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Introduction

IN this paper we study the geometry of the space of Bochner integrable
functions as a subspace of the space of vector valued countably additive
measures of finite variation and that of the space of representable
operators as a subspace of the space of bounded linear operators.

Let £ be a Banach space and (fi, si, fi) a finite measure space; let
cabv(fi, E) denote the space of countably additive £-valued measures of
finite variation that are absolutely continuous with respect to fi.
Drewnowski and Emmanuele [6] have proved recently that if £ has a
copy of c0 then L1^, E), the space of Bochner integrable functions, is
not complemented in cabv(fi, £). However, if one is interested in weaker
geometric conditions like being locally 1-complemented (recall from [12],
that a closed subspace Y of a Banach space X is said to be locally
1-complemented if Yx is the kernel of a norm one projection in X*\ such
a subspace was called an "ideal" in [9]) then Ll(ji, E) is always locally
1-complemented in cabv(/i, £). Similarly 9?(L'(/A), £) the space of
representable operators from Ll{fi) to £ is a locally 1-complemented
subspace of if(L1(/u.)£), the space of bounded linear operators (see [14]).
Here again, if E has a copy of c0 then 9L{L}(JJL), E) is not complemented
in 2(V(jt), E) (see [8]).

These results suggest that better and more reasonable geometric
properties to study in this context are the notions of "L-ideal and
<ft-summand recently introduced by Godefroy, Kalton and Saphar in [9].
Let us recall from [9], that a subspace Y of X is said to be a ^-summand
if Y is the range of a (unique) projection P in X satisfying ||7 - 2P|| = 1
and Y is said to be a "ft-ideal if Y± is a %-summand in X*. Since the
condition ||7 - 2P\\ = 1 implies ||P|| = 1 (and | | 7 - P|| = 1) any <ft-ideal is
clearly an ideal. Following the approach of Godefroy et al, who use the
notion of unconditional compact approximation property (UKAP) to
study similar questions in the context of the space of compact operators,
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in the first part of this paper we introduce the notion of a Radon-
Nikodym approximation property and show that if E has such a property
then L}(jx, £) is a <ft-ideal in cabv(n, £). After exhibiting a class of
Banach spaces that satisfy this property, we show that taking quotient by
suitable subspaces leads to more natural examples of this phenomenon.

Let us recall from [4] that, given an operator T: Lx(ji)^>E, there is a
G e cabv(fi, E) such that

and conversely any such G corresponds to a T e Ja^L'Ox), E). Further
such a T is said to be representable if there exists a g e L°°(IL, E) such
that T(f) = ffgdfi for all / e Ll(n) and T—>g is an onto-isometry
between S^L^/i), E) and Lm(fi, E). Hence by analogy with the situation
described above for the space L}(JL, E), we study in the second half of
this paper the <ft-ideal question for 91{L}(IL), E) as a subspace of
Z£(XL}(JJL), E). Motivated by a recent observation of the first author (see
[8]) that when Lx(fi, E) is an L-summand in cabvfjj., E) then
St(Ll(fi), E) is complemented in ^£{JJ(JL), E) by a projection of norm
one, we show that if L}{p., E) is a 3Z-summand in cabv(jj., E) and the
corresponding projection commutes with characteristic projections then
^ ( L 1 ^ ) , £) is a <ft-summand in S£(Lx(ji), E). For any Banach space Y
such that Y* is separable and X = X(Y, L^O, 1]) = 2(Y, L^O, 1]) we
show also that 91(L1(JL), X) is a <&-summand in ^(L1^), X).

All the Banach spaces considered in this paper are over the real scalar
field. We refer to the monograph [4] for the terminology and results
related to vector measures and to [10] for concepts from L and
^/-structure theory

Section 1

In this section we introduce the notion of a Radon-Nikodym approximat-
ing sequence and after considering an example we show that when E has
such an approximating sequence of operators then Lx(ji, E) is a ^-ideal
in cabvQjL, E). We also consider this question for certain quotient spaces.

Definition. Let £ be a Banach space and Tn e i?(£) be a sequence of
operators each one factoring through a Banach space having the
Radon-Nikodym property. We say that {7̂ ,} is a Radon-Nikodym
approximating sequence if || Tn(x) - x \\ -» 0 for all x e X. Such a sequence
is said to be unconditional if lim supn ||/ - 2Tn || « 1 .

