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To recognize functional sites within a protein sequence, the non-numerical attributes of the sequence
need encoding prior to using a pattern recognition algorithm. The success of recognition depends on
the efficient coding of the biological information contained in the sequence. In this regard, a bio-basis
function maps a non-numerical sequence space to a numerical feature space, based on an amino acid
mutation matrix. In effect, the biological content in a sequence can be maximally utilized for analysis.
One of the important issues for the bio-basis function is how to select a minimum set of bio-bases
with maximum information. In this paper, we present two relational soft clustering algorithms, named
rough c-medoids and fuzzy-possibilistic c-medoids, to select the most informative bio-bases. While
both fuzzy and possibilistic memberships of fuzzy-possibilistic c-medoids avoid the noise sensitivity
defect of fuzzy c-medoids and the coincident clusters problem of possibilistic c-medoids, the concept of
lower and upper boundaries of rough c-medoids deals with uncertainty, vagueness, and incompleteness
in class definition of biological data. The concept of ‘degree of resemblance’, based on non-gapped
pairwise homology alignment score, circumvents the initialization and local minima problems of both
c-medoids algorithms. In effect, it enables efficient selection of a minimum set of most informative
bio-bases. The effectiveness of the algorithms, along with a comparison with other algorithms, has
been demonstrated on HIV (human immunodeficiency virus) protein datasets.
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1. Introduction

The problem with using most pattern recognition algorithms to analyse biological sequences
is that they cannot recognize non-numerical features such as the biochemical codes of amino
acids. Therefore, they need encoding prior to input. Investigating a proper encoding process
prior to modelling the amino acids is then critical. The successful analysis of biological
sequences relies on the efficient coding of the biological information contained in the
sequences.
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The most commonly used method for coding a subsequence is distributed encoding, in
which each of 20 amino acids is encoded using a 20-bit binary vector [1]. However, in this
method the input space is expanded unnecessarily. Also, this method may not be able to encode
biological content in sequences efficiently. Different distances for different amino acid pairs
have been defined by various mutation matrices [2—4]. But, they cannot be used directly for
encoding an amino acid to a unique numerical value.

With this background, the concept of bio-basis function has been proposed in [5-7] for
analysing biological subsequences. It uses a kernel function to transform biological subse-
quences to feature vectors directly. Bio-bases consist of sections of a biological sequence
that code for a feature of interest in the study, and are responsible for the transformation
of biological data to high dimensional feature space. Transformation of input data to high
dimensional feature space is performed based on the similarity of an input subsequence to a
bio-basis with reference to a biological similarity matrix. Thus, the biological content in the
sequences can be maximally utilized for accurate modelling. The use of similarity matrices to
map features allows the bio-basis function to analyse biological sequences without the need
for encoding. The concept of bio-basis function has been successfully applied in different
applications [5-10].

The most important issue for a bio-basis function is how to select a minimum set of bio-bases
with maximum information. Berry et al. [6] used genetic algorithms for bio-bases selec-
tion considering the Fisher ratio as the fitness function. Yang and Thomson [7] proposed
another method to select bio-bases using mutual information. In principle, the bio-bases in
non-numerical sequence space should be such that the degree of resemblance between pairs of
bio-bases would be as small as possible. Each of them would then represent a unique feature
in numerical feature space. As this is a feature selection problem, a clustering method can be
used which partitions the given biological sequences into subgroups around each bio-basis,
each of which should be as homogeneous (informative) as possible. However, the methods
proposed in [6, 7] have not adequately addressed this problem.

In biological sequences, the only available information is the numerical values that represent
the degrees to which pairs of sequences in the dataset are related. Algorithms that generate
partitions of that type of relational data are usually referred to as relational or pairwise clus-
tering algorithms. A well-known relational clustering algorithm is Kaufman and Rousseeuws’
c-medoids [11, 12]. The c-medoids algorithm is applicable to situations where the objects to
be clustered cannot be represented by numerical features, rather, only represented with simi-
larities or dissimilarities between pairs of objects. So, the relational clustering algorithms can
be used to cluster biological subsequences if one can come up with a similarity measure to
quantify the degree of resemblance between pairs of subsequences.

One of the main problems with biological subsequence analysis is the uncertainty. Some of
the sources of this uncertainty include incompleteness and vagueness in class definitions of bio-
logical data. In this background, two major soft computing techniques, fuzzy sets theory [13]
and rough sets theory [14], have gained popularity in modelling and propagating uncertainty.
Both fuzzy sets and rough sets provide a mathematical framework to capture uncertainties
associated with the data [15-18]. Ruspini [19] and Diday [20] proposed two of the early fuzzy
relational clustering algorithms. Other notable algorithms include Roubens’ fuzzy non-metric
model [21], Windham’s association prototype model [22], Hathaway and Bezdek’s relational
fuzzy c-means (RFCM) [23], and Kaufman and Rousseeuws’ fuzzy analysis (FANNY) [12].
A more recent algorithm is Krishnapuram’s fuzzy c-medoids [24]. It offers the opportunity to
deal with the data that belong to more than one cluster at the same time. Also, it can handle
the uncertainties arising from overlapping cluster boundaries. However, it is very sensitive to
noise and outliers as the memberships of a pattern in fuzzy c-medoids are inversely related to
the relative distances of the pattern to the clusters prototypes. The possibilistic c-medoids [24]
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is an extension of fuzzy c-medoids, which efficiently handles datasets containing noise and
outliers considering typicalities or compatibilities of the patterns with the cluster prototypes.
But, it sometimes generates coincident clusters. Moreover, typicalities can be very sensitive
to the choice of additional parameters needed by possibilistic c-medoids.

