


This is in conformity with the classical result (cf. [4]) that a horizontal circular cylinder submerged in deep
water is transparent to a normally incident wave train. However, the cylinder does experience reflection if it is
submerged in the upper layer. This problem arose in connection with modelling an under water pipe bridge
across Norwegian fjords consisting of a layer of fresh water on the top of a deep layer of salt water. Linton
and Cadby [5] also investigated the problem of scattering of obliquely incident waves by a long circular
cylinder in a two-layer fluid and observed that for an incident angle above a critical angle defined by a relation
involving the density ratio between the two fluids, there is no transfer of energy from the waves of higher wave
number to the waves of lower wave number while for incident angles less than the critical angle, energy trans-
fer only occurs at somewhat higher frequencies, and the phenomenon of zero transmission occurs at some
particular frequencies.

There is a considerable interest in the study of various types of water wave problems in the presence of a
thin ice-sheet floating on water, termed as water with an ice-cover, the ice-sheet being modelled as a thin elastic
plate (cf. [6–13] and others). Das and Mandal [14] investigated the wave scattering by a long circular cylinder
in a single-layer fluid of infinite depth with an ice-cover and observed that the cylinder does not experience
reflection for normal incidence, but does experience reflection for oblique incidence. This has motivated us
to consider a two-layer fluid whose upper layer is bounded above by a thin uniform ice-cover and the lower
layer is infinitely deep. In this case, time-harmonic waves of a particular frequency can propagate with two
different wave numbers, waves with higher wave number at the interface while waves with lower wave number
at the ice-cover.

Wave scattering by a horizontal circular cylinder situated in either of the two layers of an ice-covered two-
layer fluid is considered here. A brief account of oblique scattering by a circular cylinder submerged in the
lower layer was reported by Das and Mandal [15]. Oblique and normal incidence of a wave train of both
the wave numbers are considered here. It is observed that, for normal incidence of a wave train, there is no
reflection when the cylinder is in the lower layer. Thus the classical result about the transparency of a circular
cylinder due to normally incident surface wave train in an infinitely deep water with a free surface also holds
good for a two-layer fluid with an ice-cover if the cylinder is situated in the infinitely deep lower layer. When
the circular cylinder is in the upper layer, for normal incidence, there is also no transparency property of the
cylinder. Moreover, as observed by Linton and Cadby [5], for a two-layer fluid with a free surface, for oblique
incidence, here also there exists a critical angle. For incident angles less than this critical angle, there exist now
two cut-off frequencies, and for frequencies lying between these two frequencies will there be a transfer of
energy from the waves of higher wave number to the waves of lower wave number in the scattering process.
The higher cut-off frequency increases rapidly as the ice-cover parameter decreases, and becomes very large as
this parameter becomes very small since the cut-off frequency curve becomes almost asymptotically parallel to
the Ka-axis in the (Ka,a)-plane (see Fig. 1), where K = r2/g, r being the angular frequency, g being the gravity,

Fig. 1. Cut-off frequency Kca due to an incident wave of wavenumber k2 (h/a = 2, q = 0.5).

D. Das, B.N. Mandal / International Journal of Engineering Science 45 (2007) 842–872 843



a is the radius of the submerged circular cylinder and a is the angle of incidence. In fact the Kca curve almost
coincides with the corresponding Kca curve for a two-layer fluid with a free surface. For angles less than the
critical angle, energy transfer occurs only when the frequency lies between these cut-off frequencies, and when
there is no energy transfer, the phenomenon of zero transmission is observed at some particular frequencies.

In Section 2, the general problem of oblique wave incidence in a two-layer fluid with an ice-cover is dis-
cussed. The problems of wave scattering (for oblique and normal incidence) by a cylinder are treated in Sec-
tion 3 when the cylinder is in the lower fluid and in Section 4 when it is in the upper fluid.

Numerical estimates for the reflection and transmission coefficients are obtained and are depicted graphi-
cally against the wave number for various values of the angle of incidence and other parameters in a number of
figures. For normally incident wave trains, the numerical estimates for reflection and transmission coefficients
are also obtained and are depicted graphically against the wave number. The energy identities (derived in
Appendix A) are used as a check on the correctness of all numerical results for the reflection and transmission
coefficients.

