QUANTUM MARKOV PROCESSES WITH A CHRISTENSEN-EVANS GENERATOR IN A VON NEUMANN ALGEBRA

K. R. PARTHASARATHY and K. B. SINHA

1. Introduction

Let \mathscr{A} be a unital von Neumann algebra of operators on a complex separable Hilbert space \mathscr{H}_{0}, and let $\left\{T_{t}, t \geqslant 0\right\}$ be a uniformly continuous quantum dynamical semigroup of completely positive unital maps on \mathscr{A}. The infinitesimal generator \mathscr{L} of $\left\{T_{t}\right\}$ is a bounded linear operator on the Banach space \mathscr{A}. For any Hilbert space \mathscr{K}, denote by $\mathscr{B}(\mathscr{K})$ the von Neumann algebra of all bounded operators on \mathscr{K}. Christensen and Evans [3] have shown that \mathscr{L} has the form

$$
\begin{equation*}
\mathscr{L}(X)=R^{*} \pi(X) R+K_{0}^{*} X+X K_{0}, \quad X \in \mathscr{A} \tag{1.1}
\end{equation*}
$$

where π is a representation of \mathscr{A} in $\mathscr{B}(\mathscr{K})$ for some Hilbert space $\mathscr{K}, R: \mathscr{H}_{0} \rightarrow \mathscr{K}$ is a bounded operator satisfying the 'minimality' condition that the set $\{(R X-\pi(X) R) u$, $\left.u \in \mathscr{H}_{0}, X \in \mathscr{A}\right\}$ is total in \mathscr{K}, and K_{0} is a fixed element of \mathscr{A}. The unitality of $\left\{T_{t}\right\}$ implies that $\mathscr{L}(1)=0$, and consequently $K_{0}=i H-\frac{1}{2} R^{*} R$, where H is a hermitian element of \mathscr{A}. Thus (1.1) can be expressed as

$$
\begin{equation*}
\mathscr{L}(X)=i[H, X]-\frac{1}{2}\left(R^{*} R X+X R^{*} R-2 R^{*} \pi(X) R\right), \quad X \in \mathscr{A} . \tag{1.2}
\end{equation*}
$$

We say that the quadruple ($\mathscr{K}, \pi, R, H)$ constitutes the set of Christensen-Evans (CE) parameters which determine the CE generator \mathscr{L} of the semigroup $\left\{T_{t}\right\}$. It is quite possible that another set $\left(\mathscr{K}^{\prime}, \pi^{\prime}, R^{\prime}, H^{\prime}\right)$ of CE parameters may determine the same generator \mathscr{L}. In such a case, we say that these two sets of CE parameters are equivalent. In Section 2 we study this equivalence relation in some detail.

It is known from $[\mathbf{1 , 2}$] that, corresponding to the quantum dynamical semigroup $\left\{T_{t}\right\}$, there exists, up to unitary equivalence, a unique minimal Markov flow $\left(\mathscr{H}, F_{t}, j_{t}\right)$, $t \geqslant 0$, satisfying the following properties. (1) \mathscr{H} is a Hilbert space containing \mathscr{H}_{0} as a subspace. (2) $\left\{F_{t}\right\}$ is an increasing family of projections in \mathscr{H}, increasing to 1 (the identity projection) in \mathscr{H} as $t \rightarrow \infty$, and F_{0} is the projection on \mathscr{H}_{0}. (3) j_{t} is a * homomorphism from \mathscr{A} into $\mathscr{B}(\mathscr{H})$ such that $j_{0}(X)=X F_{0}, j_{t}(1)=F_{t}, F_{s} j_{t}(X) F_{s}=$ $j_{s}\left(T_{t-s}(X)\right)$ for all $s \leqslant t$, and the map $t \rightarrow j_{t}(X)$ is strongly continuous for each X in \mathscr{A}. (4) The set

$$
\left\{j_{t_{1}}\left(X_{1}\right) j_{t_{2}}\left(X_{2}\right) \cdots j_{t_{n}}\left(X_{n}\right) u, u \in \mathscr{H}_{0}, t_{1}>t_{2}>\cdots>t_{n} \geqslant 0, n=1,2, \ldots, X_{j} \in \mathscr{A}\right\}
$$

is total in \mathscr{H}.
If we drop condition (4) in the preceding paragraph, then we say that $\left(\mathscr{H}, F_{t}, j_{t}\right)$ is a Markov dilation for the semigroup $\left\{T_{t}\right\}$ or, equivalently, the generator \mathscr{L}. In [1, 2], the construction of the minimal dilation was achieved on the basis of a full knowledge

Received 20 December 1995; revised 25 November 1996; transferred from J. London Math. Soc.
1991 Mathematics Subject Classification 81S25, 60J25.
of the semigroup $\left\{T_{t}\right\}$ and an application of the GNS principle. However, it would be desirable to construct Markov dilations starting from \mathscr{L} or some parameters (like the CE parameters) determining \mathscr{L}. In the simplest case, when $\mathscr{A}=\mathscr{B}\left(\mathscr{H}_{0}\right)$, the CE generator assumes the Lindblad form [8]:

$$
\mathscr{L}(X)=i[H, X]-\frac{1}{2} \sum_{j}\left(L_{j}^{*} L_{j} X+X L_{j}^{*} L_{j}-2 L_{j}^{*} X L_{j}\right),
$$

where $H, L_{j} \in \mathscr{B}\left(\mathscr{H}_{0}\right), H$ is hermitian, and $\sum_{j} L_{j}^{*} L_{j}$ is a finite or strongly convergent countable sum. From the methods of quantum stochastic calculus $[\mathbf{6}, \mathbf{9}, \mathbf{1 1}]$, it is known how to construct Markov dilations of \mathscr{L} by solving quantum stochastic differential equations (qsde) involving H and the L_{j} in its 'diffusion' coefficients [6, 10, 11]. However, even in this case, there does not seem to exist a procedure for constructing the minimal dilation starting from the parameters H, L_{j}. In Section 3 of this paper we start from the CE parameters in (1.2), and construct a Markov dilation for \mathscr{L}. The Markov process thus obtained turns out to be a Poisson imbedding of a discrete time quantum Markov chain, but looked at in an 'interaction' picture. The idea of an interaction picture of a quantum diffusion goes back to [4], [5] and [7].