In this paper, we propose two relational soft clustering algorithms, rough c-medoids and
fuzzy-possibilistic c-medoids, to select the most informative bio-bases. In rough c-medoids,
the judicious integration of c-medoids and the concept of lower and upper approximations of
rough sets efficiently deals with uncertainty, vagueness, and incompleteness in class definition.
Each partition is represented by a medoid (bio-basis), a lower approximation, and a boundary
region. The medoid (bio-basis) depends on the weighting average of the lower approximation
and boundary. Similarly, the fuzzy-possibilistic c-medoids attempts to exploit the benefits of
both fuzzy and possibilistic c-medoids. Both fuzzy and possibilistic memberships of fuzzy-
possibilistic c-medoids enable efficient handling of overlapping partitions. It also avoids the
noise sensitivity defect of fuzzy c-medoids and the coincident clusters problem of possibilistic
c-medoids. Each partition is represented by a medoid (bio-basis), and a cluster, which is a
combination of fuzzy and possibilistic partitions. The medoid (bio-basis) depends on both
fuzzy and possibilistic memberships. The concept of ‘degree of resemblance’, based on non-
gapped pairwise homology alignment score, automatically circuamvents the initialization and
local minima problems of both rough c-medoids and fuzzy-possibilistic c-medoids. In effect, it
enables efficient selection of a minimum set of most informative bio-bases. Some quantitative
measures are introduced based on mutual information and homology alignment score to evalu-
ate the quality of selected bio-bases. The effectiveness of the proposed algorithms, along with
a comparison with hard c-medoids, fuzzy c-medoids, possibilistic c-medoids, Berry et al.’s
method [6], and Yang and Thomsons’ method [7], has been demonstrated on five whole HIV
protein datasets.

The structure of the rest of this paper is as follows. Section 2 briefly introduces the necessary
notions of a bio-basis function. In section 3, the fuzzy-possibilistic c-medoids algorithm is
proposed based on the fuzzy and possibilistic memberships for bio-bases selection. Section 4
presents rough c-medoids along with an introduction to rough sets. Some quantitative perfor-
mance measures are introduced in section 5 to select most informative bio-bases. A few case
studies and a comparison with other methods are presented in section 6. Concluding remarks
are given in section 7.

2. Protein sequence analysis using bio-basis kernel

The most successful method of sequence analysis is homology alignment [25, 26]. In this
method, the function of a sequence is annotated through aligning a novel sequence with known
sequences. If the homology alignment between a novel sequence and a known sequence gives
a very high similarity score, the novel sequence is believed to have the same or similar function
as the known sequence. In homology alignment, an amino acid mutation matrix is commonly
used. Each mutation matrix has 20 columns and 20 rows. A value at the nth row and mth
column is a probability or a likelihood value that the nth amino acid mutates to the mth amino
acid after a particular evolutionary time [3, 4]. However, the principle of homology alignment
cannot be used directly for subsequence analysis. Because, a subsequence may not contain
enough information for conventional homology alignment. A high homology alignment score
between a novel subsequence and a known subsequence cannot assert that two subsequences
have the same function. However, it can be assumed that they may have the same function
statistically.
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The design of a bio-basis function is based on the principle of conventional homology
alignment. The homology alignment score is calculated using an amino acid mutation matrix.
Using a table look-up technique, a homology alignment score as a similarity value can be
obtained for a pair of subsequences. The non-gapped homology alignment method is used to
calculate this similarity value, where no deletion or insertion is used to align two subsequences.
The definition of a bio-basis function is as follows [5-7]:

h(xj, v;) — h(v;, v;)
h(vi, v;)

f(xjsvi):exp{y (D
where h(x;, v;) is the pairwise homology alignment score between a subsequence x; and
a bio-basis v; [2-4], h(v;, v;) denotes the maximum homology alignment score of the ith
bio-basis v; and y is a constant. Supposing both x; and v; have m residues, the non-gapped
pairwise homology alignment score is defined as

h(xjvi) =Y M (X, vie) )

k=1

where M (xj, vit) can be obtained from an amino acid mutation matrix through a table look-up
method. Note that xj, vy € A and A is a set of 20 amino acids. The function value is high
if two subsequences are similar or close to each other. The function value is small if two
subsequences are distinct. The function value is one if two subsequences are identical.

Each bio-basis is a feature dimension in a numerical feature space. It needs a subsequence
as a support. If we use A to denote a collection of 20 amino acids, an input space of all potential
subsequences with m residues is A™. Then, a collection of ¢ bio-bases formulates a numerical
feature space R¢, to which a non-numerical sequence space A™ is mapped for analysis. More
importantly, the bio-basis function can transform various homology alignment scores to a
real number as a similarity within the interval [0, 1]. After the mapping using bio-bases, a
non-numerical subsequence space A™ will be mapped to a c-dimensional numerical feature
space R¢, i.e. A" — R°.

3. Fuzzy-possibilistic c-medoids algorithm

Three relational clustering algorithms — hard c-medoids, fuzzy c-medoids, and possibilistic
c-medoids — are described first for selection of bio-bases. Next, we propose a new relational
soft clustering algorithm, termed as fuzzy-possibilistic c-medoids, integrating both fuzzy and
possibilistic membership functions.

3.1 Hard c-medoids

The hard c-medoids algorithm [11, 12] uses the most centrally located object in a cluster, which
is termed the medoid. A medoid is essentially one of the actual data points from the cluster,
which is closest to the mean of the cluster. The objective of the hard c-medoids algorithm
for selection of bio-bases is to assign n subsequences to c¢ clusters. Each of the clusters B;
is represented by a bio-basis v;, which is the medoid for that cluster. The process begins
by randomly choosing ¢ subsequences as the bio-bases. The subsequences are assigned to
one of the ¢ clusters based on the similarity between the subsequence x; and the bio-basis
v;. The similarity is assessed through the non-gapped pairwise homology alignment score
h(xj, v;) between the subsequence x ; and the bio-basis v;. The score i (x ;, v;) can be calculated
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as per equation (2). After the assignment of all the subsequences to various clusters, the new
bio-bases are calculated as follows:

v; =Xx,; Wwhere g =argmin(h(x;, x;) — h(xt, x;));  x; € Bi; xx € B;. 3)
The basic steps are outlined as follows:

(i) Arbitrarily choose c subsequences as the initial bio-bases v;, i = 1,2, ..., c.
(ii) Assign each remaining subsequences to the cluster for the closest bio-basis.
(iii)) Compute the new bio-basis as per equation (3).
(iv) Repeat steps (ii) and (iii) until no more new assignments can be made.