2. Oblique waves scattering in a two-layer fluid

We are here concerned with irrotational motion in two superposed non-viscous incompressible fluids under
the action of gravity, neglecting any effect due to surface tension at the interface of the two fluids, the upper
being of finite depth h and covered by a thin uniform ice sheet modelled as a thin elastic plate, while the lower
layer being infinitely deep. The upper and lower layer fluids have densities q1 and q2(>q1), respectively. Carte-
sian co-ordinates are chosen such that (x,z)-plane coincides with the undisturbed interface between the two
fluids. The y-axis points vertically upwards with y = 0 as the mean position of the interface and y = h(>0)
as the mean position of the thin ice-cover. Under the usual assumptions of linear water wave theory a velocity
potential can be defined for oblique waves in the form

Uðx; y; z; tÞ ¼ Ref/ðx; yÞeÿirtþiczg;

where /(x,y) is a complex valued potential function, c is the wavenumber component along the z-direction
and r is defined earlier.

The upper fluid, 0 < y < h, will be referred to as region I, while the lower fluid, y < 0, will be referred to as
region II. The potential in the upper fluid will be denoted by /I and that in the lower fluid by /II. /I and /II

satisfied Helmholtz equation

ðr2 ÿ c2Þ/I ¼ 0 for 0 < y < h; ð2:1Þ

ðr2 ÿ c2Þ/II ¼ 0 for ÿ1 < y < 0: ð2:2Þ

Linearized boundary conditions at the interface and at the ice-cover are

/I
y ¼ /II

y on y ¼ 0; ð2:3Þ

qð/I
y ÿ K/IÞ ¼ /II

y ÿ K/II on y ¼ 0; ð2:4Þ

where q ¼ q1
q2
ð< 1Þ;

D
o
2

ox2
ÿ c2

� �2

þ 1ÿ �K

 !

/I
y ÿ K/I ¼ 0 on y ¼ h; ð2:5Þ

where K is defined earlier, D ¼ L
q1g

where L is the flexural rigidity of the elastic ice-cover and � ¼ q0
q1
h0; q0 is the

density of the ice and h0 is the very small thickness of the ice-cover. The boundary conditions (2.3) and (2.4)
are obtained from the continuity of normal velocity and pressure at the interface, respectively.

Also condition at large depth is

r/II ! 0 as y ! ÿ1: ð2:6Þ
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In a two-layer fluid progressive waves have the form (except for a multiplicative constant)

/I ¼ e�ixðk2ÿc2Þ
1
2 ½fkðDk4 þ 1ÿ �KÞ þ KgekðyÿhÞ þ fkðDk4 þ 1ÿ �KÞ ÿ KgeÿkðyÿhÞ�; ð2:7Þ

and

/II ¼ e�ixðk2ÿc2Þ
1
2eky ½fkðDk4 þ 1ÿ �KÞ þ Kgeÿkh þ fkðDk4 þ 1ÿ �KÞ ÿ Kgekh�; ð2:8Þ

where k satisfies the dispersion equation

HðkÞ � KqfkðDk4 þ 1ÿ �KÞ cosh khÿ K sinh khg

ÿ fkð1ÿ qÞ ÿ KgfkðDk4 þ 1ÿ �KÞ sinh khÿ K cosh khg ¼ 0: ð2:9Þ

Eq. (2.9) has exactly two positive real roots k1 and k2(k1 < k2) (say). Also, it has one negative real root and four
complex roots in the four quadrants of the complex k-plane.

For the case k = kj (j = 1,2) progressive waves are thus of the form

/Iðx; yÞ ¼ e�ibjxgjðyÞ; j ¼ 1; 2; ð2:10Þ

/IIðx; yÞ ¼ e�ibjxþkjy ; j ¼ 1; 2; ð2:11Þ

where bj ¼ ðk2j ÿ c2Þ
1
2 in which that branch of the square root is chosen for which bj = kj for c = 0,

gjðyÞ ¼
fkjð1ÿ qÞ ÿ Kg

KqfkjðDk
4
j þ 1ÿ �KÞ cosh kjhÿ K sinh kjhg

� ½fkjðDk
4
j þ 1ÿ �KÞ þ KgekjðyÿhÞ

þ fkjðDk
4
j þ 1ÿ �KÞ ÿ KgeÿkjðyÿhÞ�; j ¼ 1; 2: ð2:12Þ

We require c < k1 for j = 1 and c < k2 for j = 2, for the progressive waves to exist.
In any wave scattering problem therefore, the far-field will take the form of incoming and outgoing waves

