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Quasi-classical investigation of
nonpolynomial central potentials
with broken supersymmetry

G. Junker, P. Roy, and Y.P. Varshni

Abstract: We evaluate energy eigenvalues corresponding to different central potentials with
nonpolynomial character and exhibiting broken supersymmetry. The calculations were carried
out using numerical integration, the WKB rule, and a quasi-classical quantization rule for
broken supersymmetry. It is shown that in most cases the quasi-classical rule gives far better
estimates than the WKB rule applied separately to the supersymmetry partners.

Résumé : Nous calculons les valeurs propres d'un Hamiltonien avec potentiel central de
type non-polynomial et capable de briser la supersymétrie. Trois méthodes sont utilisées:
I"intégration numérique, la méthode WKB et une régle quasi-classique de quantification
adaptée aux cas de bris de supersymétrie. Nous trouvons que dans la plupart des cas, la
méthode semi-classique donne de bien meilleurs résultats que la méthode WKB appliquée
séparément aux partenaires supersymétriques.

[Traduit par la rédaction]

1. Introduction

Ever since the supersymmetric (SUSY) modification of the WKB quantization rule (henceforth called
CBC rule) was introduced by Comtet et al. the [1], it has been used in various potential models.
Surprisingly, when applied to shape-invariant potentials the CBC rule produces the exact spectrum [ 1—
4]. In contrast, the WKB rule does not produce the exact spectrum unless Langer-type modifications
are introduced. Also, in the case of nonshape-invariant potentials, the CBC rule produces better results
compared to the WKB rule [5-7]. For some exceptional cases we refer to ref. 8.

However, a major shortcoming of the CBC rule is that it is applicable to only those SUSY sys-
tems where SUSY is unbroken. Recently, Inomata et al. [9-11], following the path-integral approach,
derived a modification of the CBC rule that takes into account systems with broken SUSY. Subse-
quently, the modified CBC rule was applied to a number of power-law as well as shape-invariant
potentials with broken SUSY [10-13]. Surprisingly, this modified CBC rule also generates the exact
spectrum for those shape-invariant potentials. For the power-law potentials, it has been observed that
the modified CBC rule always overestimates the exact energy eigenvalue whereas the usual WKB
rule leads to an underestimation [11, 14].

In this work we shall present an application of the modified CBC rule to radial potential problems.
The first one will be the nonpolynomial oscillator with broken supersymmetry. The nonpolynomial
oscillator is important in a number of areas [15-17] and has been studied for exact as well as
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approximate solutions by a number of authors [18-24]. Since this interaction is markedly different
from the polynomial ones (as also nonshape invariant), the effectiveness of the modified CBC rule
can be best verified when applied to this sort of potential. Also, in a sense, the present work is
complimentary to an earlier one [25] where the CBC rule was applied to the nonpolynomial oscillator
with unbroken SUSY. We would like to note that when a potential is supersymmetrized, the coupling
constants are constrained by some relations and, using the broken SUSY for the nonpolynomial
oscillator, the range of the dependent coupling constant is enlarged. In a second example, we shall
apply the CBC rule to a system that is relevant to planar SUSY models with magnetic fields [26]
and the Dirac equation with anomalous magnetic moment interaction [27].

In Sect. 2, we will briefly review the basics of SUSY quantum mechanics and its quasi-classical
approximation. In Sect. 3 we discuss the SUSY aspects of the two systems under investigation and
in Sect. 4 our numerical results are presented and discussed.

2. SUSY quantum mechanics and its quasi-classical approximation

Since supersymmetric quantum mechanics was introduced by Nicolai [28], it has become an important
algebraic tool in various branches of theoretical physics [14,26]. In particular, the model introduced
by Witten [29] has attracted much attention in the last 10 years. This model consists of a pair of
Hamiltonians (we use units such that the mass m and Planck’s constant % are given by 2m = h = 1)

d2
He————s 1
+ oz Vi(r) (D
where the so-called partner potentials
Vi(r) = W3(r) £ W'(r) (2)

are defined via the SUSY potential W and its derivative W' = dW/dr. As we are considering only
radial problems, the variable r takes values on the positive half-line. Hilbert space is chosen to be
the vector space of square integrable wave functions on the half-line that vanish at the origin, that is,
=) = 0.