Clearly any unconditional compact or weakly compact approximating
sequence satisfies the above property.

We are now ready to prove the main result of this section.
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THEOREM 1. Let E be a Banach space admitting a unconditional
Radon-Nikodym approximating sequence. Let (fl, si, /i) be a finite
measure space. Then L'(/i, E) is a 'U-ideal in cabv(ji, E).

Proof. Let {Rn} be such a sequence of operators. We define an
operator P: cabv(ji,E)*->cabv(ji,E)* in the following way. Let A
e cabv(ji, £)*, v e cabv(jji, E). Since Rn factors through a Banach space

having the Radon-Nikodym property, clearly Rnv has a Bochner density
w.r.t. n, i.e. Rnv e L}{fi, E); it also is a bounded sequence.

Put P ( A ) ( V ) = .L({(A(7?,,V)}) where L is a Banach limit of norm one.
Clearly P is a well defined linear map. We first note that if v E L'(/i, E),
then J?nv-»v weakly. Thus A(J?,,V)-+ A(V) in this case and P ( A ) ( V ) =
A(V).

To see this observe that since \\Rjc - x\\ ->0, ||/?nv(s)|| -»0 a.e. Recall
from [5] that elements of L\fj., E)* are represented by g*: Cl-*E*, a
iv*-measurable function, such that s-> ||g*(s)|| is in L~(jt). Thus

almost everywhere and

(s)-v(s))\^h \\v(s)\\ \\g*(S)\\

where h = 1 +sup \\Rn\\. Therefore by the Lebesgue Dominated conver-

gence theorem we get that Rnv-*v weakly. From this it is clear that
= L1(JI,E)±. Also

/>(/>( A ))(v) = L({P( A )(Rn v)})({P( A )(Rn v)})

for any A E cabv(v, £)* and v E cabv(fi, E). Therefore P is a projection.
Finally, fix A e cabv^, E)*, || A || = 1 and v e cabv(fi, E), | |v | |=l .
Using standard properties of Banach limits we have:

= |L({A(v-2«nv)})|

=sUmsup||/-2/?n||
n

Therefore j | / - 2P|| =s 1. Thus L^/i, E) is a ty-ideal in cabv(n, E).
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The next proposition gives a procedure for constructing spaces that
satisfy the hypothesis of the above theorem, among spaces of operators.

A Banach space F is said to have the unconditional metric approxima-
tion property (UMAP) if there is a sequence {Kn} of finite rank operators
with \\Kn(x) - JC || -»0 for all x e F and lin%, ||/ - 2Kn || = 1 (see [1]).

PROPOSITION 1. Let E be a Banach space such that E* has the
Radon-Nikodym property and let F be a Banach space having the UMAP.
Then K(E, F) admits an unconditional Radon-Nikodym approximating
sequence.

Proof. Let {Kn} be a sequence of finite-rank operators in F such that
||AT«(JC) — JCII - • 0 for all JC e Fand lim \\I-2Kn\\ = 1. Define

Kn: X(E, F)-* X(E, F) by

Since Kn is a finite-rank operator, Kn takes values into some JC(E, F')
where F' is a finite dimensional subspace of F. Since E* has the RNP,

, F') has the RNP (see [3]). Also since T is a compact operator

Therefore {Kn} is a Radon-Nikodym approximating sequence. A routine
verification shows that the sequence {Kn} is unconditional.

Remark 1. Note that when E is infinite dimensional, it follows from a
result of Vala [17], that Kn is not a compact operator. Also if £ is
reflexive and F has the UKAP, then it follows from a result of
Saksman-Tylli [16] that the Kn constructed above is a weakly compact
operator. To ensure non-triviality K(E, F) should of course fail the RNP
(take E reflexive and F = C, \<p < <», see [3]).

More examples of this nature can be constructed by starting from a E
that has the unconditional Radon-Nikodym approximation by a sequence
of operators say Rn and a subspace F of E such that Rn{F)<=.F and
restricting the R'j to F. The following example illustrates this.