at each of the wave numbers kj (j = 1,2). It is given by

/I � ðA�e�ib1x þ C�e�ib1xÞg1ðyÞ þ ðB�e�ib2x þ D�e�ib2xÞg2ðyÞ; ð2:13Þ

/II � ðA�e�ib1x þ C�e�ib1xÞek1y þ ðB�e�ib2x þ D�e�ib2xÞek2y ; ð2:14Þ

as x ! ±1, for which, in the notation of Linton and McIver [3],

/ � ðAÿ;Bÿ;Cÿ;Dÿ; Aþ;Bþ;Cþ;DþÞ: ð2:15Þ

Incident plane wave /inc of wave number k1 making an angle að0 6 a 6 p

2
Þ with the positive x-axis has the

form

/I
inc ¼ eik1x cos ag1ðyÞ; ð2:16Þ

/II
inc ¼ eik1x cos aþk1y : ð2:17Þ

In this case

c ¼ k1 sin a; b1 ¼ k1 cos a; b2 ¼ ðk22 ÿ k21 sin
2
aÞ

1
2: ð2:18Þ

It is obvious that b2 is real since k1 < k2 and so scattered waves of wave number k2 will exist for all values of k1
(i.e. for all values of K, since for different values of K, we get different k1 and k2(>k1)) and for all incident an-
gles a. The angle ak2 for the scattered waves of wave number k2 is given by

tan ak2 ¼
c

b2

¼
k1 sin a

ðk22 ÿ k21 sin
2
aÞ

1
2

: ð2:19Þ

Since b2 > b1 we know that tan ak2 < tan a and hence ak2 < a:
An incident plane wave of wave number k2 making an angle a ð0 6 a 6 p

2
Þ with the positive x-axis is given

by

/I
inc ¼ eik2x cos ag2ðyÞ; ð2:20Þ

/II
inc ¼ eik2x cos aþk2y : ð2:21Þ
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In this case

c ¼ k2 sin a; b1 ¼ ðk21 ÿ k22 sin
2
aÞ

1
2; b2 ¼ k2 cos a: ð2:22Þ

For a given angle a there may be a value of K for which k1 = k2 sina and thus b1 = 0. We will call this K as the
cut-off frequency and denote it by Kc. For a value of K for which k1 > k2 sina (for fixed a) we get real b1 and so
waves of wave number k1 will propagate. For a value of K for which k1 < k2 sina (for fixed a) b1 becomes imag-
inary and in that case there exists no propagating wave of wave number k1. Fig. 1 shows the cut-off frequency
Kca, plotted against incident wave angle

a ¼ sinÿ1 k1

k2

� �

; ð2:23Þ

for density ratio q = 0.5, h/a = 2, and different values of D
a4
and �/a, a being the radius of the circular cylinder

considered in the next section. Instead of using a, we could have used h to non-dimensionalise � and D, but
that would not have changed this discussion.

The different curves in Fig. 1 correspond to D
a4
¼ 2; 1:5; 1; 0:5; 0:1 and �/a = 0.01 (except one curve for which

�=a ¼ 0:0001; D
a4
¼ 0:0001). It is observed from this figure that for any angle a for which the point (a,Ka) is

situated on the right side of the curve there are no propagating waves of wave number k1 for this value of
Ka. It may be noted that for very small value of D

a4
i.e. 0.0001 with small �/a = 0.0001, the curve almost coin-

cides with the curve for the case of upper fluid with a free surface (Fig. 1 in [6]). Due to the presence of ice-
cover, we observe from this figure that for some values of a for which the point (Ka,a) is situated on the left
side of the curve there are two cut-off frequencies and only for frequencies lying between these two cut-off fre-
quencies will there be conversion of wave number k1 from wave of wave number k2. In Fig. 2, the critical angle
ac is plotted against D

a4
; for Kca = 0.3,0.5,0.9. These curves show that ac decreases as D

a4
increases for higher

values of Kca.
When waves of wave number k1 propagates, the angle ak1 of the scattered waves of wave number k1 is given

by

tan ak1 ¼
k2 sin a

ðk21 ÿ k22 sin
2
aÞ

1
2

: ð2:24Þ

In the case of a single-layer fluid, for any scattering problem, the reflection and transmission coefficients satisfy
the energy identity, which is generally used as a partial check on the correctness of the analytical or computed
values of these coefficients. For a two-layer fluid with a free surface, there exists two energy identities corre-
sponding to scattering of incident waves of two different wave numbers (cf. [3,6]). These energy identities were