SUSY is said to be unbroken if the ground state of either //, or H_ belongs to a vanishing
energy eigenvalue. Denoting such a state by w[(]i) is given via the SUSY potential by

W (r) = Nexp :I:/dr’W(r’) . To>0 (3)
To

where N is a normalization constant. If the eigenvalues of both Hamiltonians (1) are strictly positive

then SUSY is said to be broken. In any case, the strictly positive eigenvalues of H, and H_ are
€=

identical. That is, for broken SUSY the eigenvalues £, ) of H, (for simplicity a purely discrete
spectrum is assumed) are identical
il = W 5if, w=0,14,... (4)

Now we briefly describe the modified CBC rule that has been suggested by Inomata et al. [9-11]
for the case of broken SUSY. In this case, the quasi-classical quantization condition is given by

/dfr\fET(li) — W?2(r) =7h (nJr%) (5)

where r, and 7, are the quasi-classical turning points:

W2(re) = W¥(ry) = B L

n
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Fig. 1. Graphs for the potential Vf) with parameters g = 0.8 and ¢ = 1 (unbroken line), ¢ = 2 (long dashes),
¢ = 3 (short dashes) and ¢ = 4 (dotted line). The broken-dotted line shows the graph for g = 0.1 and ¢ = 4.
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It follows that both relations in (4) are satisfied by (5) so that H. and H_ are strictly isospectral

and have strictly positive ground-state energies even within this quasi-classical approximation. The
modified CBC rule (5) differs from the usual WKB rule,

Ty,
/dr VEE —Vi(r) =nh (TH— %) , Vi (Fe) = Vi) = B (7)

as the left-hand side of (7) contains the full potential. For this reason the WKB rule does not in
general obey the isospectral condition (4) and may even lead to negative ground-state energies. In the
next section we shall use the modified quantization condition (5) to evaluate the energy eigenvalues

for two classes of central potentials and compare them with the exact values as well as the values
obtained from the WKB condition (7).

3. Two models with broken SUSY

The nonpolynomial oscillator potential, which we will investigate first, is given by [15-24]

2
V() =12 + .l re + A Mg

1+ gr? g_lJrgfrg1

g>0, AeR (8)

and since we shall study this system in three dimensions the effective radial potential reads

eff (') T r2 P2 ) 7 Ly &y 9)

To apply the modified CBC rule to obtain energy eigenvalues corresponding to (9) it is necessary
to cast it in a supersymmetric form, that is, the potential (9) has to be identified with either of the
supersymmetric partner potentials V. (7). To achieve this we choose the following SUSY potential:

2
WO =r+ 2L _ 12 ¢>1

14+gr2 r - {10}
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Then from (2) it follows that

(1) g 4cg+2g—4 clc—1)

ol — 2
gl e o T+ gr2 t—3 + (2¢+ 5) (11)
(1) o  4dcg—2g—4 8g°r? c(e+1)
¥ = de+3 12
Pk ] e+ T+ gr2 +(1+gr2)2+ = + (2¢+3) (12)

Clearly, Vf) in (11) resembles Ve(f;) in (9). Graphs of Vf_l) for various values of the parameters g
and ¢ are shown in Fig. 1. If we identify the stationary radial Schrodinger equations corresponding
to (9) and (11) we get

3

——=4decqg+29—4 (13)

g

(£) _ p _ A

E® — 5O _ 2 4 (9c4 5) (14)
g

c=1+1 (15)

Note that the effective potential depends on the three parameters A, g, and [, whereas the SUSY
potential has only the two parameters g and ¢. Hence, for a given [ and g the potential (9) can be put
into the supersymmetric form VS) only if we set A = 4g — 4lg® — 6g*. Note that in the realization
with unbroken SUSY [25] the constraint was A = 4g + 4lg” + 2¢°. Hence, using the broken-SUSY
approach enlarges the range of parameters considerably. Let us also remark that for g = 0 the
potentials Vf) are shape-invariant, a case for which the modified CBC rule (5) is known [9,10] to
reproduce the exact energy spectrum.