EXAMPLE. Suppose E and F are such that K(E, F) has an unconditional
Radon-Nikodym approximating sequence {Rn} constructed as above. Let
G c £ be a closed subspace. Note that K(E/G, F) is isometric to a
subspace of K(E, F) via the map T->T°n. Clearly Rn(K(E/G, F)) c
K(E/G, F). Therefore the restriction of fl> to K(E/G, F) works.
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Remark 2. Note that for an infinite dimensional separable
nonreflexive E such that K(E) is an Af-ideal in L(£) then E contains an
isomorphic copy of c0 (see [10]) and by a result of Kalton [10, page 299]
we have that £ has a compact unconditional approximating sequence.

Remark 3. If V(fi,E) is a <ft-ideal in cabvfji, E) and E has no
isomorphic copy of c0, then it follows from a result of Kwapien [11] that
L}(ji, E) has no copy of c0. Hence by applying Theorem 3.5 of [9] we get
that L'(/x, E) is a <ft-summand in cabv(fi, £).

The next proposition will be used to show that L}(ji, E) is a %-ideal in
another naturally occuring superspace.

PROPOSITION 2. Let E cF cG. If E is a °\L-ideal in F and F is an
L-summand in G then E is a "U-ideal in G.

Proof. Let P: G->G be the L-projection i.e., ||Pg|| + \\g-Pg\\ = jigII
for all g e G whose range is F. To show that £ is a %-ideal in G, it is
enough to verify the "local characterization" given by Proposition 3.6 in
[9]. Accordingly, let 9 be a finite dimensional subspace of G and let
e > 0. Since £ is a <ft-ideal in F, for this e > 0 and for P(&) there exists an
operator L: P(&)->E such that L(x) = x for x e P(&) D £ and

| | « ( l + e)||x|| Vx e F.

Now if L' = L oP: 9^>E then L' = L on ED 9.
Also for x e G

\\x-2L'(x)\\ = \\x-2L(P(x))\\

Therefore £ is a ^-ideal in G.

COROLLARY 1. For a compact Hausdorff space ft and a finite regular
Borel measure /x on the Borel a-field, if Ll(fi, E) is a 'U-ideal in
rcabvfji, E) (regular measures) then it is a It-ideal in rcabv(E).

Proof. It is well-known that the Lebesgue decomposition is a L-
projection from rcabv(E) onto rcabv(ji, E). Hence the conclusion
follows from the above proposition.
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If L}(yi, E) is a ty-ideal in cabv(n, E) in some special situations,
for a subspace f c £ , L\fi, E/F) will be an ty-ideal in cabv(ji, E/F).
Lx(ji, E/F) can be identified with the quotient space L}(ji, E)/Ll(ji, F)
in the canonical way. However the same is not in general true of
cabv(fi, E/F) and the quotient space cabv(ji, E)/cabv(ji, F).

PROPOSITION 3. Suppose E admits an unconditional Radon-Nikodym
approximating sequence, say Rn. If F<=.E is an M-ideal such that
Rn(F)cF for all n, then for any separable measure space L}(p., E/F) is
an "It-ideal in cabv(fj., E/F).

Proof. We first show that Q: cabv(ji,E)-*cabv(/j., E/F) defined by
Q(y) = n ° v is a quotient map. Let v E cabvfji, E/F). Then there is a
bounded linear map T: L\\v\)-> E/F such that T(xA) = v(A).

Since L'flvQ is separable space with the MAP and F is an M-ideal in E
by Theorem 2.1 in [10], we get a lifting t: V(\v\)-*E. Now define
V: si->E by

Then 9 s cabv(y., E) and Q(?) = v. By hypothesis we have that L'^i, E)
is a <&-ideal in cabv(fi.E). Let P: cabv(fi, E)* -> cabv{fi, E)* be the
^-projection with Ker P = Ll(fi, £ ) \

Since cabv(/i, F/F) = cabv(ji, E)/cabv(fi, F), cabv(p, E/F)* =
cabvfa, F)x c cabv(/ji, E)*.

Therefore P: cabv(n., EIF)*-> cabv(jx, EIF)* is a ^-projection with
Ker P = Ll(jx, E/F)1- (here is where the definition of P and the fact that
Rn(F)cF is being used). Hence V(ji, E/F) is a <ft-ideal in
cabv(fL, E/F).