3.2 Fuzzy c-medoids
This provides a fuzzification of the hard c-medoids algorithm [24]. For bio-bases selection,
it minimizes
Je =YY (i)™ (h(vi, vi) — h(x;, v)) )
j=1i=1

where 1 < ni; < oo is the fuzzifier, v; is the i th bio-basis, wij € [0, 1]is the fuzzy membership
of the subsequence x; to cluster §;, such that

[ (i v) = R o)) T
ij = lgl: { (/’l(U[, V) — /’l()Cj, v)) } 5)

subject to
2 n
D wp=1.Vj, and 0<Y py<n, Vi
i=1 _/:]

The new bio-bases are calculated as:

vi =X where g =argmin) (ux)" (h(xj,x;) —h(x,x;); 1<j<n.  (6)
k=1

The algorithm proceeds as follows:

(i) Assign initial bio-bases v;,i = 1,2, ..., c.
(ii) Choose values for the fuzzifier ni; and threshold €; and set iteration counter = 1.
(iii) Compute w;; by equation (5) for ¢ clusters and n subsequences.
(iv) Update bio-basis v; by equation (6).
(v) Repeat steps (iii)—(v), by incrementing ¢, until |1 (t) — p;(t — 1)| > €.

3.3 Possibilistic c-medoids

In possibilistic c-medoids [24], the objective function can be formulated as

[

Jo =Y )™ (h(vi, vi) — hixj o)) + D mi (1 — )™ i

i=1 j=1 i=1  j=I

n; represents the bandwidth or resolution or scale parameter. The membership matrix v
generated by the possibilistic c-medoids is not a partition matrix in the sense that it does
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not satisfy the constraint

Z v =1. ®)
i=1

The membership update equation in the possibilistic c-medoids is

1
vj=——=; WwhereD =
1+D

(h(vi, v) —h(xj,vi))}l/(m'z—l) o

Ni
subject to

n
vj € 0,11, Vi, j; 0<) v;j<n, ¥i; and maxv; >0, Vj.
l
j=1

The scale parameter 7; represents the zone of influence or size of the cluster ; and its update
equation is

n=K- g; where P = ()" (h(v;,v;) —h(x;,v)); and Q=) (vy)"™.

= =

J J 10)
Typically K is chosen to be 1. From the standpoint of ‘compatibility with the bio-basis’, the
membership v; of a subsequence x; in a cluster B; should be determined solely by how close
it is to the bio-basis v; of the class, and should not be coupled with its similarity with respect
to other classes. Thus, in each iteration, the updated value of v; depends only on the similarity
between the subsequence x; and the bio-basis v;. The resulting partition of the biological data
can be interpreted as a possibilistic partition, and the membership values may be interpreted
as degrees of possibility of the subsequences belonging to the classes, i.e. the compatibilities
of the subsequences with the bio-bases. The updating of the bio-bases proceeds exactly the
same way as in the case of the fuzzy c-medoids algorithm.

3.4 Fuzzy-possibilistic c-medoids

Incorporating both fuzzy and possibilistic membership functions into hard c-medoids
algorithm, we propose fuzzy-possibilistic c-medoids algorithm. It avoids the noise sensitivity
defect of fuzzy c-medoids and the coincident clusters problem of possibilistic c-medoids.
For bio-bases selection, it minimizes

Jep = Y Y {a(uy)™ + b)Y (h(vi, vi) — h(xj v)) + > mi Y (I —vp)™. (1)
i=1  j=1

j=1i=1

The constants a and b define the relative importance of fuzzy and possibilistic memberships in
the objective function and a + b = 1. Note that, u;; has the same meaning of membership as
thatin fuzzy c-medoids. Similarly, v;; has the same interpretation of typicality as in possibilistic
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c-medoids and is given by

1 b(h(vi, vi) — h(xj, v)) |7
vj=——=; where D= (i, vi) (x;, vi)) ; (12)
1+D ni
The new bio-bases are calculated as:
vi =xg; where ¢ =argmin) {a(ua)™ +bvi)"}(h(x}, x;)
k=1
—h(xg, x7)); 1 <j=<n (13)

The main steps of the algorithm are as follows:

(i) Assign initial bio-bases v;,i =1,2,...,c.
(ii) Choose values for a, b, niy, ni», and threshold €;; and set iteration counter ¢ = 1.
(iii) Compute w; and v; by equations (5) and (12) respectively for ¢ clusters and n
subsequences.
(iv) Estimate n; using equation (10).
(v) Update bio-basis v; by equation (13).
(vi) Repeat steps (iii)—(vi), by incrementing ¢, until |v;(¢) — v;(t — 1)| > €.

4. Rough sets and rough c-medoids algorithm

This section presents another version of c-medoids algorithm, known as rough c-medoids,
based on rough sets. For ease of subsequent discussions, next we present the basic notions in
the theory of rough sets.