The zero-energy wave functions in the (+) and (—) sectors are given by (3) and we find that
both

5 a1El
P§P(r) o [’fc (1+gr?)e /2] (16)

are not normalizable. Thus, the ground-state energy Eéi) > 0 and SUSY is broken.
As a second example, we consider a model for which the SUSY potential is given by [18-25]

W(g)(?"):am—&-b—i-;, a1, b> —vac, c>1 (17)
Then from (2) we find
2b el
Vf)('r) = a’r® + 2abr + TC + C(C:'z: ) + (b* + 2ac £ a) (18)
T

This potential, in essence, characterizes the radial harmonic oscillator with an additional linear and
Coulomb potential. Note that for b = 0 this potential is shape-invariant and thus the modified CBC
rule (5) produces the exact energy spectrum [9, 10]. As before we can obtain the zero-energy wave
functions,

]il

' ((Ji)(r) 4 [rc exp{ar2/2 + br} (19)

none of which is normalizable and thus SUSY is broken in this case, too.
Next we use the modified quantization condition to evaluate the energy eigenvalues corresponding
to (11), (12), and (18) and compare them with WKB and exact numerical values.
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Table 1. Numerical results for the potential Vf) for parameter values g = 0.1, 0.8, and
¢ =1,2,3,4. Given are the exact as well as the approximate energy eigenvalues derived
via the WKB and modified CBC rule. The table also shows the relative errors of the
approximation. From the data energy values corresponding to (9) can be obtained using
the relations (13)—(15).

g = 0.1, c=1

n 0 1 2 3 4 5 10
Exact 6.99579 113717 15.6377 19.8374 23.9941 281212 485211
WKB V'V 680696 11.1872 154562 19.6580 23.8163 27.9445 48.3470
Joerror 0.699 —1.623 —1.161 —0.904 —0.741 —0.629 —0.359
WKB V(" 699976 11.3730 15.6380 19.8374 23.9941 28.1211 48.5210
Goerror 0.057 0011 0002 0000  0.000 ~ 0.000  0.000
Mod. CBC 699141  11.3682 15.6350 19.8354 23.9926 28.1200 48.5206
Gerror  —0.063 —0.031 —0.017 —0.010 —0.007 —0.004 —0.001
g = 0.8, ce=1
n 0 1 2 3 4 5 10
Exact 104197 143094 182551 22.2218 26.1988 30.1818 50.1346
WKB V'V 101890 14.1167 18.0735 22,0446 26.0237 30.0078  49.9625
Joerror 0214 —1.346 —-0.995 —0.798 —0.668 —0.576 —0.343
WKB VI 104311 143111 182556 22,2220 26,1989 30,1818 50,1346
Foerror 0.109 0012 0003 000l 0000 0000  0.000
Mod. CBC 103058 14.2568 18.2235 222003 26.1829 30.1694  50.1294
Jerror  —1.093 —0.368 —0.173 —0.097 —0.061 —0.041 —0.010
g = 0.1, c=2
n 0 1 7 3 4 5 10
Exact 11.5473 158197 20.0189 24.1723 28.2950 323960 52.7217
WKB V" 114383 157125 199131 240675 28.1909 32.2924 52.6194
%error  —0.944 —0.677 —0.528 —0.434 —0.368 —0.320 —0.194
WKB VI 113634 15.6386  19.8399 23.9948 28.1186 32.2203  52.5480
%eror  —1592 —1.144 —0.804 —0.734 —0.624 —0542 0.329
Mod. CBC  11.5418 15.8157 20.0159 241701 282933 32.3946 527211
Joerror  —0.048 —0.025 —0.015 —0.009 —0.006 —0.004 —0.001
g = 0.8, ec=2
n 0 1 2 3 4 5 10
Exact 154806 19.2593  23.1076 269975 309137 34.8474 54.6484
WKB V'V 153902 191583  23.0045 268942 30.8107 34.7448  54.5469
%error  —0.584 —0.524 —0.446 —0.383 —0.333 —0.294 —0.186
WKB V" 153622 19.1138 229505 26,8349 307482 34.6803 54.4784
Jerror  —0.765 —0.756 —0.680 —0.602 —0.535 —0.480 -0.311
Mod. CBC 154486  19.2261 23.0793 269741 30.8942 34.8311 54.6402
%error  —0.207 —0.172 —0.123 ~0.087 —0.063 —0.047 —0.015
g=01; ©=3
n 0 1 2 3 4 5 10
Exact 160253 202200 243669 284827 325770 36.6556  56.9156
WKB V'V 150487 20,1445 24.2922 284086 32.5033 365822 56.8430
Gerror  —0478 —0.373 —0.306 —0.260 —0.226 —0.200 —0.128
WKB V"V 159189 20.1147 242625 283789 324736 365526 56.8136
Joerror -0.664 0521 0429 0364 0317 0281  -0.179
Mod. CBC 16,0196 202159 24.3639 28.4804 32.5751 36.6541 56.9149
Jerror  —0.036  —0.020 —0.013 —0.008 —0.006 —0.004 —0.001