The Markov dilation presented here depends very much on the parameters (\mathscr{K}, π, R, H) which determine \mathscr{L} through (1.2). It should be interesting to explore the connection between the dilations determined by different parametrizations for the same generator \mathscr{L}.

2. An equivalence relation for the Christensen-Evans parameters

Let $\mathscr{H}_{0}, \mathscr{A}, \mathscr{L}$ be as in Section 1, and let $\left(\mathscr{K}_{j}, \pi_{j}, R_{j}, H_{j}\right), j=1,2$, be two quadruples determining the same CE generator \mathscr{L} via (1.2), so that $H_{j}, R_{j}^{*} R_{j} \in \mathscr{A}$, and

$$
\begin{equation*}
\mathscr{L}(X)=i\left[H_{j}, X\right]-\frac{1}{2}\left(R_{j}^{*} R_{j} X+X R_{j}^{*} R_{j}-2 R_{j}^{*} \pi(X) R_{j}\right), \quad X \in \mathscr{A}, j=1,2 \tag{2.1}
\end{equation*}
$$

Denote by \mathscr{A}^{\prime} the commutant of \mathscr{A} in $\mathscr{B}\left(\mathscr{H}_{0}\right)$.
Proposition 2.1. There exists a unitary isomorphism $\Gamma: \mathscr{K}_{1} \rightarrow \mathscr{K}_{2}$ such that, for all $X \in \mathscr{A}$, the following hold:
(1) $\Gamma \pi_{1}(X)=\pi_{2}(X) \Gamma$;
(2) $\left(\Gamma^{*} R_{2}-R_{1}\right) X=\pi_{1}(X)\left(\Gamma^{*} R_{2}-R_{1}\right)$.

Proof. Let

$$
\begin{equation*}
\delta_{j}(X)=R_{j} X-\pi_{j}(X) R_{j}, \quad X \in \mathscr{A}, j=1,2 . \tag{2.2}
\end{equation*}
$$

By elementary algebra, we have

$$
\begin{equation*}
\delta_{j}(X)^{*} \delta_{j}(Y)=\mathscr{L}\left(X^{*} Y\right)-X^{*} \mathscr{L}(Y)-\mathscr{L}\left(X^{*}\right) Y, \quad X, Y \in \mathscr{A}, j=1,2 \tag{2.3}
\end{equation*}
$$

where \mathscr{L} satisfies (2.1). By the definition of the CE parameters, the set $\left\{\delta_{j}(X) u, u \in \mathscr{H}_{0}\right.$, $X \in \mathscr{A}\}$ is total in \mathscr{K}_{j}. Hence (2.3) implies that the correspondence $\delta_{1}(X) u \rightarrow \delta_{2}(X) u$ is scalar product preserving, and there exists a unique unitary isomorphism $\Gamma: \mathscr{K}_{1} \rightarrow \mathscr{K}_{2}$ satisfying

$$
\begin{equation*}
\Gamma \delta_{1}(X)=\delta_{2}(X), \quad X \in \mathscr{A} \tag{2.4}
\end{equation*}
$$

Replacing X by $X Y$ and using the relation $\delta_{j}(X Y)=\delta_{j}(X) Y+\pi_{j}(X) \delta_{j}(Y)$ for all X, Y in \mathscr{A}, we obtain from (2.4) the relation $\Gamma \pi_{1}(X) \delta_{1}(Y)=\pi_{2}(X) \Gamma \delta_{1}(Y)$, which proves property (1) of the proposition.

Substituting for δ_{1}, δ_{2} in (2.4) from (2.2), and using property (1), we obtain property (2).

Proposition 2.2. Let Γ be as in Proposition 2.1. Then there exist $C \in \mathscr{A}, D \in \mathscr{A}^{\prime}$, $Z \in \mathscr{A} \cap \mathscr{A}^{\prime}$ such that:
(1) $R_{2}^{*} \Gamma R_{1}=C+D$;
(2) $H_{2}-H_{1}=\frac{1}{2} i\left(C^{*}-C\right)+Z$.

Proof. Write $L=\Gamma^{*} R_{2}-R_{1}$. From the remarks at the beginning of this section, we know that $R_{j}^{*} \pi_{j}(X) R_{j} \in \mathscr{A}, j=1,2$, for all X in \mathscr{A}. We have, from Proposition 2.1,

$$
\left(\Gamma\left(R_{1}+L\right)\right)^{*} \pi_{2}(X) \Gamma\left(R_{1}+L\right)=R_{1}^{*} \pi_{1}(X) R_{1}+L^{*} L X+R_{1}^{*} L X+X L^{*} R_{1}
$$

so

$$
\begin{equation*}
L^{*} L X+R_{1}^{*} L X+X L^{*} R_{1} \in \mathscr{A} \text { for all } X \in \mathscr{A} . \tag{2.5}
\end{equation*}
$$

From (2.1) and Proposition 2.1, we also have

$$
\begin{gathered}
i\left[H_{1}, X\right]-\frac{1}{2}\left(R_{1}^{*} R_{1} X+X R_{1}^{*} R_{1}-2 R_{1}^{*} \pi_{1}(X) R_{1}\right) \\
=i\left[H_{2}, X\right]-\frac{1}{2}\left(\left(R_{1}+L\right)^{*}\left(R_{1}+L\right) X+X\left(R_{1}+L\right)^{*}\left(R_{1}+L\right)-2\left(R_{1}+L\right)^{*} \pi_{1}(X)\left(R_{1}+L\right)\right)
\end{gathered}
$$

which simplifies to

$$
i\left[H_{1}-H_{2}, X\right]=\frac{1}{2}\left[R_{1}^{*} L-L^{*} R_{1}, X\right], \quad X \in \mathscr{A}
$$

