


¯uorochromes used. For propidium iodide (PI) that is used

as DNA counter-stain and FITC labelled signals, both are

excited by the Argon line at 488 nm.

3. Pre-processing

One of the common problems with confocal image inter-

pretation is the presence of uneven background and bleed-

through from other colour channels. Global thresholding

fails to deliver the required separation of background from

foreground. Techniques like rank levelling, ®tting a back-

ground function, etc. (Jain, 1995; Russ, 1995) may deliver

acceptable results but they are computation intensive.

For images with a distinct background, it is possible to

select the threshold from the grey level histogram using the

mode method, i.e. by choosing the grey level that corre-

sponds to a valley position in the histogram as the threshold

value. We have observed that the histograms of many confo-

cal image data sets exhibit a unimodal property. Hence the

valley may not be found explicitly in the histogram of the

images. In such cases it is often possible to de®ne a good

threshold at the shoulder of a histogram. We have used the

empirical formula,

t � �m^ ks�

where s is the standard deviation of the grey value and k is a

data-driven value determined iteratively using the following

simple algorithm. Let Nk be the number of voxels in the fore-

ground when the image is thresholded at some value of k.

for i � 0 do

D � N i 2 N�i11�

if D # �10=100��Ni� then k � i

else i � i1 1 and repeat till the above condition holds.

We use t � �m1 ks� when the mode point of the histogram

lies close to the minimum grey value in the image and t �

�m2 ks�when themode point lies close to themaximumgrey

value in the image. This is diagrammatically shown in Fig. 1.

The above formula gives reasonably good separation of fore-

ground from background. Fig. 2 shows a few image slices of a

confocal image stack after background separation. Size and

shape ®lters are used to remove the artefacts of abnormal sizes

and shapes.

The uneven illumination along the depth of a specimen

results in a spatial variation of light intensity in the image.

Degradation of image intensity along the depth of the speci-

men can be approximately modelled as a ®rst-order decay

process and hence computationally corrected. In confocal

images, variation in image intensity is not just due to photo-

bleaching of the specimen. Problems with the optical

system, as well as the opacity of the specimen, also contri-

bute to the process. When we plot the average image inten-

sity of each image slice against the depth of the stack, we

have observed that the illumination degradation is not

linear. Rigaut et al. (1992) have proposed a mathematical

correction method based on the log±logistic equation: Iz �

I0={11 �z=Z�
j} where Iz is the mean ®eld intensity, I0 is the

theoretical value of Iz when z ! 0; the constant Z represents

the value of z at which the detected ¯uorescence intensity

(Iz) is half that of I0 and the constant j depends upon the

shape of the curve of Iz against z. Parameter estimations

were made using the linear form log{�I0 2 Iz�=Iz} �

j log�z�2 j log�Z�; ;z ± 0 with log{�I0 2 Iz�=Iz} against

log(z). The parameters were estimated by computer iteration

over I0 (above the highest observed value of Iz), until the

highest linear-regression correlation coef®cient is found.

We have implemented a simple method for restoration of

intensity of the foreground voxels by comparing them with

the highest-intensity image slice in the stack. Let Ii be the

image slice having maximum average image intensity, i.e.

Ii � max{I1; I2;¼; In}, where I1; I2;¼; In are the intensities

of 1, 2,¼, nth image slice in the stack. We consider the

image slice i as the standard image slice and increase the

average image intensity of the remaining image slices in

the stack to be on par with the average intensity of the image

slice i.

Let the sensitivity a of a pixel with respect to its neigh-

bourhood, de®ned as the ratio of the sum of the differences

of voxel intensities in the neighbourhood to the maximum of

voxel intensities in the neighbourhood, i.e.

a �

XN

p�1

�I 2 Ip�

0
@

1
A

max{Ip}
for all p [ W

whereW is a 3 £ 3 neighbourhood and N is the total number

P.S. Umesh Adiga, B.B. Chaudhuri / Micron 32 (2001) 363±370364

Fig. 1. Diagrammatic representation of threshold selection.



of pixels in W. Simple restoration of the image intensity by

increasing the mean intensity of the image slices results in a

decrease of a . An ideal algorithm should ®nd the maximum

light restoration with minimum loss of voxel sensitivity.