Table 1 continued on next page.
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Table 1{concluded).

g:OS, e= 3

n 0 1 2 3 4 5 10
Exact 20.0411 23.8521 27.7007 31.5776 35.4758 39.3902  59.1071
WKB VY 199885 23.7919 27.6359 31.5100 35.4066 39.3201 59.0356
Goerror 20262 —0.252 —0231 —0214 -0.195 -—0.178 —0.121
WKB V"V 199773 237772 27.6181 31.4898 353845 39.2966  59.0086
Yoerror 0318 —0314 —0208 -0978 -0957 —0.238 —0.166
Mod. CBC  20.0335 23.8392 27.6859 31.5627 35.4615 39.3769  59.0983
Yperror —0.038 —0.054 —0.053 -0.047 —0.040 —0.034 —0.015
g = 0.1., CcC = 4
n 0 1 . 3 4 5 10
Exact 204418 245784 28.6845 327699 36.8406 40.9003 61.1026
WKB V) 203828 245202 286268 327126 36.7836 40.8435 61.0464
Joerror —0.280 —0.237 -0201 —0.175 —0155 —0.139 —0.092
WKB V" 203670 245042 28.6107 326965 36.7675 40.8274 610302
Joerror —0.366 —0302 —0257 —0.224 —0.199 -0.178 —0.118
Mod. CBC 204364 245744 28.6814 327675 36.8386 40.8987 61.1018
Yoerror 0.027 0.016 —0.011 -0.007 —0.005 —0.004 —0.001
g = 0.8, c=4
n 0 1 2 3 4 5 10
Exact 243877 282378 32.1083 35.9959 39.8977 43.8113 63.4993
WKB V'Y 243483  28.1949 320625 359478 39.8478 43.7601 63.4452
Ferror _0.161 —0.152 —0.143 —0.134 -0.125 —0.117 —0.085
WKB V(" 243413 281870 32.0536 359379 39.8371 43.7486 63.4314
Toerror —0.190 —0.180 —0.171 -0.161 —0.152 —0.143 —0.107
Mod. CBC 243861 282333 32.1018 35.9882 39.8894 43.8027 63.4919
Goerror ~0.007 —0.016 —0.020 -0.021 —0.021 —0.020 —0.012

4. Discussion of the results

We have obtained energy levels corresponding to the potentials in (11), (12), and (18) by numerical
integration, by the WKB rule (7), as well as by the modified CBC rule (5) for various values of the
parameters. The results for Vf) with parameters g = 0.1,0.8 and ¢ = 1, 2, 3, 4 are presented in Table
1 and those for V{>) with (a,b,¢) = (1,1,2), (1, ,3),(2,1,2), (2,1,3) are given in Table 2. In both
tables, we give the exact and approximate energy eigenvalues (the latter with their relative errors) for
the ground state, the first five states, and the tenth excited state.” Relative errors of the WKB and the
modified CBC results for potentials V> with parameter sets (a,b,¢) = (1.5, %,2),(1,1,2) — the
latter set gave the worst data for the modified CBC rule — have been presented graphically in Fig.
2.

From the tables we find that the modified CBC values (as well as the WKB values) underesti-
mate the exact values. This is in contrast to the power-law potentials where the broken SUSY rule
overestimates the true value [11, 14]. However, in the present case, relative errors corresponding to
the energy values obtained using the modified CBC rule are always smaller than the corresponding

WKB values for VS‘Q) and V"% The accuracy of the modified CBC rule (5) is also reflected by the

2 Numerical results for the sixth to ninth excited states as well as for other sets of parameters may be requested from the
authors.
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Table 2. Numerical results for the potential V( ) for parameter values a = 1,2, b = 1 o}
and ¢ = 2, 3. Given are the exact as well as the approximate energy eigenvalues derlved
via the WKB and modified CBC rule. The table also shows the relative errors of the
approximations.