Fig. 2. Critical angle ac for a fixed cut-off frequency (e/a = 0.01, h/a = 2, q = 0.5).
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derived by appropriate uses of Green’s integral theorem. For a two-layer fluid in which the upper layer has an
ice-cover instead of a free surface, energy identities are derived here in Appendix A by using a generalized form
of Green’s integral theorem. These identities are used here as partial numerical checks for all the data points in
obtaining the various curves for the reflection and transmission coefficients.

3. Cylinder in the lower layer

Let a horizontal circular cylinder of radius a have its axis at y = f(<0) and its generator runs parallel to
z-axis. Polar co-ordinates (r,h) are defined in the (x,y)-plane by

x ¼ r sin h and y ¼ f ÿ r cos h: ð3:1Þ

Let the symmetric and antisymmetric multipoles be defined by /s
nðn P 0Þ and /a

nðn P 1Þ, respectively. The
multipoles are defined by (in the notation of Linton and Cadby [6])

/Is
n ¼ ðÿ1Þn cosh nk cosðcx sinh kÞðAðkÞevy þ BðkÞeÿvyÞ dk; ð3:2Þ

/IIs
n ¼ KnðcrÞ cos nhþ ðÿ1Þ

n
cosh nk cosðcx sinh kÞCðkÞevy dk; ð3:3Þ

/Ia
n ¼ ðÿ1Þ

nþ1
sinh nk sinðcx sinh kÞðAðkÞevy þ BðkÞeÿvyÞ dk; ð3:4Þ

/IIa
n ¼ KnðcrÞ sin nhþ ðÿ1Þ

nþ1
sinh nk sinðcx sinh kÞCðkÞevy dk; ð3:5Þ

where v = ccoshk and A(k), B(k), C(k) are functions of k to be found such that the integrals exist in some
sense. Kn(z) is the modified Bessel function of second kind.

The functions /s
n and /a

n are singular solutions of the modified Helmholtz equation and satisfy the ice-cover
condition (2.5) and the interface conditions (2.3) and (2.4) and are of outgoing nature at infinity. Then A(k),
B(k) and C(k) have the forms

AðkÞ ¼ KfvðDv4 þ 1ÿ �KÞ þ KgevðfÿhÞ=HðvÞ; ð3:6Þ

BðkÞ ¼ KfvðDv4 þ 1ÿ �KÞ ÿ KgevðfþhÞ=HðvÞ; ð3:7Þ

CðkÞ ¼ ½KqfvðDv4 þ 1ÿ �KÞ cosh vhÿ K sinh vhg

ÿ fð1ÿ qÞvþ KgfvðDv4 þ 1ÿ �KÞ sinh vhÿ K cosh vhg�evf=HðvÞ; ð3:8Þ

where H(v) is given by (2.9) (with k replaced by v).
The path of the integration in the integrals in (3.2)–(3.5) is indented below the poles at k = l1 and k = l2,

where

c cosh lj ¼ kj; j ¼ 1; 2: ð3:9Þ

The far-field forms of the multipoles, in the lower fluid, are given by

/IIs
n � ðÿ1ÞnpiðCl1 cosh nl1e

�ib1xþk1y þ Cl2 cosh nl2e
�ib2xþk2yÞ; ð3:10Þ

/IIa
n � �ðÿ1Þ

n
pðCl1 sinh nl1e

�ib1xþk1y þ Cl2 sinh nl2e
�ib2xþk2yÞ; ð3:11Þ

as x ! ±1, where Cl1 and Cl2 are the residues of C(k) at k = l1 and k = l2, and these are given by