4.1 Rough sets

The theory of rough sets begins with the notion of an approximation space, which is a pair
(U, R), where U is a non-empty set (the universe of discourse) and R an equivalence relation
on U, i.e. R is reflexive, symmetric, and transitive. The relation R decomposes the set U into
disjoint classes in such a way that two elements x, y are in the same class iff (x, y) € R. Letus
denote by U/ R the quotient set of U by the relation R, and

U/R:{XI,XQ,.-.,Xm}

where X; is an equivalence class of R, i = 1,2, ..., m. If two elements x, y in U belong
to the same equivalence class X; € U/R, we say that x and y are indistinguishable. The
equivalence classes of R and the empty set ¥ are the elementary sets in the approximation
space (U, R). Given an arbitrary set X € 2Y, in general it may not be possible to describe X
precisely in (U, R). One may characterize X by a pair of lower and upper approximations
defined as follows [14]:

R = x: rROO= {J X

X;cX X;NX#A

That is, the lower approximation R(X) is the union of all the elementary sets which are
subsets of X, and the upper approximation R(X) is the union of all the elementary sets which
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have a non-empty intersection with X. The interval [R(X), R(X)] is the representation of an
ordinary set X in the approximation space (U, R) or simply called the rough set of X. The
lower (resp. upper) approximation R(X) (resp. R(X)) is interpreted as the collection of those
elements of U that definitely (resp. possibly) belong to X. Further, we can define:

e aset X € 2V is said to be definable (or exact) in (U, R) iff R(X) = R(X):

e forany X, Y e 2Y, X issaid tobe roughly included in Y, denoted by X CY,iff R(X) € R(Y)
and R(X) C R(Y);

e X and Y is said to be roughly equal, denoted by X ~; Y, in (U, R) iff R(X) = R(Y) and
R(X) = R(Y).

In [14], Pawlak discusses two numerical characterizations of imprecision of a subset X in

the approximation space (U, R): accuracy and roughness. Accuracy of X, denoted by ag(X),

is simply the ratio of the number of objects in its lower approximation to that in its upper
approximation; namely

RO
|R(X)|
The roughness of X, denoted by pg(X), is defined by subtracting the accuracy from 1:

ar(X)

R

Pr(X) =1—ar(X) =1 ROO)|

Note that the lower the roughness of a subset, the better is its approximation. Further, the
following observations are easily obtained:

(i) As R(X) € X € R(X),0 < pr(X) < 1.
(i) By convention, when X = ¢, R(X) = R(X) = @ and pg(X) = 0.
(iii) pr(X) = 0if and only if X is definable in (U, R).

4.2  Rough c-medoids

Let A(B;) and A(ﬂi) represent the lower and upper approximations of cluster 8;, and B(f;) =
A(B;) — A(B;) denote the boundary region of cluster §; (figure 1). In the rough c-medoids
algorithm, the concept of c-medoids algorithm is extended by viewing each cluster §; as
an interval or rough set. However, it is possible to define a pair of lower and upper bounds
[A(B)), A(ﬂi)] or arough set for every set 8; € U, U is the set of objects of concern [14]. The
family of upper and lower bounds is required to follow some of the basic rough set properties
such as:

Cluster f3;

Lower approximation A( Bj)

Upper approximation  A( Bj)
Boundary B(B;) — A(Bj)— A( B}

Figure 1. Rough c-medoids: cluster §; is represented by lower and upper bounds [A(B;), ABi)].
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(i) an object x; can be part of at most one lower bound;
(ii) x; € A(B) = x; € A(B;); and
(iii) an object x; is not part of any lower bound = x; belongs to two or more upper bounds.

Incorporating rough sets into the c-medoids algorithm, we propose a rough c-medoids
algorithm for generating bio-bases. It adds the concept of lower and upper bounds to the
c-medoids algorithm. It classifies the subsequence space into two parts — lower approximation
and boundary region. The bio-basis (medoid) is calculated based on the weighted average of
the lower bound and boundary region. All the subsequences in the lower approximation take
the same weight w while all the subsequences in the boundary take another weighting index
w uniformly. Calculation of the bio-bases is modified to include the effects of lower as well as
upper bounds. The modified bio-bases calculation for rough c-medoids algorithm is given by:

v = Xy (14)
where ¢ is given by

wxA+wxB ifAB;) #0, B(B:) # 0

g = argmin § A ifA(B) # 9, B(Bi) =9
B it A(B) =0, B(Bi) #0
A= Z (h(xj,xj) —h(xx, xj)); and B = Z (h(xj,xj) — h(xg, xj)).
Xk €A(B) xk€B(B)

B represents the ith cluster associated with the bio-basis v;. A(B;) and B(f;) represent the
lower bound and the boundary region of cluster §;. The parameters w and w correspond to
the relative importance of the lower bound and boundary region, and w + w = 1. The main
steps of rough c-medoids are as follows:

(i) Assign initial bio-bases v;,i = 1,2, ..., c. Choose a value for threshold ¢,.

(ii) For each subsequence x;, calculate the homology alignment score A(x;, v;) between
itself and the bio-basis v; of cluster f;.

(iii) If 2(x;, v;) is maximum for 1 <i < cand h(x;, v;) — h(x;, ) < €, then x; € A(ﬁ,-)
and x; € A(ﬂk). Furthermore, x; is not part of any lower bound.

(iv) Otherwise, x; € A(B;) such that h(x;, v;) is the maximum for 1 < i < c. In addition, by
the properties of rough sets, x; € A(B).

(v) Compute new bio-basis (medoid) as per equation (14).

(vi) Repeat steps (ii)—(v) until no more new assignments can be made.

5. Selection of initial bio-basis and quantitative measure

This section provides the methodology to select initial bio-bases for different c-medoids
algorithms. Some quantitative measures are also presented to evaluate the quality of selected
bio-bases.

5.1 Selection of initial bio-basis

A limitation of the c-medoids algorithm is that it can only achieve a local optimum solution
that depends on the initial choice of the bio-bases. Consequently, computing resources may
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be wasted in that some initial bio-bases get stuck in regions of the input space with a scarcity
of data points and may therefore never have the chance to move to new locations where
they are needed. To overcome this limitation of the c-medoids algorithm, next we propose a
method to select initial bio-bases, which is based on a similarity measure using amino acid
mutation matrix. It enables the algorithm to converge to an optimum or near optimum solutions
(bio-bases).