Since every derivation of \mathscr{A} is inner and $H_{1}-H_{2} \in \mathscr{A}$, it follows that

$$
\begin{equation*}
H_{2}=H_{1}+\frac{1}{2} i\left(R_{1}^{*} L-L^{*} R_{1}\right)+B \tag{2.6}
\end{equation*}
$$

where $B=B^{*} \in \mathscr{A}^{\prime}$.
Substituting for L in (2.5), we conclude that $\left[R_{2}^{*} \Gamma R_{1}, X\right] \in \mathscr{A}$, and hence, by the same argument as above, $R_{2}^{*} \Gamma R_{1}$ can be expressed as

$$
\begin{equation*}
R_{2}^{*} \Gamma R_{1}=C+D, \quad C \in \mathscr{A}, D \in \mathscr{A}^{\prime} . \tag{2.7}
\end{equation*}
$$

Substituting for L in (2.6), we conclude that

$$
H_{2}-H_{1}-\frac{1}{2} i\left\{R_{1}^{*}\left(\Gamma^{*} R_{2}-R_{1}\right)-\left(R_{2}^{*} \Gamma-R_{1}^{*}\right) R_{1}\right\} \in \mathscr{A}^{\prime} .
$$

Now (2.7) implies that $H_{2}-H_{1}-\frac{1}{2} i\left(C^{*}-C\right) \in \mathscr{A} \cap \mathscr{A}^{\prime}$, which together with (2.7) completes the proof.

Theorem 2.3. Two CE quadruples $\left(\mathscr{K}_{j}, \pi_{j}, R_{j}, H_{j}\right), j=1,2$, determine the same $C E$ generator \mathscr{L} if and only if there exist a unitary isomorphism $\Gamma: \mathscr{K}_{1} \rightarrow \mathscr{K}_{2}$, and elements $C \in \mathscr{A}, D \in \mathscr{A}^{\prime}, Z=Z^{*} \in \mathscr{A} \cap \mathscr{A}^{\prime}$ such that:
(1) $\Gamma \pi_{1}(X)=\pi_{2}(X) \Gamma$;
(2) $\left(\Gamma^{*} R_{2}-R_{1}\right) X=\pi_{1}(X)\left(\Gamma^{*} R_{2}-R_{1}\right)$;
(3) $R_{2}^{*} \Gamma R_{1}=C+D$;
(4) $H_{2}-H_{1}=\frac{1}{2} i\left(C^{*}-C\right)+Z$.

Proof. Propositions 2.1 and 2.2 imply the 'only if' part. To prove the converse, consider Γ, C, D, Z satisfying conditions (1)-(4), and the CE generators \mathscr{L}_{j} defined by

$$
\mathscr{L}_{j}(X)=i\left[H_{j}, X\right]-\frac{1}{2}\left(R_{j}^{*} R_{j} X+X R_{j}^{*} R_{j}-2 R_{j}^{*} \pi_{j}(X) R_{j}\right), \quad X \in \mathscr{A}, j=1,2 .
$$

Write $L=\Gamma^{*} R_{2}-R_{1}$, so that $L X=\pi_{1}(X) L$ and $R_{2}=\Gamma\left(R_{1}+L\right)$. Then, substituting
for H_{2}, R_{2} and π_{2} from (1)-(4) in $\mathscr{L}_{2}(X)$, we obtain

$$
\begin{aligned}
\mathscr{L}_{2}(X)= & i\left[H_{1}, X\right]-\frac{1}{2}\left[C^{*}-C, X\right] \\
& -\frac{1}{2}\left\{\left(R_{1}+L\right)^{*}\left(R_{1}+L\right) X+X\left(R_{1}+L\right)^{*}\left(R_{1}+L\right)-2\left(R_{1}+L\right)^{*} \pi_{1}(X)\left(R_{1}+L\right)\right\} \\
= & \mathscr{L}_{1}(X)-\frac{1}{2}\left[C^{*}-C-R_{1}^{*} L+L^{*} R_{1}, X\right] \\
= & \mathscr{L}_{1}(X)-\frac{1}{2}\left[C^{*}-C-R_{1}^{*} \Gamma^{*} R_{2}+R_{2}^{*} \Gamma R_{1}, X\right] \\
= & \mathscr{L}_{1}(X)
\end{aligned}
$$

for all $X \in \mathscr{A}$.
For constructing Markov dilations, it is useful to modify the CE parametrization. To this end, we prove the following result.

ThEOREM 2.4. Let \mathscr{L} be the generator of a conservative and uniformly continuous quantum dynamical semigroup on a von Neumann algebra $\mathscr{A} \subset \mathscr{B}\left(\mathscr{H}_{0}\right)$. Then there exist a unital completely positive map $\Psi: \mathscr{A} \rightarrow \mathscr{A}$, a positive element $K \in \mathscr{A}$, and a hermitian element $H \in \mathscr{A}$ such that

$$
\begin{equation*}
\mathscr{L}(X)=i[H, X]-\frac{1}{2}\left(K^{2} X+X K^{2}-2 K \Psi(X) K\right), \quad X \in \mathscr{A} . \tag{2.8}
\end{equation*}
$$

Proof. In (1.2), put $K=\left(R^{*} R\right)^{1 / 2}$ and consider the polar decomposition $R=V K$, where V is an isometry from the closure of the range of K in \mathscr{H}_{0} onto the closure of the range of R in \mathscr{K}. Denoting by P the projection on the closure of the range of K in \mathscr{H}_{0}, we see that
where

$$
R^{*} \pi(X) R=K P V^{*} \pi(X) V P K=K \Psi_{0}(X) K
$$

Clearly, Ψ_{0} is a contractive completely positive map satisfying $\Psi_{0}(1)=P$. Now \mathscr{L} can be expressed as

$$
\begin{equation*}
\mathscr{L}(X)=i[H, X]-\frac{1}{2}\left(K^{2} X+X K^{2}-2 K \Psi_{0}(X) K\right), \quad X \in \mathscr{A} \tag{2.9}
\end{equation*}
$$