This is an optimization problem and a trade-off should be

reached depending upon the application.

The ®rst few image slices may have one or two cell

signatures with a relatively high grey value, while the

middle and/or last image slices may have very few cell

signatures, as can be seen in Fig. 2(a). Thus increasing the

average image intensity of the whole image slice increases

the background intensity too, which is undesirable. We have

considered only those voxels that belong to a particular

region of interest where the intensity compensation is neces-

sary while avoiding the other regions such as the back-

ground. The necessary separation of foreground and

background is obtained as explained earlier.

Let the mean intensities of the image slices 1, 2,¼, n, in

the image stack be IÅ1, IÅ2,¼, IÅn. The variation in the average

image intensity of the foreground pixels is plotted in Fig. 3.

The maximum average intensity of foreground of the image

slices is considered as a reference image slice, i.e. if IÅi is the

average intensity of the reference image slice, such that �õi $

�õj for all j, then image slice i is considered as the reference

image slice and �õi as the standard image intensity value. The

difference between the average intensity of image slices

with the reference image slice is calculated. Let bk � u�õi 2
�õku be the difference of average intensity of the foreground in
the kth image slice and the reference image slice i. Then for

the kth image slice the grey level of each pixel of the fore-

ground is enhanced by a factor cb k, i.e. if I(x,y,k) is the

intensity of the voxel at I(x,y,k) then the enhanced intensity

is given as I�x; y; k� � I�x; y; k�1 cbk where c is an experi-

mentally chosen constant. Ideally c should be 1. As stated

earlier, this simple addition of the average value to the

image intensity results in the loss of voxel sensitivity. A
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(a) (b) (c)

Fig. 2. Result of window slicing and size ®ltering: (a) original image slice; (b) after window slicing; and (c) after size ®ltering.
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Fig. 3. Graph showing the average image intensity of the foreground against depth for two specimen images: (a) before restoration; and (b) after restoration.

(a) (b) (a) (b)

Fig. 4. Image slices 1, 2, 3, 11,12, 13, 18, 19, 20, 21, 22, 23, of a stack of 24 image slices: (a) before restoration; and (b) after restoration.



trade-off optimizing the requirements of light intensity and

loss of sensitivity is useful. This trade-off is also imaging-

and application-dependent. As the confocal microscopy

images do not give clear details of the intra-cellular struc-

tures and our interest is limited to measuring the quantitative

features of cells and the tissue, we have ignored the voxel

sensitivity issue. Fig. 4 shows the result of intensity restora-

tion on a sequence of image slices.

3.1. Smoothing

The aim is to smooth the highly textural cell chromatin

without reducing the sharpness of the boundary features.

Simple spatial averaging blurs the cell boundary while

smoothing, an undesirable effect. Symmetrical Gaussian

smoothing blurs the edges while smoothing, though the

in¯uence of far-off voxels on the smoothing is reduced.

To reduce the blurring effect on the edges, we have used

directional Gaussian ®ltering. A 5 £ 5 Gaussian ®lter is sub-

divided into six directional windows as shown in Fig. 5. The

Gaussian-convolved values of the pixels in each directional

window are calculated as shown.

The maximum of the convolution values in all the

directional windows gives the desired result. If v(x,y;u )

are calculated in several directions as v�x; y; u� �

�1=Nu�
P

�m;n�[Wu

P
u�x; y�G�x2 m; y2 n� where G�x; y� �

exp{�x2 1 y
2
�=2s 2} is a Gaussian ®lter, Nu is the total

number of pixels present in the directional window Wu as

shown in Fig. 5.