Prior to describing the proposed method for selecting initial bio-bases, next we provide a
measure to quantify the similarity between two subsequences in terms of pairwise homology
alignment score.

o Degree of resemblance (DOR): The DOR between two subsequences x; and x is defined as

h(xj’ xi)

DOR(X_,‘, x,~) = m

15)
It is the ratio between the non-gapped pairwise homology alignment score of two input
subsequences x; and x; based on an amino acid mutation matrix to the maximum homology
alignment score of the subsequence x;. It is used to quantify the similarity in terms of the
homology alignment score between pairs of subsequences. If functions of two subsequences
are different, the DOR between them is small. A high value of the DOR(x;, x;) between
two subsequences x; and x; asserts that they may have the same function statistically. If
two subsequences are same, the DOR between them is maximum, that is, DOR (x;, x;) = 1.
Thus, 0 < DOR(x;, x;) < 1. Also, DOR(x;, x;) # DOR(x;, x;).

Based on the concept of the DOR, next we describe the method for selecting initial bio-bases.
The main steps of this method proceed as follows.

(i) For each subsequence x;, calculate the DOR(x;, x;) between itself and the subsequence
Xjs Vf;’:l'
(ii) Calculate the similarity score between subsequences x; and x;

1 if DOR(xj, x;) > €3

S(xj, x;) = ]
0 Otherwise.

(iii) For each x;, calculate the total number of similar subsequences of x; as

N(x) = Zs(x_f»xf)~

j=1

(iv) Sortn subsequences according to their values of N(x;) such that N(x;) > N(xp) > --- >
N(x,).

(v) If N(x;) > N(x;) and DOR(x}, x;) > €3, then x; cannot be considered as a bio-basis,
resulting in a reduced set of subsequences to be considered for initial bio-bases.

(vi) Let there be 7 subsequences in the reduced set having N(x;) values such that N(x;) >
N(x3) > --+ > N(x;). A heuristic threshold function can be defined as [27]

R i 1
Tr= —; whereR:Z—
€4 = N(xi) — N(xi11)

where €4 is a constant (=0.5, say), so that all subsequences in the reduced set having
N(x;) value higher than it are regarded as the initial bio-bases.
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The value of Tr is high if most of the N(x;) are large and close to each other. The above
condition occurs when a small number of large clusters are present. On the other hand, if
the N(x;) have wide variation among them, then the number of clusters with smaller size
increases. Accordingly, Tr attains a lower value.

Note that the main motive for introducing this threshold function lies in reducing the number
of bio-bases. We attempt to eliminate noisy bio-bases (subsequence representatives having
lower values of N(x;)) from the whole subsequences. The whole approach is, therefore, data
dependent.

5.2 Quantitative measure

In this section we present some quantitative indices to evaluate the quality of selected bio-bases
incorporating the concepts of non-gapped pairwise homology alignment score and mutual
information.

5.2.1 Using homology alignment score. Based on the non-gapped pairwise homology
alignment score, next we introduce two indices, 8 and y, for evaluating quantitatively the
quality of selected bio-bases.

e [ Index: This is defined as

Z n; Z Zi’;,’;}: i Z Z DOR(x;, vi) (16)

XjEP; X;€pBi

where n; is the number of subsequences in the ith cluster 8; and h(x;, v;) is the non-gapped
pairwise homology alignment score between subsequence x ; and bio-basis v;. The B index is
the ratio between the normalized average homology alignment scores of input subsequences
and their corresponding bio-bases. A good clustering procedure for bio-bases selection
should make all input subsequences as similar to their bio-bases as possible. The f index
increases with increase in homology alignment scores within a cluster. Therefore, for a
given dataset and ¢ value, the higher the homology alignment scores within the clusters,
the higher would be the 8 value. The value of 8 also increases with c. In an extreme case
when the number of clusters is maximum, i.e. ¢ = n, the total number of subsequences in
the dataset, we have 8 = 1. Thus, 0 < 8 < 1.
e y Index: This can be defined as

h(j,v;))  h(v;,v;) .
y = max = + e
Lji 2 Lh(ui,v) o h(vj, v))

1
y = max E{DOR(vj, v;) +DOR(v;, vj)}; O<y <1 (17)
ij

The y index calculates the maximum normalized homology alignment score between
bio-bases. A good clustering procedure for bio-bases selection should make the homology
alignment score between all bio-bases as low as possible. The y index minimizes the
between-cluster homology alignment score.

5.2.2 Using mutual information. Using the concept of mutual information, one can
measure the within-cluster and between-cluster shared information. In principle, mutual infor-
mation is regarded as a non-linear correlation function and can be used to measure the



610 P. Maji and S. K. Pal

mutual relation between a bio-basis and the subsequences as well as the mutual relation
between each pair of bio-bases. It is used to quantify the information shared by two objects.
If two independent objects do not share much information, the mutual information value
between them is small, while two highly non-linearly correlated objects will demonstrate
a high mutual information value. In the present case, the objects can be the bio-bases and
the subsequences.

e Based on the mutual information, the 8 index would be as follows.
_ MI(x; MI(x;, vi) v;)
= 18
P Zn, Z MG, ) )
MI(x;, x;) is the mutual information between subsequences x; and x;, and is defined as

MI(x;, x;) = H(x;) + H(x;) — H(x;, x;) (19)

with H(x;) and H(x ;) being the entropy of subsequences x; and x ; respectively, and H(x;, x ;)
their joint entropy. H(x;) and H(x;, x;) are defined as

H(x;) = —p(xp)Inp(x;);  H(xi, x;) = —p(x;, x;) Inp(x;, x;). (20)

p(x;) and p(x;, x;) are the a priori probability of x; and joint probability of x; and x;
respectively. The f index is the ratio between the normalized average mutual information
of input subsequences to their corresponding bio-bases. A bio-bases selection procedure
should make the shared information between all input subsequences and their bio-bases
as high as possible. The 8 index increases with increase in mutual information within a
cluster. Therefore, for a given dataset and ¢ value, the higher the mutual information within
the clusters, the higher would be the S value. The value of 8 also increases with ¢. When
c=n,B=1.Thus,0< B < 1.
e Similarly, the y index is

5 = max MI(v;, v;)  MI(v;, v;)
i 2 | MI(ui, v)  MI(vj,v) ]

1)

The y index calculates the maximum normalized mutual information between bio-bases.
A good clustering procedure for bio-bases selection should make the shared information
between all bio-bases as low as possible. The y index minimizes the between-cluster mutual
information.