Since $\mathscr{L}(X), H, K \in \mathscr{A}$, it follows that $K \Psi_{0}(X) K \in \mathscr{A}$ for all X in \mathscr{A}. Hence $K^{m} \Psi_{0}(X) K^{n} \in \mathscr{A}$ for $m, n \geqslant 1$. Thus for any two polynomials p, q such that $p(0)=$ $q(0)=0$, it follows that $p(K) \Psi_{0}(X) q(K) \in \mathscr{A}$. Hence for any two continuous functions φ, ψ on $[0, \infty)$ satisfying $\varphi(0)=\psi(0)=0$, we have $\varphi(K) \Psi_{0}(X) \psi(K) \in \mathscr{A}$. Define

$$
\varphi_{n}(x)= \begin{cases}n x & \text { if } 0 \leqslant x<1 / n \\ 1 & \text { if } x \geqslant 1 / n\end{cases}
$$

and observe that

$$
w \cdot \lim _{n \rightarrow \infty} \varphi_{n}(K) \Psi_{0}(X) \varphi_{n}(K)=P \Psi_{0}(X) P=\Psi_{0}(X) \in \mathscr{A}
$$

Define

$$
\Psi(X)=\Psi_{0}(X)+(1-P) X(1-P)
$$

Then Ψ is a unital completely positive map from \mathscr{A} into itself, and \mathscr{L} assumes the form (2.8).

Remark. Our construction of a Markov dilation for \mathscr{L} in the next section depends on the discrete time quantum Markov chain defined by the unital completely positive map Ψ on \mathscr{A}. It should be interesting to know the exact relationship between the parameter triples (H, K, Ψ) and $\left(H^{\prime}, K^{\prime}, \Psi^{\prime}\right)$ which determine the same \mathscr{L} according to (2.8) in Theorem 2.4.

3. A Markov dilation for the semigroup $e^{t \mathscr{L}}$

We consider a CE generator \mathscr{L} expressed in the form (2.8) of Theorem 2.4 in terms of the parameters H, K, Ψ. Since Ψ is a unital completely positive map on \mathscr{A}, it follows from $[\mathbf{1 , 2}$] that there exists a unique (up to unitary equivalence) minimal discrete time Markov dilation $\left(\mathscr{H}, F_{n}, j_{n}\right), n=0,1,2, \ldots$, where \mathscr{H} is a Hilbert space containing \mathscr{H}_{0} as a subspace, $\left\{F_{n}\right\}$ is an increasing sequence of projections in \mathscr{H}, F_{0} is the projection on $\mathscr{H}_{0}, s \cdot \lim _{n \rightarrow \infty} F_{n}=1$,

$$
\begin{gathered}
F_{m} j_{n}(X) F_{m}=j_{m}\left(\Psi^{n-m}(X)\right), \quad X \in \mathscr{A}, 0 \leqslant m \leqslant n<\infty, \\
j_{0}(X)=X F_{0}
\end{gathered}
$$

and $\left\{j_{n}\left(X_{n}\right) j_{n-1}\left(X_{n-1}\right) \cdots j_{0}\left(X_{0}\right) u, X_{i} \in \mathscr{A}, n=0,1,2, \ldots, u \in \mathscr{H}_{0}\right\}$ is total in \mathscr{H}.
Our strategy for constructing the dilation for \mathscr{L} will be to imbed $\left(\mathscr{H}, F_{n}, j_{n}\right)$ in a quantum version of the Poisson process and look at it in an appropriate interaction picture. To this end, we introduce the boson Fock space $\Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)$, and consider the Poisson process $\{N(t)\}$, where $N(t)$ is a selfadjoint operator realized as the closure of $A^{\dagger}(t)+\Lambda(t)+A(t)+t$ on the domain of exponential vectors, A^{\dagger}, Λ, A being the creation, conservation and annihilation processes of quantum stochastic calculus. We write (forgoing rigour) $N(t)=A^{\dagger}(t)+\Lambda(t)+A(t)+t$, with the convention that 1 denotes the identity operator, and a scalar times the identity operator is denoted by the scalar itself. We now make the Poisson imbedding of the discrete time chain by putting $\tilde{\mathscr{H}}=\mathscr{H} \otimes \Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)$and defining

$$
j_{N(t)}(X):=\sum_{n=0}^{\infty} j_{n}(X) \otimes 1_{\{n\}}(N(t)),
$$

where $1_{\{n\}}$ denotes the indicator of the singleton $\{n\}$ in \mathbb{R}. We have used the fact that $N(t)$ has spectrum $\{0,1,2, \ldots\}$ for $t>0$, and $N(0)=0$.

Proposition 3.1. Let $F_{N(t)}=j_{N(t)}(1)$. Then:
(i) $F_{N(0)}=F_{0} \otimes 1_{\Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)}$;
(ii) $F_{N(s)} \leqslant F_{N(t)}$ for all $0 \leqslant s \leqslant t<\infty$;
(iii) $s \cdot \lim _{t \rightarrow \infty} F_{N(t)}=1_{\tilde{\mathscr{H}}}$.

Proof. (i) is obvious since $N(0)=0$. To prove (ii), we first observe that $N(t)=N(s)+N(t)-N(s)$, where $N(s)$ and $N(t)-N(s)$ are ampliations of operators in $\Gamma\left(L^{2}[0, s]\right)$ and $\Gamma\left(L^{2}[s, t]\right)$, respectively, in the factorization

$$
\Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)=\Gamma\left(L^{2}[0, s]\right) \otimes \Gamma\left(L^{2}[s, t]\right) \otimes \Gamma\left(L^{2}[t, \infty)\right)
$$

Thus

$$
\begin{aligned}
F_{N(t)} & =\sum_{n=0}^{\infty} F_{n} \otimes 1_{\{n\}}(N(t)) \\
& =\sum_{n=0}^{\infty} F_{n} \otimes \sum_{j=0}^{n} 1_{\{j\}}(N(s)) \otimes 1_{\{n-j\}}(N(t)-N(s)) \\
& =\sum_{j \geqslant 0, k \geqslant 0} F_{j+k} \otimes 1_{\{j\}}(N(s)) \otimes 1_{\{k\}}(N(t)-N(s)) \\
& \geqslant \sum_{j \geqslant 0, k \geqslant 0} F_{j} \otimes 1_{\{j\}}(N(s)) \otimes 1_{\{k\}}(N(t)-N(s)) \\
& =F_{N(s)} .
\end{aligned}
$$