A direction u p is found such that uu�x; y�2 v�x; y; up�u is a
minimum. Then the output image v�x; y� ( v�x; y; up� is the

desired result. The directional Gaussian smoothing techni-

que is applied separately to all the image slices in the image

stack.

4. Enhancement of axial resolution

One of the important enhancement steps to be carried out

is the improvement of axial resolution of the image stack.

Due to anisotropy in the voxel lattice, the direct 3D proces-

sing algorithms fail to properly make use of spatial neigh-

bourhood relations. To avoid these errors, and to enhance

the qualitative and quantitative accuracy of visualization

and analysis, a suitable interpolation process has to be

used to increase the axial resolution of the stack. Classical

interpolation techniques fall into three categories: contour-,

intensity- and shape-based interpolations.

Contour-based interpolation (Boissonat, 1988) takes a set

of binary images containing cross-sectional boundaries of

the objects and generates a new set of interpolated binary

sequence representing the surface of the objects. Since only

the contours of the selected features are used in the inter-

polation process, critical intensity information would be

lost. Intensity-based interpolation takes the original voxel

intensity values and generates a new set of interpolated

voxel intensities. If there is a shape variation in the two

source images, this method results in error. This is so

because calculation of the interpolated value only takes a

limited number of data points and produces a wrong estima-

tion when there is shape variation between two source
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Fig. 5. Directional Gaussian-weighted ®lter.

Fig. 6. (a) Diagrammatic representation of interpolation by morphing. (b)

Interpolation by morphing when the object shape in the source images are

different or when they are laterally shifted.
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(a1) (a2) (a3)

(b1) (b2)

(c1) (c2) (c3)

(d1) (d2) (d3)

(e1) (e2) (e3)

Fig. 7. Result of each step of interpolation by morphing, as applied to two representative image slices. (a) Two-tone version of the source image slices subject

to XOR operation; (a1) and (a2) two-tone versions of source images 1 and 2, respectively; and (a3) after XOR operation. (b) After skeletonization of the image

in Fig. 7(a3). (c) Result of XOR operation on the boundary of the source images; (c1) and (c2) boundary of source images; and (c3) result of ANDing (c1) and

(c2). (d) Result of linking the broken contours; (d1) same as Fig. 7(c1); (d2) same as Fig. 7(c3); (d3) complete contour in the interpolated image slice� (d1)

XOR (d2). (e) Two source images (e1) and (e2), (e3)� Result of morphing.



images. Shape-based interpolation (Raya and Udupa, 1990)

takes a set of binary images representing cross-sections of

objects segmented from the intensity-value data and

performs morphological interpolation between shapes and

contours. To avoid the errors due to contour- and intensity-

based interpolation, we have developed a method where the

contours of the objects in the interpolated image slice are

®rst obtained by logical operation over the source images

and then using these contour pixels as the control points, the

intensity of the pixels within the contour are calculated by

morphing two source images. The process is explained

below.

Consider the two-tone version of two neighbouring image

slices (source images) j and (j1 1), where the object is

represented by grey level 1 and the background by 0 as

shown in Figs. 6 and 7(a). For creating an image slice in

between j and (j1 1), we have to choose some control point

in the interpolated image slice towards which the source

images are distorted during morphing. It can be argued

that if by some means we can get the overall boundary of

the objects in the interpolated image slice, we can use these

edge pixels as control points and ®ll the grey level within

these boundary points using morphing or a weighted-aver-

aging technique. The overall boundary of the objects in the

interpolated image slice can be found by using simple logi-

cal operations as follows. The two-tone versions of the

neighbouring image slices j and (j1 1) are subject to

pixel-to-pixel XOR operation. The resulting image consists

of the portion of the object that is common to the objects in

both j and (j1 1) image slices. This is shown diagramma-

tically in Fig. 6. The medial axis of this image gives the

boundary of the objects in the interpolated image slice.