6. Experimental results

The performance of rough c-medoids (RCMdd) and fuzzy-possibilistic c-medoids (FPCMdd)
is compared extensively with that of various other related ones. The algorithms compared are
(i) hard c-medoids (HCMdd) [11, 12], (ii) fuzzy c-medoids (FCMdd) [24], (iii) possibilistic
c-medoids (PCMdd) [24], (iv) method proposed by Yang and Thomson [7] using mutual
information (MI), and (v) method proposed by Berry et al. [6] using genetic algorithms and
the Fisher ratio (GAFR).

To analyse the performance of the proposed methods, we have used a real dataset of
HIV (human immunodeficiency virus) protein sequences. The initial bio-bases {v;} for
c-medoids algorithms, which represent crude clusters in the non-numerical space, have been
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generated by the methodology described in section 5.1. The Dayhoff amino acid mutation
matrix is used to calculate the non-gapped pairwise homology alignment score between two
subsequences [2—4]. In all the experiments, the parameters used are as follows:

Fuzzifiers: m; = 2.0 and m, = 2.0; Constants: ¢ = 0.5and b = 0.5
Parameters: €; = 0.001, ¢, = 0.2, and ¢4 = 0.5

The parameters are held constant across all runs. All the experiments are implemented in C
and run in the LINUX® environment having machine configuration Pentium® 1V, 3.2 GHz,
1 MB cache, and 1 GB RAM.

6.1 Description of dataset

HIV protease belongs to the family of aspartyl proteases, which have been well-characterized
as proteolytic enzymes. The catalytic component is composed of carboxyl groups from two
aspartyl residues located in both NH,- and COOH-terminal halves of the enzyme molecule in
HIV protease [28]. They are strongly substrate-selective and cleavage-specific demonstrating
their capability of cleaving large, virus-specific polypeptides called polyproteins between a
specific pair of amino acids. Miller et al. [29] showed that the cleavage sites in HIV polyprotein
can extend to an octapeptide region. The amino acid residues within this octapeptide region
are represented by P4-P3-P,-P-Py/-Py-P3-Py, where P4-P3-P,-P; is the NH;-terminal half
and P-P,-P3-Py the COOH-terminal half. Their counterparts in HIV protease are repre-
sented by S4-S3-S»-S1-S1/-S»-S3-Sy [30]. The HIV protease cleavage site is exactly between
P] and P]f.

The five whole HIV protein sequences have been downloaded from NCBI (the National
Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov). The accession num-
bers are AAC82593, AAG42635, AAO40777, NP_057849, and NP_057850. Details of these
five sequences are included in table 1. Note that MA, CA, NC, TF, PR, RT, RH, and IN
are matrix protein, capsid protein, nucleocapsid core protein, transframe peptide, protease,
reverse transcriptase, RNAse, and integrase, respectively. They are all cleavage products of
HIV protease. p1, p2, and p6 are also cleavage products [31, 32]. For instance, 132 (MA/CA)
means that the cleavage site is between the residues 132 (P;) and 133 (Py/) and the cleavage
split the polyprotein producing two functional proteins, the matrix protein and the capsid
protein. The subsequences from each of five whole protein sequences are obtained through
moving a sliding window with eight residues. Once a subsequence is produced, it is considered
as functional (Class A) if there is a cleavage site between P;-Py/, otherwise it is labelled as
non-functional (Class B).

Table 1. Details of five whole HIV protein sequences from NCBI.

Accession number Sequence length Cleavage sites at P

AAC82593 500 132(MA/CA), 363(CA/p2), 377(p2/NC), 432(NC/p1), 448(p1/p6)
AAG42635 498 132(MA/CA), 363(CA/p2), 376(p2/NC), 430(NC/pl), 446(p1/p6)
AAO40777 500 132(MA/CA), 363(CA/p2), 377(p2/NC), 432(NC/pl), 448(p1/p6)
NP_057849 1435 488(TF/PR), 587(PR/RT), 1027(RT/RH), 1147(RH/IN)

NP_057850 500 132(MA/CA), 363(CA /p2), 377(p2/NC), 432(NC/p1), 448(p1/p6)
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Table 2. Performance of different algorithms on NP_057849.

Parameters Algorithms B y B y
HCMdd 0.621 0.827 0.803 1.000
FCMdd 0.746 0.828 0.811 0.996
€3 =0.70 PCMdd 0.750 0.825 0.814 0.991
n=284,Tr = 16.58 FPCMdd 0.752 0.819 0.816 0.988
c=27 RCMdd 0.635 0.829 0.812 1.000
MI 0.625 0.913 0.801 1.000
GAFR 0.618 0.902 0.810 1.000
HCMdd 0.643 0.751 0.807 1.000
FCMdd 0.767 0.701 0.823 0.956
€3 =0.75 PCMdd 0.773 0.713 0.826 0.953
n =223, Tr=35.32 FPCMdd 0.782 0.703 0.825 0.937
c=36 RCMdd 0.651 0.751 0.822 1.000
MI 0.637 0.854 0.802 1.000
GAFR 0.646 0.872 0.811 1.000
HCMdd 0.605 0.938 0.807 1.000
FCMdd 0.667 0.941 0.805 1.000
€3 = 0.80 PCMdd 0.670 0.941 0.806 1.000
i = 594, Tr=28.05 FPCMdd 0.674 0.938 0.810 1.000
c=6 RCMdd 0.604 0.941 0.805 1.000
MI 0.611 0.938 0.811 1.000
GAFR 0.608 0.957 0.803 1.000

HCMdd: hard c-medoids; FCMdd: fuzzy c-medoids; PCMdd: possibilistic c-medoids;
FPCMdd: fuzzy-possibilistic c-medoids; RCMdd: rough c-medoids;
MI: mutual information (Yang and Thomson [7]); GAFR: genetic algorithms and fisher ratio (Berry [6])

6.2 Performance analysis

The experimental results on five whole HIV protein datasets, reported in table 1, are presented
in tables 2—6. Subsequent discussions analyse the results with respect to 8, y, B, v, and
execution time.

