ?, 

= 
?CU+d, 

? 
< U < 77", 

77" 
where c > a > 0, 

? 
(c?a) 

= d?b and 

2eb (l?e"2~) 2ed(e" 2 ? e~a% 

K 
= 

? + c 
* 

Obviously / is not of the form as described in (2.2) and moreover it is easy to 

check that with this choice of /, the median direction is indeed a maximum 

likelihood estimate of 8. 

Remark 2.5. The theorem is false if we require the median direction 

to be a maximum likelihood estimate of 8 for n ? 
3 samples. To see this, 

consider the following class <^2 of densities on S1 : 

&2 = 
{p(x;B)=f(x'9)\QeS1} 

where 

f(t) = K exp {?(Cos-1 *)}, -1 < t < 1 
with 

A : [0,77] ?> 72 being defined as 

h(u) 
= 

au2+bu+c, 

where a > 0, 2a7r+6 < 0 and 

1 * 
? = 2 J exp (au2+bu+c) du. 
K 0 

Routine algebraic computation now leads to the fact that &2 serves 

as a counter-example to the assertion of Theorem 2.1. 

Remark 2.6. In Remark 2.3, we have seen how to get rid of the non 

uniqueness of median direction by choosing the median direction in a meaning 
ful way. It should be pointed out that for the assertion of Theorem 2.1 to 

hold this choice is crucial. In fact, if we require any median direction (i.e. any 

point on S1 satisfying Definition 2.1) to be a maximum likelihood estimate 

of 8, then even with n = 2 samples Theorem 2.1 holds true so that 

Theorem 2.1 with n = 4 samples follows immediately and the counter 

example described in Remark 2.4 ceases to be one. 
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In this context it is also worthwhile to mention that the theorem of Ghosh 

and Rao (vide Kagan et al. (1973), 413-414)) depends crucially on their choice 

of median and if this special care is not taken then their counter-example 

(vide Ghosh and Rao (1971)) ceases to be one. This fact also serves as a 

motivation for our choice of median direction described in Remark 2.3. 

3. The spherical case 

We shall discuss only the case with S2. For S& with p > 2, the 

discussion is essentially same. 

Definition 3.1. Let xl9 ..., xn e S2. Then any point x0e S2 is called a 

spherical median of xl9 ..., xn if 

n n 

2 cos-1 (x'i x0) 
= min 2 cos-1 (x? g) ... (3.1) 
i=i %es2 ?=i 

Remark 3.1. The Definition 3.1 is due to Fisher (1985). 

The extension of Theorem 2.1 to S2 poses some special problem since 

the location of one possible median direction for every sample of size n = 4 

becomes difficult. However, it turns out that in order to prove a theorem 

analogous to Theorem 2.1 for S2 it is enough to consider all possible sample 
of size n = 4 lying on some great circle. The following remark regarding 
the convention about choice of median direction for samples from S2 is worth 

mentioning. 

Remark 3.2. A. Sample size n = 2. Suppose xl9 x2 e S2. Denote by 

G, the great circle passing through xx and x2. Moreover, [x?, x2] denotes the 

are connecting xx, x2 and taken along G. Suppose the length of [xl9 x^ ^ 

length of G ? 
[xv x2]. Then in this case the sum appearing in the right-hand 

side of (3.1) remains constant for %e[x1,x2], and moreover g e [xl9 x2]9 

fi e S2?[xl9 x2] implies 

2 2 

2 cos-^?) < S cos-^?). 
?=i i=i 

Therefore, we agree to take the mid-point of [xv x2], which is the same as the 

mean direction, as the median direction. 

B. Sample size n ? 4. Suppose xl9... , x?e S2 are such that xv ..., xA 

lie on a great circle, say G. Denote the circular median of xl9 ..., x? by x0. 

Then, by an argument similar to that in Part A above it makes sense to choose 

x0 as the spherical median of xv ..., x?. 
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In view of our statement and proof of Theorem 2.1 and Remark 

3.2 above, the following theorem is now immediate. 