This proves (ii). Finally,

$$
\begin{aligned}
F_{N(t)} & =\sum_{n=0}^{\infty} F_{n} \otimes\left(1_{\{n, n+1, \ldots\}}(N(t))-1_{\{n+1, n+2, \ldots\}}(N(t))\right) \\
& =\sum_{n=0}^{\infty}\left(F_{n}-F_{n-1}\right) \otimes\left(1-1_{\{0,1,2, \ldots, n-1\}}(N(t))\right)
\end{aligned}
$$

By the isomorphism [11] between $\Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)$and the L^{2} space with respect to the probability measure of the Poisson process of unit intensity, and the fact that $N(t)$ viewed as a Poisson random variable tends to ∞ with probability 1 as $t \rightarrow \infty$, it follows that

$$
s \cdot \lim _{t \rightarrow \infty} F_{N(t)}=\sum_{n=0}^{\infty}\left(F_{n}-F_{n-1}\right) \otimes 1_{\Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)}=1_{\tilde{\mathscr{H}}}
$$

In the von Neumann algebra $\mathscr{B}(\tilde{\mathscr{H}})$, we consider the Fock vacuum conditional expectation $\mathbb{E}_{t]}$ which is defined as follows. For any $X \in \mathscr{B}(\tilde{\mathscr{H}})$, consider the operator X_{t} on $\mathscr{H} \otimes \Gamma\left(L^{2}[0, t]\right)$ defined by $\left\langle\varphi, X_{t} \psi\right\rangle=\left\langle\varphi \otimes \Omega_{[t}, X \psi \otimes \Omega_{[t}\right\rangle$, where $\Omega_{[t}$ is the Fock vacuum vector in $\Gamma\left(L^{2}[t, \infty)\right)$, and put $\mathbb{E}_{t]} X=X_{t} \otimes 1_{[t}$, where $1_{[t}$ is the identity operator in $\Gamma\left(L^{2}[t, \infty)\right)$.

Proposition 3.2. Let $F_{N(t)}, j_{N(t)}$ be as in Proposition 3.1. Then

$$
\mathbb{E}_{s]} F_{N(s)} j_{N(t)}(X) F_{N(s)}=j_{N(s)}\left(S_{t-s}(X)\right), \quad 0 \leqslant s \leqslant t<\infty, X \in \mathscr{A}
$$

where

$$
S_{t}(X)=e^{t(\Psi-\mathrm{id})}(X), \quad X \in \mathscr{A}
$$

id being the identity map on \mathscr{A}.
Proof. We have, from properties of the Poisson process $\{N(t)\}$,

$$
\begin{aligned}
F_{N(s)} j_{N(t)}(X) F_{N(s)} & =\sum_{n \geqslant 0} F_{n} \otimes 1_{\{n\}}(N(s)) \sum_{n \geqslant 0} j_{n}(X) \otimes 1_{\{n\}}(N(t)) \sum_{n \geqslant 0} F_{n} \otimes 1_{\{n\}}(N(s)) \\
& =\sum_{k, n \geqslant 0} F_{k} j_{n}(X) F_{k} \otimes 1_{\{k\}}(N(s)) 1_{\left\{n_{\}}\right\}}(N(t)) \\
& =\sum_{n \geqslant k \geqslant 0} F_{k} j_{n}(X) F_{k} \otimes 1_{\{k\}}(N(s)) 1_{\{n-k\}}(N(t)-N(s)) \\
& =\sum_{k \geqslant 0, n-k \geqslant 0} j_{k}\left(\Psi^{n-k}(X)\right) 1_{\left\{k k^{\prime}\right.}(N(s)) 1_{\{n-k\}}(N(t)-N(s)) .
\end{aligned}
$$

Now, applying $\mathbb{E}_{s]}$ on both sides,

$$
\begin{aligned}
\mathbb{E}_{s]} F_{N(s)} j_{N(t)}(X) F_{N(s)} & =\sum_{k \geqslant \mathbf{0}, \ell \geqslant \mathbf{0}} j_{k}\left(\Psi^{\ell}(X)\right) 1_{\{k\}}(N(s)) e^{-(t-s)} \frac{(t-s)^{\ell}}{\ell!} \\
& =j_{N(s)}\left(e^{(t-s)(\Psi-\mathrm{id})}(X)\right) .
\end{aligned}
$$

Corollary 3.3. Let

$$
\begin{aligned}
& \tilde{j}_{t}(X)=j_{N(t)}(X) \otimes\left|\Omega_{[t}><\Omega_{[t}\right|, \\
& \tilde{F}_{t}=\tilde{j}_{t}(1)=F_{N(t)} \otimes\left|\Omega_{[t}><\Omega_{[t}\right|
\end{aligned}
$$

Then $\left(\tilde{\mathscr{H}}, \tilde{F}_{t}, \tilde{j}_{t}\right), t \geqslant 0$, is a Markov dilation for the conservative quantum dynamical semigroup $\left\{e^{t(\Psi-\mathrm{id})}\right\}, t \geqslant 0$.

Proof. Immediate.