6.2.1 Optimum value of €3. Table 2 reports the values of B, y, B, and 7 of different
algorithms for the dataset NP_057849. Results are presented for different values of €3. The
parameters generated from the dataset NP_057849 are shown in table 2. The value of c is
computed using the method described in section 5.1. It may be noted that the optimal choice
of ¢ is a function of the value €3. The best result is achieved at €3 = 0.75. For the purpose of
comparison, ¢ bio-bases are generated using GAFR and MI.

It is seen from the results of table 2 that the FPCMdd achieves consistently better perfor-
mance than other algorithms with respect to the values of A, y, B, and y for different values
of e3. The best performance with respect to the values of 8, v, B, and y, is achieved with
€3 = 0.75. At €3 = 0.75, the values of N(x;) for most of the subsequences in reduced dataset
are large and close to each other. So, the threshold Tr attains a higher value compared to that
of other values of €3. In effect, the subsequences selected as initial bio-bases with €3 = 0.75,
have higher values of N(x;). Hence, the quality of generated clusters using different c-medoids
algorithms are better compared to other values of €3.

6.2.2 Random versus DOR based Initialization. Tables 3 and 4 provide comparative
results of different c-medoids algorithms with random initialization of bio-bases and the
DOR based initialization method considering €3 = 0.75. The DOR based initialization is
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Table 3. Performance of different c-medoids algorithms.

Dataset Algorithms Bio-bases B y B y
HCMdd Random 0.615 0.817 0.809 1.000
Proposed 0.719 0.702 0.852 1.000
FCMdd Random 0.655 0.791 0.821 1.000
Proposed 0.814 0.680 0.901 0.956
AACS82593 PCMdd Random 0.644 0.772 0.805 1.000
Proposed 0.815 0.677 0.904 0.949
FPCMdd Random 0.698 0.757 0.832 1.000
Proposed 0.821 0.677 0.909 0.952
RCMdd Random 0.674 0.813 0.825 1.000
Proposed 0.815 0.677 0.872 0.983
HCMdd Random 0.657 0.799 0.803 1.000
Proposed 0.714 0.664 0.853 1.000
FCMdd Random 0.698 0.706 0.818 1.000
Proposed 0.807 0.674 0.892 0.924
AAG42635 PCMdd Random 0.701 0.689 0.824 1.000
Proposed 0.811 0.672 0.897 0.937
FPCMdd Random 0.704 0.683 0.828 1.000
Proposed 0.811 0.659 0.894 0.928
RCMdd Random 0.685 0.709 0.812 1.000
Proposed 0.768 0.681 0.882 1.000
HCMdd Random 0.651 0.864 0.837 1.000
Proposed 0.794 0.723 0.881 1.000
FCMdd Random 0.718 0.804 0.842 1.000
Proposed 0.817 0.634 0912 0.977
AAO040777 PCMdd Random 0.726 0.801 0.846 1.000
Proposed 0.821 0.630 0911 0.962
FPCMdd Random 0.729 0.796 0.850 1.000
Proposed 0.824 0.629 0914 0.972
RCMdd Random 0.717 0.791 0.847 1.000
Proposed 0.809 0.633 0.879 0.977
HCMdd Random 0.601 0.882 0.801 1.000
Proposed 0.643 0.751 0.807 1.000
FCMdd Random 0.606 0.802 0.811 1.000
Proposed 0.767 0.701 0.823 0.956
NP_057849 PCMdd Random 0.614 0.802 0.817 1.000
Proposed 0.773 0.713 0.826 0.953
FPCMdd Random 0.651 0.799 0.805 1.000
Proposed 0.782 0.703 0.825 0.937
RCMdd Random 0.600 0.811 0.801 1.000
Proposed 0.651 0.751 0.822 1.000
HCMdd Random 0.611 0.913 0.792 1.000
Proposed 0.714 0.719 0.801 1.000
FCMdd Random 0.648 0.881 0.796 1.000
Proposed 0.784 0.692 0.886 0.983
NP_057850 PCMdd Random 0.657 0.837 0.799 1.000
Proposed 0.801 0.692 0.889 0.983
FPCMdd Random 0.662 0.831 0.801 1.000
Proposed 0.807 0.688 0.890 0.971
RCMdd Random 0.639 0.895 0.794 1.000

Proposed 0.758 0.702 0.826 0.993
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Table 4. Execution time (milliseconds) of different c-medoids algorithm.