If the objects in j and (j1 1) image slices are laterally

shifted or there is a strong variation in shape of the objects

between two source images, then the resulting medial axis

need not be continuous. To join the disconnected boundary,

we have applied the following simple operation. The

contours of the objects in the two source images are

obtained over a two-tone version of the source images j

and (j1 1). The common portion of the boundary of the

objects in j and (j1 1) image slices are obtained by pixel-

to-pixel AND operation of the two boundary maps of the

source images. The result of the AND operation is added to

the medial axis of the interpolated image slice by the logical

OR operation. This results in linking the broken contour.

The process is shown diagrammatically in Fig. 6. Fig. 7

shows each interpolation step as applied to a pair of

CLSM image slices.

To ®ll the intensity information within the boundary

contour of an interpolated image slice, the window-sliced

version of source images j and (j1 1) are distorted towards

the position of the contour-based control points in the inter-

polated image slice. Then, the two deformed images are

blended with simple weighted averaging to generate the

grey value in the interpolated image slice. Let Gj �

Ij0; Ij1; Ij2;¼; Ijn be the grey value of the object pixels in

source image j and Gj11 � Ij011; Ij111; Ij211;¼; Ijn11 be

the grey value of the object pixels in source image (j1 1).

Then, the grey value of corresponding object pixels in the

interpolated image slice is given as �w1G1 1 w2G2�=2w

where w1, w2 and w are constants that are determined experi-

mentally. In our experiment we have used all the weights as

1, simplifying the method to simple averaging. For the

pixels that fall outside the boundary contour in the interpo-

lated image slice, the grey value is given as zero. Since most

conspicuous features (to human eyes) in images occur at the

places with higher gradient magnitudes, which is also where

the contour or boundary point usually lies, using contours as

control lines for morphing is very effective. Fig. 7 shows the

different intermediate steps of interpolation by morphing

between two images.

5. Discussion

The work presented here outlines some simple but ef®-

cient techniques based on image processing that can be used

to correct and enhance the visual quality of the confocal

microscopy images. The algorithms were implemented in

IDL and C languages on a SGI IRIX5.3 system. We have

developed these techniques as a part of the major project of

developing algorithms for quantitative analysis of 3D histo-

pathological images obtained using a confocal microscope

(Rodenacker et al., 1997; Umesh Adiga and Chaudhuri,

1999a,b, 2000a,b). It has been said that there is no ideal

specimen for imaging. Preparing a specimen to acquire a

stack of optical sections is a tedious and fatiguing task,

which requires scienti®c precision to preserve the cellularity

and architecture of the tissue from falling apart. So, it is

prudent to develop image-processing methods to reduce

noise artefacts in the image and to enhance the visual quality

rather than attempting to prepare an ideal specimen.

We have applied these image-correction techniques to

more than 200 confocal image data sets. It is our belief

that the visual quality of the image is improved by our

methods. Figs. 2, 3 and 7 give some insight into the results

we have obtained. The window-slicing method we have

proposed is an automatic-thresholding technique where

the local threshold is chosen by a data-driven process.

This has the advantage of automation and rejecting the in¯u-

ence of bright patches in far-off places in the image. The

directional Gaussian smoothing is an improvement over a

simple directional-averaging ®lter. The intensity-enhance-

ment technique we have adopted is a straightforward one. It

serves the purpose of visual enhancement of the objects

deep down in the image stack, but, as mentioned earlier,

one should ®nd a trade-off between the loss of voxel sensi-

tivity and increase in voxel intensity.

The interpolation method we have proposed is superior to

the straightforward contour- or intensity-based methods as it

incorporates a priori information in the process of interpola-

tion. The shape of the object in the interpolated image is
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de®ned by the contours obtained by logical operations while

the intensity is ®lled by warping the grey levels of the data

points in the source images. The histo-pathological images

exhibit large local intensity variations and the intensity-®ll-

ing process presented here gives more realistic results.
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