Proposition 3.4. Let H, K be hermitian elements in \mathscr{A}. Then the quantum stochastic differential equation

$$
\begin{equation*}
d W(t)=\left\{j_{N(t)}(H)\left(d A^{\dagger}-d A\right)+j_{N(t)}\left(-i K-\frac{1}{2} H^{2}\right) d t\right\} W(t) \tag{3.1}
\end{equation*}
$$

with $W(0)=1$ admits a unique isometric solution $W(t)$.
Proof. The proof is along the same lines as in Section 4 of [4]. Write $W_{0}(t) \equiv 1$, and define iteratively

$$
W_{n}(t)=1+\int_{0}^{t}\left\{j_{N(s)}(H)\left(d A^{\dagger}-d A\right)+j_{N(s)}\left(-i K-\frac{1}{2} H^{2}\right) d s\right\} W_{n-1}(s)
$$

By the inequality (ii) of Proposition 27.1, page 222 of [11], we conclude that

$$
\sum_{n}\left\|\left(W_{n}(t)-W_{n-1}(t)\right) f e(u)\right\|<\infty
$$

for all $f \in \mathscr{H}$ and exponential vectors $e(u)$ in $\Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right)$. This implies the convergence of $W_{n}(t) f e(u)$ in $\tilde{\mathscr{H}}$ as $n \rightarrow \infty$. Denoting this limit by $W(t) f e(u)$, we obtain a solution of (3.1). A routine application of quantum Ito's formula implies the isometric property of $W(t)$. Uniqueness follows from the fact that any solution of (3.1) with initial value 0 is identically 0 .

Proposition 3.5. Let

$$
j_{N(t)+k}(X)=\sum_{n=0}^{\infty} j_{n+k}(X) \otimes 1_{\{n\}}(N(t)), \quad k \geqslant 0
$$

Then

$$
d j_{N(t)+k}(X)=\left(j_{N(t)+k+1}(X)-j_{N(t)+k}(X)\right) d N(t)
$$

Proof. We have

$$
\begin{aligned}
d j_{N(t)+k}(X) & =\left\{\sum_{n=0}^{\infty} j_{n+k}(X) \otimes\left(1_{\{n\}}(N(t)+1)-1_{\{n\}}(N(t))\right)\right\} d N(t) \\
& =\left\{\sum_{n=1}^{\infty} j_{n+k}(X) \otimes 1_{\{n-1\}}(N(t))-j_{N(t)+k}(X)\right\} d N(t) \\
& =\left(j_{N(t)+k+1}(X)-j_{N(t)+k}(X)\right) d N(t) .
\end{aligned}
$$

Proposition 3.6. The isometric process $\{W(t)\}$ of Proposition 3.4 is unitary.
Proof. Let $X(t)=1-W(t) W(t)^{*}$. Then $\{X(t)\}$ is a projection-valued Fock adapted process with initial value 0 . The proposition will be proved if we show that $d X(t)=0$. By a routine application of quantum Ito's formula and some algebra, we obtain

$$
\begin{align*}
d X(t)= & {\left[j_{N(t)}(H), X(t)\right]\left(d A^{\dagger}-d A\right)(t) } \\
& -\left[\left\{j_{N(t)}(i K), X(t)\right]+\frac{1}{2}\left[j_{N(t)}(H),\left[j_{N(t)}(H), X(t)\right]\right]\right\} d t . \tag{3.2}
\end{align*}
$$

Define $P_{n}(t)=1_{\{n\}}(N(t))$, and observe that

$$
\begin{aligned}
& d P_{0}(t)=-P_{0}(t) d N(t) \\
& d P_{n}(t)=\left(P_{n-1}(t)-P_{n}(t)\right) d N(t) \quad \text { if } n \geqslant 1
\end{aligned}
$$

This, together with (3.2), quantum Ito's formula and some tedious algebra, implies

$$
\begin{align*}
d P_{n} X P_{n}(t)= & \left(P_{n-1} X P_{n-1}-P_{n} X P_{n}\right)(t) d N(t) \\
& +P_{n-1}(t)\left[j_{N(t)}(H), X(t)\right] P_{n}(t) d A^{\dagger}(t)+P_{n}(t)\left[X(t), j_{N(t)}(H)\right] P_{n-1}(t) d A(t) \\
+ & \left\{P_{n-1}(t)\left[j_{N(t)}(H), X(t)\right] P_{n}(t)+P_{n}(t)\left[X(t), j_{N(t)}(H)\right] P_{n-1}(t)\right. \\
& \left.-P_{n}(t)\left(\left[j_{N(t)}(i K), X(t)\right]+\frac{1}{2}\left[j_{N(t)}(H),\left[j_{N(t)}(H), X(t)\right]\right]\right) P_{n}(t)\right\} d t . \tag{3.3}
\end{align*}
$$

Note that operators and their ampliations to tensor products have been denoted by the same symbols. Since $P_{k}(t)$ and $j_{N(t)}(B)$ commute with each other, and $P_{k}(t) j_{N(t)}(B)$ $=j_{k}(B) P_{k}(t)=P_{k}(t) j_{k}(B)$ for any B in \mathscr{A}, (3.3) can be expressed as

$$
\begin{align*}
d P_{n} X P_{n}= & \left(P_{n-1} X P_{n-1}-P_{n} X P_{n}\right) d N \\
& +\left(j_{n-1}(H) P_{n-1} X P_{n}-P_{n-1} X P_{n} j_{n}(H)\right) d A^{\dagger} \\
& +\left(P_{n} X P_{n-1} j_{n-1}(H)-j_{n}(H) P_{n} X P_{n-1}\right) d A \\
& +\left\{j_{n-1}(H) P_{n-1} X P_{n}-P_{n-1} X P_{n} j_{n}(H)+P_{n} X P_{n-1} j_{n-1}(H)\right. \\
& \quad-j_{n}(H) P_{n} X P_{n-1}+\left[j_{n}(-i K), P_{n} X P_{n}\right] \\
& \left.\quad+\frac{1}{2}\left[j_{n}(H),\left[j_{n}(H), P_{n} X P_{n}\right]\right]\right\} d t . \tag{3.4}
\end{align*}
$$

Putting $n=0$, we obtain

$$
d P_{0} X P_{0}=-P_{0} X P_{0} d N+\left\{\left[j_{0}(-i K), P_{0} X P_{0}\right]-\frac{1}{2}\left[j_{0}(H),\left[j_{0}(H), P_{0} X P_{0}\right]\right]\right\} d t
$$