Theorem 3.1. Let {p(x ; 8) 
= 

f(x' 8)|8e S2} be a class of rotationally 

symmetric non-uniform densities on S2. Suppose f(t) > 0 for every te(?l, 1) 
and moveover f(t) is right continuous at t = ? 1. If the median direction be a 

maximum likelihood estimate of 8 for n = 4 samples, then 

P(X ' 6) = 
2n(l+e-n 

e~a C0S"X (*'e) ! * ? *?. ? > 0- - (3-2) 

Remark 3.3. For Sv with p > 2, the density obtained in (3.2) is as 

follows : 

r(-f )./?-i(?) 
?(a ; 8) 

= 
-^-^-. 

e- 
a cos ̂  8> 

; x e &>, 8 6 Sv, a > 0, ... (3.3) 

where 
T , , (a2+22)(a2+?2)...(a2+n2)a . 

(a2+l2)...(a2+r*2) * - ?A 
'" (3,4) 

ti ! (l+e~an) 

Remark 3.4. Theorem 3.1 is false if we require the median direction 

to be a maximum likelihood estimate of 8 for n = 2 samples. To see this, 

consider the following class & of rotationally symmetric non-uniform densi 

ties on S2 : 

& = 
{p(x;9)=f(x'9)\9eS2} 

where 

f(t) = K exp {?(Cos-11)}, -1 < t < 1 

with the same A as in Remark 2.4 and 

I air y , / _ J?L 
r e& 

(1?ae~ 
2 i 

e*(ce 
2 +e-c7C 

Z 
= 27r 

j ??+? + &+? 
In order now to verify that & indeed serves as a counter-example to 

the assertion of Theorem 3.1, take xx, x2 e S2. Suppose the length of [xx, x2] 

< length of C?[xx, x2]. Then, it is easy to see that for every 8 e S2 ?C 

(for the definition of G see part A of Remark 3.2), g 8* e [xx, x2] such that 

f(xlQ*)f(x'2^)>f(x\%)f(^%). ... (3.5) 

with (3.5) in mind, the rest of the verification consists in routine algebraic 

computation and so we omit it. 

A 1-11 
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Remark 3.5. We have not discussed about the location of spherical 
median for n = 3 samples in Remark 3.2. Therefore, the question of validity 
of Theorem 3.1 for n = 3 samples remains open. 

Remark 3.6. We have assumed both in Theorem 2.1 and Theorem 3.1 

that f(t) > 0 for every te(? 1, 1). However, none of the results mentioned 

in Section 1 puts any such restriction on the density to be characterized. 

It is, therefore, of some interest to see if this assumption can be relaxed. 

4. Some general remarks 

Remark 4.1. The three results mentioned in the introduction has the 

following common feature : the specific form of the maximum likelihood 

estimate of the location parameter can be thought of as that x0 which 

minimizes 

n 
2 d(xu x) ... (4.1) 
*=i 

over x e ?C, where ?C is the sample space under consideration and the sum 

in (4.1) is a measure of distance between {xv ..., xn} and x for some d : ??X ?C 

?> 7\>+, the set of non-negative numbers. For example, in Teicher (1961) ?C 
= ye1 and d(x, y) 

= 
(x?y)2, in Ghosh and Rao (1971) ?C = 721 and d(x, y) 

= | x?y\ and in Bingham and Mardia (1975) ?C = #Pandd(a?, y) 
= \\x?1/||| 

= 
square of the Z2-norm of x?y The density characterized then turns out 

to be of the form 

Ae-ad(x>e), de ?C 

where a > 0 and A > 0 is a constant depending on a [The von Mises?Fisher 

density Aeb(*'Q) is easily seen to have the alternative representation 

^4e-a||ac-e||2 since \\x\\ 
= 

||8|| 
= 

1]. Thus the way mean, median or mean 

direction is defined is captured in the form of the density characterized. 

In the problem considered in this paper, we have ?C = Sp, d(x, y) 
= cos-1 (x' y) 

= the geodesic distance between x and y. In view of the 

observation mentioned in the last paragraph it is, therefore, expected that 

the density characterized should have the form as in (2.2) and (3.2). 

Remark 4.,2. In both Theorem 2.1 and Theorem 3.1, we have assume 

that the median direction is a maximum likelihood estimate of 8 for n = 4 

samples. The same result, therefore, holds if n is assumed to vary over a 

set of natural numbers containing some multiple of 4. However, the ques 

tion of validity of the assertion remains open if n is assumed to very over a 

set (finite or infinite) containing no multiple of 4. Similar remarks hold for 

the result of Teicher and that of Ghosh and Rao. 
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