Algorithms Bio-bases AAC82593 AAG42635 AAO40777 NP_057849 NP_057850
HCMdd Random 2359 2574 2418 8728 2164
Proposed 535 534 532 4397 529
FCMdd Random 7349 16342 11079 293264 13217
Proposed 5898 11998 9131 240834 9174
PCMdd Random 8217 13691 10983 295990 14372
Proposed 5982 10311 9618 241033 9713
FPCMdd Random 9353 15892 12669 295874 15307
Proposed 6437 12133 12561 250963 10521
RCMdd Random 6108 13816 8053 268199 10318
Proposed 5691 8015 5880 160563 5895
Table 5. Performance of different c-medoids algorithms.
Dataset Algorithms B Y B 1%
HCMdd 0.719 0.702 0.852 1.000
FCMdd 0.814 0.680 0.901 0.956
PCMdd 0.815 0.677 0.904 0.949
AACS82593 FPCMdd 0.821 0.677 0.909 0.952
RCMdd 0.815 0.677 0.872 0.983
MI 0.764 0.788 0.906 0.977
GAFR 0.736 0.814 0.826 1.000
HCMdd 0.714 0.664 0.853 1.000
FCMdd 0.807 0.674 0.892 0.924
PCMdd 0.811 0.672 0.897 0.937
AAG42635 FPCMdd 0.811 0.659 0.894 0.928
RCMdd 0.768 0.681 0.882 1.000
MI 0.732 0.637 0.829 0.989
GAFR 0.707 0.713 0.801 1.000
HCMdd 0.794 0.723 0.881 1.000
FCMdd 0.817 0.634 0.912 0.977
PCMdd 0.821 0.630 0.911 0.962
AAO40777 FPCMdd 0.824 0.629 0.914 0.972
RCMdd 0.809 0.633 0.879 0.977
MI 0.801 0.827 0.890 0.982
GAFR 0.773 0.912 0.863 1.000
HCMdd 0.643 0.751 0.807 1.000
FCMdd 0.767 0.701 0.823 0.956
PCMdd 0.773 0.713 0.826 0.953
NP_057849 FPCMdd 0.782 0.703 0.825 0.937
RCMdd 0.651 0.751 0.822 1.000
MI 0.637 0.854 0.802 1.000
GAFR 0.646 0.872 0.811 1.000
HCMdd 0.714 0.719 0.801 1.000
FCMdd 0.784 0.692 0.886 0.983
PCMdd 0.801 0.692 0.889 0.983
NP_057850 FPCMdd 0.807 0.688 0.890 0.971
RCMdd 0.758 0.702 0.826 0.993
MI 0.736 0.829 0.833 1.000
GAFR 0.741 0914 0.809 1.000




Protein sequence analysis 615

Table 6. Execution time (milliseconds) of different methods.

Algorithms AAC82593 AAG42635 AAO40777 NP_057849 NP_057850
HCMdd 535 534 532 4397 529
FCMdd 5898 11998 9131 240834 9174
PCMdd 5982 10311 9618 241033 9713
FPCMdd 6437 12133 12561 250963 10521
RCMdd 5691 8015 5880 160563 5895
MI 8617 13082 12974 250138 9827
GAFR 12213 12694 11729 291413 10873

found to improve the performance in terms of B, y, B, and 7 as well as reduce the time
requirement of all c-medoids algorithms. It is also observed that HCMdd with the DOR
based initialization performs similar to FPCMdd with random initialization, although it is
expected that FPCMdd is superior to HCMdd in partitioning subsequences. While in random
initialization, the c-medoids algorithms get stuck in local optima, the DOR based scheme
enables the algorithms to converge to an optimum or near optimum solution. In effect, the
execution times required for different c-medoids are shorter in the DOR based initialization
compared to random initialization.

6.2.3 Performance on five protein datasets. Finally, table 5 provides the comparative
results of different algorithms for five whole HIV protein datasets. It is seen that the FPCMdd
with the DOR based initialization produces bio-bases having the highest 8 and S values and
lowest y and y values for all the cases. Table 6 provides comparative results of different algo-
rithms in terms of execution time for five datasets. The execution time required for FPCMdd
is comparable to MI and GAFR. For the HCMdd, although the execution time is less, the
performance is significantly poorer than the RCMdd and FPCMdd.
The following conclusions can be drawn from the results reported in tables 2—6:

(i) Itis observed that FPCMdd is superior to HCMdd both with random and the DOR based
initialization. However, HCMdd requires considerably less time compared to FPCMdd.
But, the performance of HCMdd is significantly poorer than FPCMdd. The performance
of FCMdd, PCMdd, and RCMdd is intermediate between FPCMdd and HCMdd.

(ii) The DOR based initialization is found to improve the values of 8, y, B, and 7 as well as
reduce the time requirement substantially for all c-medoids algorithms.

(iii) Use of fuzzy and possibilistic memberships and rough sets adds a small computational
load to the HCMdd algorithm; however the corresponding integrated methods (FCMdd,
PCMdd, FPCMdd, and RCMdd) show a definite increase in 8 and B values and decrease
in y and y values.

(iv) Integration of soft computing and c-medoids, in RCMdd, FCMdd, PCMdd, and FPCMdd,
produces a minimum set of most informative bio-bases in least computation time
compared to GAFR and MI.

(v) Itis observed that the RCMdd algorithm requires significantly less time compared to MI
and GAFR having comparable performance. Reduction in time is achieved due to the
DOR based initialization. The DOR based initialization reduces the convergence time of
the RCMdd algorithm considerably compared to random initialization.
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The best performance of the proposed algorithms is achieved due to the following three
reasons:

(i) the DOR based initialization of bio-bases enables the algorithm to converge to an optimum
or near optimum solution;
(i1) the concept of lower and upper bounds of rough sets in RCMdd deals with uncertainty,
vagueness, and incompleteness in class definition; and
(iii) both fuzzy and possibilistic memberships in FPCMdd handle overlapping partitions
efficiently and deal with uncertainty, vagueness, and incompleteness in class definition.

In effect, the minimum set of most informative bio-bases are obtained using proposed
algorithms.

7. Conclusion

The main contribution of this paper is to develop a methodology integrating the merits of
soft computing (rough sets and fuzzy sets), c-medoids algorithm, and amino acid mutation
matrix for bio-bases selection. Some quantitative measures are introduced to evaluate quan-
titatively the quality of selected bio-bases. The effectiveness of the proposed algorithms has
been demonstrated, along with a comparison with other algorithms, on five whole HIV pro-
tein datasets. The concept of ‘degree of resemblance’ is found to be successful in effectively
circumventing the initialization and local minima problems of iterative refinement clustering
algorithms like c-medoids. In addition, this concept enables efficient selection of a minimum
set of most informative bio-bases compared to existing methods.

Although the methodology of integrating c-medoids algorithm and soft computing (rough
sets and fuzzy sets) has been efficiently demonstrated for protein sequence analysis, the concept
can be applied to other bioinformatics problems. The integration of c-medoids, rough sets,
fuzzy sets, and evolutionary algorithm, may be used for generating a minimum set of bio-bases
with maximum information.
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