This is a constant operator coefficient quantum stochastic differential equation (qsde) for $P_{0} X P_{0}$ with initial value 0 . Hence $\left(P_{0} X P_{0}\right)(t)=0$. Since $X(t)$ and $P_{0}(t)$ are projections, we conclude that $P_{0}(t) X(t)=X(t) P_{0}(t)=0$. Let us now make the induction hypothesis that $P_{n-1}(t) X(t)=X(t) P_{n-1}(t)=0$. Then (3.4) becomes

$$
d P_{n} X P_{n}=-P_{n} X P_{n} d N+\left\{\left[j_{n}(-i K), P_{n} X P_{n}\right]+\frac{1}{2}\left[j_{n}(H),\left[j_{n}(H), P_{n} X P_{n}\right]\right]\right\} d t
$$

which is once again a constant operator coefficient qsde for $P_{n} X P_{n}$ with initial value 0 . Hence $\left(P_{n} X P_{n}\right)(t)=0$, which implies that $P_{n}(t) X(t)=X(t) P_{n}(t)=0$. Thus $X(t) P_{n}(t)=0$ for every $n \geqslant 0$. Since $\sum_{n \geqslant 0} P_{n}(t)=1$, we conclude that $X(t) \equiv 0$.

Proposition 3.7. Let $\{W(t)\}$ be the unique unitary solution of the equation (3.1) in Proposition 3.4. Then, for any $X \in \mathscr{A}$,

$$
\begin{align*}
& d W(t)^{*} j_{N(t)}(X) W(t) \\
& =W(t)^{*}\left\{\left(j_{N(t)+1}(X)-j_{N(t)}(X)\right) d N(t)+\left(j_{N(t)+1}(X) j_{N(t)}(H)-j_{N(t)}(H X)\right) d A^{\dagger}(t)\right. \\
& \quad+\left(j_{N(t)}(H) j_{N(t)+1}(X)-j_{N(t)}(X H)\right) d A(t) \\
& \quad+\left(j_{N(t)}\left(H \Psi(X) H-\frac{1}{2}\left(H^{2} X+X H^{2}\right)-H X-X H+i[K, X]\right)\right. \\
& \left.\left.\quad \quad+j_{N(t)+1}(X) j_{N(t)}(H)+j_{N(t)}(H) j_{N(t)+1}(X)\right) d t\right\} W(t) \tag{3.5}
\end{align*}
$$

Proof. This is immediate from Proposition 3.5 for the case $k=0$, equation (3.1), quantum Ito's formula, and the fact that

$$
\begin{aligned}
j_{N(t)}(H) j_{N(t)+1}(X) j_{N(t)}(H) & =j_{N(t)}(H) F_{N(t)} j_{N(t)+1}(X) F_{N(t)} j_{N(t)}(H) \\
& =j_{N(t)}(H \Psi(X) H)
\end{aligned}
$$

Proposition 3.8. Let $W(t)$ be as in Proposition 3.7. Then

$$
F_{N(t)} W(t)=W(t) F_{N(t)} .
$$

Proof. Put $X=1$ in Proposition 3.7. Since $\Psi(1)=1$ and $F_{N(t)+1} \geqslant F_{N(t)}$, we have, from (3.5),

$$
\begin{equation*}
W(t)^{*} F_{N(t)} W(t)=F_{0}+\int_{0}^{t} W(s)^{*}\left(F_{N(s)+1}-F_{N(s)}\right) W(s) d N(s) . \tag{3.6}
\end{equation*}
$$

On the other hand, the differential equation for W implies

$$
\begin{aligned}
W(t) & =1+\int_{0}^{t}\left\{j_{N(s)}(H)\left(d A^{\dagger}-d A\right)(s)+j_{N(s)}\left(-i K-\frac{1}{2} H^{2}\right) d s\right\} W(s) \\
& =1+F_{N(t)} \int_{0}^{t}\left\{j_{N(s)}(H)\left(d A^{\dagger}-d A\right)(s)+j_{N(s)}\left(-i K-\frac{1}{2} H^{2}\right) d s\right\} W(s) \\
& =1+F_{N(t)}(W(t)-1),
\end{aligned}
$$

or $W(t)=1-F_{N(t)}+F_{N(t)} W(t)$. Substituting this in the right-hand side of (3.6), we have

$$
\begin{aligned}
W(t)^{*} F_{N(t)} W(t) & =F_{0}+\int_{0}^{t}\left(F_{N(s)+1}-F_{N(s)}\right) d N(s) \\
& =F_{N(t)}
\end{aligned}
$$

by Proposition 3.5.
Proposition 3.9. Let $\{W(t)\}$ be as in Proposition 3.7. Then

$$
F_{N(s)} \mathbb{E}_{s]}\left(W(t)^{*} j_{N(t)}(X) W(t)\right) F_{N(s)}=W(s)^{*} j_{N(s)}\left(e^{(t-s) \cdot \mu}(X)\right) W(s)
$$

for all $X \in \mathscr{A}, 0 \leqslant s \leqslant t<\infty$, where

$$
\mathscr{M}(X)=i[K, X]-\frac{1}{2}\left((H+1)^{2} X+X(H+1)^{2}-2(H+1) \Psi(X)(H+1)\right)
$$

Proof. From Proposition 3.7 and basic quantum stochastic calculus, we have

$$
\begin{array}{rl}
\mathbb{E}_{s]} W & W(t) j^{*} j_{N(t)}(X) W(t) \\
= & W(s)^{*} j_{N(s)}(X) W(s) \\
& +\int_{s}^{t} \mathbb{E}_{s]} W(\tau)^{*}\left\{j_{N(\tau)}\left(H \Psi(X) H-\frac{1}{2}\left(H^{2} X+X H^{2}\right)-H X-X H+i[K, X]\right)\right. \\
\quad & \left.+j_{N(\tau)+1}(X) j_{N(\tau)}(H)+j_{N(\tau)}(H) j_{N(\tau)+1}(X)+j_{N(\tau+1)}(X)-j_{N(\tau)}(X)\right\} W(\tau) d \tau .
\end{array}
$$