a=1, b=3% c=2
n 0 1 2 3 4 5 10
Exact 13.2516 17.5448 21.8085 26.0503 302751 344861 55.3992
WKB V® 131518 17.4449 217084 259501 30.1748 34.3858 55.2987
Perror —0.753 —0.570 —-0.459 —0.385 —0.331 —0.291 —0.181
WKB V®) 130993 17.3886  21.6499 258901 30.1137 343239  55.2345
error —1.149 —0.8901 —0.727 —0.615 —0.533 —0470 —0.297
Mod. CBC 132415 17.5366 21.8014 26.0440 302693 34.4808 55.3952
Yperror —0.076  —0.047 —0.033 —0.024 —0.019 —0.015 —0.007
a=1, h= g, c=3
n 0 1 2 3 4 5 10
Exact 17.8558 22.1074 26.3393  30.5557 34.7594 389526 59.8039
WKB V® 177854 220368 262686 304849 34.6886 38.8817 597327
Yoerror —0.394 —0.319 —0.268 —0.232 —0.204 —0.182 —0.119
WKB V(¥ 177625 220129 262440 304597 34.6630 38.8558  59.7060
Ferror —0.522 —0.428 —0.362 —0.314 —0.277 —0248 —0.164
Mod. CBC  17.8499 22.1024 263348 30.5517 34.7557 38.9492 59.8012
Gerror —0.033 —0.023 —0.017 —0.013 —0.011 -0.009 —0.004
a=2, b=1, c=2
n 0 1 ;s 3 4 5 10
Exact 294819 383029 47.0429 55.7226 643553  72.9497  115.5248
WKB V' 202833 38.1038 46.8435 555230 64.1554 727496 115.3242
Joerror —0.674 —0.520 —0.424 —0.358 —0.311 -0.274 —0.174
WKB V{® 201895 380009 467350 55.4107 64.0403 72.6324  115.2009
Foerror —0.992 —0.788 —0.664 —0.560 —0.489 —0.435 —0.280
Mod. CBC 294548 382804 47.0233 55.7052 643394 72.9350 115.5137
Joerror —0.092 —0.059 —0.042 —0.031 —0.025 —0.020 —0.010
&= 2, b=1, c =
n 0 1 2 3 4 5 10
Exact 39.1932  47.8981 56.5490 65.1570 73.7302 82.2740 124.6736
WKB V'? 390535 477579 564084 65.0162 73.5801 82.1327 124.5318
Yperror —0.357 —0.293 —0.249 -0.216 —0.191 -—0.172 —0.114
WKB V® 390119 477137 563624 649689 73.5408 82.0837 124.4804
Ferror —0.463 —0.385 —0.330 —0.280 —0.257 -0231 —0.155
Mod. CBC  39.1772 47.8843 56.5366 65.1458 73.7199 82.2644 124.6663
Yoerror -0.041 —0.029 —0.022 —0.017 —0.014 —0.012 —0.006

ground-state energies. For both SUSY potentials (10) and (17) with ¢ > 1, E ) obtained using (5)
lies within 0.016% — 0.207% of the exact value. Furthermore, for fixed ¢, the relatlve error decreases
with increasing n. This trend can also be observed for fixed n and increasing c. In fact, for very high
levels (n = 10) the maximum relative error being 0.015% while the minimum is 0.001%. It is also
interesting to note that the level ordering F,,; < E,, ;.1 holds within all the three methods for both
SUSY models.

Up to now we have dlscussed essentially three-dimensional scenarios where both supersymmetric
partners V(l 2 and V" have the angular-momentum barriers. We now turn to the s-wave, that

18, 6 = 1, =0, In this cass V+ ) does not have the angular-momentum barrier, while V.2 has
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Fig. 2. Graphs of the relative errors for the modified CBC rule (A), the WKB rule for Vf)(O) and V2 ().
The datasets are a = 1.5,b = 3, ¢ = 2 (unbroken line) and @ = 1,b = 1,¢ = 2 (broken line).

% error

this term. From Table 1, it can be observed that for ¢ = 1, the application of the WKB rule to

VS) in (11) produces better approximations than the modified CBC rule (5). In fact, the former rule
leads to an overestimation of the exact value, whereas the CBC rule as well as the WKB rule for

V" underestimate the exact energy eigenvalue. This effect seems to be due to the missing angular—

momentum barrier in Vf). Actually, in this case the left turning point in (7) has been set to zero,
7o = 0, representing an infinite repulsive wall. As is well known, for such a barrier (7) is not valid.
On the right-hand side in (7) the factor % was replaced by % for this case. In any case, the parameter
value ¢ = 1 is rather exceptional and not qualified to test the CBC rule against the WKB rule.

In summary, the modified CBC rule (5) has been found to be an extremely good approximation
for the systems under consideration. This seems to be due to the fact that upon proper tuning of
parameters (¢ = 0 and b = 0) these potentials become shape-invariant and in turn the modified CBC

rule leads to the exact energy eigenvalues.
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