Section 2

In this section we consider the ty-ideal question for the space of
representable operators 9t(jJ(n), E) as a subspace of SS(Ll(ji), E). Note
that unlike the L\n, E) situation, ®.(L}(JL), E) always has an isometric
copy of c0 as this space is isometric to L°(ji, E).

For any A e si and v G cabv(fi, E), by v/A we denote the measure on
si defined by v/A(B) = v(A fl B). The projection v-» v/A in cabv(ji, E)
is called a characteristic projection.

THEOREM 1. Let P: cabv(fi, E)-*cabv{fi, E) be a ^-projection (i.e.
\\I - 2P\\ = 1) with Range P = Lx(ji, E). Assume further that P commutes
with the projection v-» v/A for every A e si. Then R^fji), E) is a
aU-summand in ^L\fi), E).
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Proof. Let T e L(L}{JL), E). AS we mentioned in the 'Introduction',
there exists a unique v e cabv(ji, E), given by

verifying the relation

1171 = S U p F A ^ f : A E "**' X{A)>0}'
and conversely given a v e cabv(n, E) with the supremum on the right
hand side finite, there corresponds a T e L{Ll(n.), E). We first claim that
under the given hypothesis P(v) gives rise to a representable operator in
L(V(fi), E). Let A e si; since P commutes with the projection v—» v/A,
we have P(v)/A = P(v/A).

Therefore

|P(v)| (A) = |P(v)M| = |P(vA4)|« \v/A\ « || 71

(Here | | denotes the total variation and then the total variation norm in
cabv(n, £).)

Thus we can define a map

by

It is easy to verify that P is a well defined linear projection whose range is
in ®(L\ti),E). To verify that \\I-2P\\=1, fix T e 2(LX<JL, E)),
\\T\\ = 1. Let v correspond to T. By the defining property, we need to
show that || v(A) - 2P(v)(A)\\ «s X(A) for any A e si with X(A) > 0.
But

\\v(A) - 2P(v)(A)|| « |v - 2Pv| (A) « X(A)

since

Therefore R(Ll(ji), E) is a ^-summand in 2(L\ti), E).

Remark 1. There are several natural situations where the hypothesis of
the above Theorem is satisfied. For instance if P is an L-projection then
since v—» v/A is an L-projection and since any two L-projections in a
space commute (see [10] Theorem 11.10) the hypothesis is satisfied. Also,
when £ is a Banach lattice not containing c0 it is known that the
projection P is a band projection ([2]) as well as v-»v//l is, for any
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A e si; and so they commute. In this last case we have a u -projection (see
[9]), that, in general, is not a L-projection.

In the next lemma we give another way of obtaining a commuting
projection. Let n: E-+E/F be the quotient map. Define
Q:cabv(ji, E)->cabv(fi,, E/F) by

Q(y) = TT o v.

Assume that

1) Q is a quotient map and
2) P(cabv(jL,F))cLl(ji,F).

Then P: cabv(ji, E/F)-*L\fi, E/F) denned as P(Q(v)) = Q(P(v)) is a
well defined map and is an onto projection (see [7]).

LEMMA 1. Let P: cabv(jj., E)-* Ll(ji, E) be a projection that commutes
with characteristic projections. Let F c E be a closed subspace and
suppose that the two conditions mentioned above are satisfied. Then P
again commutes with characteristic projections.

Proof. Fix A e si For any B e si

= 7i(v/A(B))

= Q{V/A)(B).
Therefore

= Q(v/A).

Since P commutes with characteristic projections, it is clear now that P
also commutes with characteristic projections.

We now give an example to illustrate this situation using concepts and
results from the work of Godefroy, see [10], Chapter IV. We also keep to
the notation of that monograph. We first need a lemma.

LEMMA 2. / / EcFcG* and E is w*-closed in G*, then
Q: cabv(fx, F)-*cabv(n, F/E) defined by Q{v) = it°v is a quotient
map.

Proof. Let v e cabv(fi, FIE). Clearly v e cabv(fL, G*IE). It follows
from the proof of Corollary 7 in [7], that there exists a i> e cabv(n, G*)
such that

= v(A) VAesl

Fix A e si and let n(x) = v(A) = n(?(A)) for some x s F.
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Since x — v(/i) e E c F, we get that

HA) e F.