Pre- and post-multiplying by $F_{N(s)}$ on both sides, noting that $F_{N(s)}=F_{N(s)} F_{N(\tau)}$ for $\tau \geqslant s$, and using Proposition 3.8, we obtain

$$
\begin{aligned}
& F_{N(s)}\left\{\mathbb{E}_{s]} W(t)^{*} j_{N(t)}(X) W(t)\right\} F_{N(s)} \\
&= W(s)^{*} j_{N(s)}(X) W(s)+\int_{s}^{t} F_{N(s)} \mathbb{E}_{s]} W(\tau) * j_{N(\tau)}\left(H \Psi(X) H-\frac{1}{2}\left(H^{2} X+X H^{2}\right)\right. \\
&-H X-X H+i[K, X]+\Psi(X) H+H \Psi(X)+\Psi(X)-X) W(\tau) F_{N(s)} d \tau \\
&= W(s)^{*} j_{N(s)}(X) W(s)+\int_{s}^{t} F_{N(s)}\left\{\mathbb{E}_{s]} W(\tau)^{*} j_{N(\tau)}(\mathscr{M}(X)) W(\tau)\right\} F_{N(s)} d s .
\end{aligned}
$$

Now the result follows from general principles of ordinary differential equations.
Theorem 3.10. Let \mathscr{L} be the Christensen-Evans generator of a uniformly continuous semigroup of unital completely positive maps on a unital von Neumann algebra $\mathscr{A} \subset \mathscr{B}\left(\mathscr{H}_{0}\right)$ given by

$$
\mathscr{L}(X)=i[K, X]-\frac{1}{2}\left(H^{2} X+X H^{2}-2 H \Psi(X) H\right), \quad X \in \mathscr{A}
$$

where H and K are hermitian elements in $\mathscr{A}, H \geqslant 0$, and Ψ is a unital completely positive map on \mathscr{A}. Let $\left(\mathscr{H}, F_{n}, j_{n}\right), n \geqslant 0$, be a Markov dilation of the discrete semigroup $\left\{\Psi^{n}\right\}, n \geqslant 0$. Let $\tilde{\mathscr{H}}=\mathscr{H} \otimes \Gamma\left(L^{2}\left(\mathbb{R}_{+}\right)\right), N(t)=A^{\dagger}(t)+\Lambda(t)+A(t)+t$,

$$
\tilde{F}(t)=F_{N(t)}\left(1_{t]} \otimes\left|\Omega_{[t}><\Omega_{[t}\right|\right)
$$

where $1_{t]}$ is the identity operator in $\mathscr{H} \otimes \Gamma\left(L^{2}[0, t]\right)$ and $\Omega_{[t}$ is the Fock vacuum vector in $\Gamma\left(L^{2}[t, \infty)\right.$), and

$$
\tilde{j}_{t}(X)=W(t)^{*} j_{N(t)}(X) W(t)\left(1_{t]} \otimes\left|\Omega_{[t}><\Omega_{[t}\right|\right),
$$

where $\{W(t)\}$ is the unique unitary solution of the qsde

$$
d W(t)=\left\{j_{N(t)}(H-1)\left(d A^{\dagger}-d A\right)(t)-j_{N(t)}\left(i K+\frac{1}{2}(H-1)^{2}\right) d t\right\} W(t)
$$

with $W(0)=1$. Then $\left(\tilde{\mathscr{H}}, \tilde{F}(t), \tilde{j_{t}}\right), t \geqslant 0$, is a Markov dilation of the semigroup $\left\{e^{t \mathscr{L}}\right\}$, $t \geqslant 0$.

Proof. This is immediate from Proposition 3.9.
Remark. It is curious that a shift of H by -1 is required in the equation for W in order to construct the Poisson imbedding in the interaction picture for obtaining the dilating homomorphisms \tilde{j}_{t}. It is also to be noted that we have dealt with the case when no 'structure maps' in the sense of Evans and Hudson may be available for writing a flow equation for the required dilation.

References

1. B. V. R. Bhat and K. R. Parthasarathy, 'Kolmogorov's existence theorem for Markov processes in C^{*} algebras', Proc. Indian Acad. Sci. Math. Sci. 104 (1994) 253-262.
2. B. V. R. Bhat and K. R. Parthasarathy, 'Markov dilations of nonconservative quantum dynamical semigroups and a quantum boundary theory', Ann. Inst. H. Poincaré Probab. Statist. 31 (1995) 601-652.
3. E. Christensen and D. E. Evans, 'Cohomology of operator algebras and quantum dynamical semigroups', J. London Math. Soc. 20 (1979) 358-368.
4. M. P. Evans and R. L. Hudson, 'Perturbations of quantum diffusions', J. London Math. Soc. 41 (1990) 373-384.
5. R. L. Hudson, 'Quantum diffusions on the algebra of all bounded operators on a Hilbert space', Quantum probability IV, Lecture Notes in Math. 1396 (ed. L. Accardi et al., Springer, New York, 1989) 256-269.
6. R. L. Hudson and K. R. Parthasarathy, 'Quantum Ito's formula and stochastic evolutions', Comm. Math. Phys. 93 (1984) 301-323.
7. R. L. Hudson and P. Shepperson, 'Stochastic dilation of quantum dynamical semigroups using onedimensional quantum stochastic calculus', Quantum probability V, Lecture Notes in Math. 1442 (ed. L. Accardi et al., Springer, New York, 1992) 216-218.
8. G. Lindblad, 'On the generators of quantum dynamical semigroups', Comm. Math. Phys. 48 (1976) 119-130.
9. P. A. Meyer, Quantum probability for probabilists, Lecture Notes in Math. 1538 (Springer, New York, 1993).
10. A. Mohari and K. B. Sinha, 'Quantum stochastic flows with infinite degrees of freedom', Sankhy \bar{a} Ser. A 52 (1990) 43-57.
11. K. R. Parthasarathy, An introduction to quantum stochastic calculus (Birkhäuser, Basel, 1992).

Indian Statistical Institute
Delhi Centre
7 S.J.S. Sansanwal Marg
New Delhi 110016
India