Therefore P e cabv(n, F) and Q(V) = v.

EXAMPLE. Let T be the unit circle and let A be a Riesz subset of Z that
is not nicely placed. Then Li is a w*-closed subspace of C{T)* having the
Radon-Nikodym property. Therefore Q: cabv{yL,Lx)-^cabv{^,LllV^)
is a quotient map. Further since L\ has the RNP we have
P(cabv(fi,L\)) = P(Ll(ji,L\)), where P: cabv(n, V)^L\n, L1) is
an L-projection (hence commutes with characteristic projections; see [8],
[13] for the existence of this projection).

Thus the projection:

P: cabv(>i,Ll/Ll)-+L\n,L1/Li)

commutes with characteristic projections.
Observe that we are assuming the A is not a nicely placed set to ensure

that this example does not obviously follow from the lifting properties
enjoyed by quotients of L-embedded spaces by L-embedded subspaces.

Out next result gives another class of Banach spaces for which
R(L\fi), E) is a ^-summand in <£(Lx(p), E). In it we shall assume that
F is a Banach space such that F* is separable and X(F, L'[0,1]) =
2£{F, V\0,1]). (This for example is satisfied if F* has the Schur property,
in particular when F = c0. Also for any p>2, X{L", LX[Q, 1]) =

V[0,1]).)

THEOREM 2 Let F be a Banach space such that E = %(F, L'fO, 1]) =
<£(F, L}[Q, 1]) and F* separable. Then ^(L1^,) , E) is a "U-summand in
the space ^£{L\ti), E).

Proof. From Theorem 1 and the subsequent remarks we have that
there exists a ^-projection P: S£(LX(JL),L1[0, l ] ) -»i5(LV), L^O, 1])
with range P = ®(Ll(ji), L^O, 1]). Fix T e ^{L^fi), E). Let v be the
£-valued measure associated with T. For x e F, define vx:

 <&-*Ll[0,1]
by vz(A) = v(A)(x). Clearly vx is a countably additive vector measure.

Also

so that the operator corresponding to v, (also denoted by v,.) is a
member of the space X(Ll(n), Ll[0,1]). Now P(vx) e LT(ji, L'[0,1])
and ||P(vx)|Lss||7'|| ||jr||. Thus outside a null set Nx we have
l|J'(vx)(H')ll ** llxll II7"II- Since F is separable, choose a dense sequence
{*„} in the unit ball of F. For any n -tuple of rationals (ru • • •, rn) by
repeating the above process we get an element P(v-st.lV) of
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L°°(fi, Ll[0,1]) and a null set A^,...,,.) such that outside this null set

Put N = (J U (,„...,,„) N^-.r.y Now p(N) = 0 and for w e N
n

We also have for any A e si and any n-tuple of rationals (ru • • •, rn)

1 '-1 '-1 i

<i /i

= / Pivsr.iv) dp.
A

Therefore by the uniqueness of the representing function we get

Hence, outside a suitable null set N

1 1 / . 1 II U / - 1

Thus by a standard procedure we can define g: fl-» E such that for x e F
we have g(w)(x) = P(vx)(w) a.e. (this part of the proof follows the lines
for the proof of the main theorem in [2]).

Since F* is separable and %{F, Ll[Q, 1]) = 2(F, L'[0,1]) we have that
£ is a separable space. Therefore from the definition we have that g is
strongly measurable. Also ||g||«,« ||7*||. Therefore P: ^(L^fi), E)->
&(Ll(p), E) defined by P{T)=g is a well defined projection whose
range is 9L(lJ(p), E). It is also easy to verify that for / e L\/JL),

P(T)(f) = P(X°T)(J) a.e. xeF (here x « T: Ll(p)-*V[0,1] is d e -
fined by (X o T)(g) = T{g)(x)). Now to show that ||7 - 2P\\ =s 1, fix T, f, x
vectors of norm one in !£{Ll(ji), E), Lx(ji) and F respectively.

\\T(J)(x)-2P(T)(J)(x)\\
= \\T(J){x)-2P{ioT)<J)\\
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Hence | | / -2 /> | |= l so that 9t{L\y.),E) is a ^-summand in
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