Clj ¼ ½KqfkjðDk
4
j þ 1ÿ �KÞ cosh kjhÿ K sinh kjhg

ÿ fð1ÿ qÞkj þ KgfkjðDk
4
j þ 1ÿ �KÞ sinh kjhÿ K cosh kjhg�e

kjf=bjH
0ðkjÞ; j ¼ 1; 2: ð3:12Þ

Using the expansion

e
1
2
X ðPþPÿ1Þ ¼

X

1

m¼0

1

2
�mðP

m þ PÿmÞImðX Þ; ð3:13Þ
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where

�0 ¼ 1; �m ¼ 2; m P 1: ð3:14Þ

Im(X) is the modified Bessel function of first kind, (3.3) and (3.5) can be expanded in terms of polar
co-ordinates as

/IIs
n ¼ KnðcrÞ cos nhþ

X

1

m¼0

AðsÞ
nmImðcrÞ cosmh; ð3:15Þ

/IIa
n ¼ KnðcrÞ sin nhþ

X

1

m¼1

AðaÞ
nmImðcrÞ sinmh; ð3:16Þ

where

AðsÞ
nm ¼ �mðÿ1Þ

mþn
evf coshmk cosh nkCðkÞ dk; ð3:17Þ

AðaÞ
nm ¼ 2ðÿ1Þ

mþn
evf sinhmk sinh nkCðkÞ dk: ð3:18Þ

3.1. Obliquely incident wave train of wavenumber k1

Let us consider the case of an obliquely wave train of wavenumber k1 making an angle a with the positive
x-axis, so that c = k1 sina. The incident wave potential (2.17) has the form

/II
inc ¼ eib1xþk1y ¼ ek1f

X

1

m¼0

�mðÿ1Þ
m
ImðcrÞðcoshmm cosmhÿ i sinhmm sinmhÞ; ð3:19Þ

where

cosh m ¼
k1

c
¼

1

sin a
:

To solve the scattering problem we write the potential function describing the fluid motion as

/k1
¼ /inc þ

X

1

n¼0

ðan/
a
n þ bn/

s
nÞ; ð3:20Þ

where an and bn are unknown constants to be determined.
To find an and bn the polar expansions of the multipoles (3.3), (3.5) and the incident wave (3.19) are

substituted into (3.20). Applying the body boundary condition
o/II

k1

or
¼ 0 on r = a, and using the orthogonal

properties of the trigonometric functions, we obtain two infinite systems of linear equations for the unknowns
an and bn as given by,

am

Zm

þ
X

1

n¼1

AðaÞ
nman ¼ 2iðÿ1Þ

m
ek1f sinhmm; m ¼ 1; 2; . . . ; ð3:21Þ

bm

Zm

þ
X

1

n¼0

AðsÞ
nmbn ¼ ðÿ1Þ

mþ1
�me

k1f coshmm; m ¼ 0; 1; . . . ; ð3:22Þ

where

Zm ¼
I 0mðcaÞ

K 0
mðcaÞ

;

dash denoting derivative with respect to the arguments.
These two systems can be solved by truncation. Here 5 · 5 systems were used as in [6] for numerical

computations.
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The far-field form for /II
k1
; in the lower layer, can be written as

/II
k1
�

eib1xþk1y þ Rk1e
ÿib1xþk1y þ rk1e

ÿib2xþk2y as x ! ÿ1;

T k1e
ib1xþk1y þ tk1e

ib2xþk2y as x ! 1:

(

ð3:23Þ

Using (3.20), (3.10) and (3.11) we obtain the reflection and transmission coefficients as follows:

Rk1 ¼ pCl1
X

1

m¼0

ðÿ1Þ
m
fibm coshml1 þ am sinhml1g; ð3:24Þ

rk1 ¼ pCl2
X

1

m¼0

ðÿ1Þ
m

ibm coshml2 þ am sinhml2f g; ð3:25Þ

T k1 ¼ 1þ pCl1
X

1

m¼0

ðÿ1Þ
m
fibm coshml1 ÿ am sinhml1g; ð3:26Þ

tk1 ¼ pCl2
X

1

m¼0

ðÿ1Þ
m
fibm coshml2 ÿ am sinhml2g: ð3:27Þ

3.2. Obliquely incident wave train of wavenumber k2

We consider the case of an obliquely incident plane wave of wavenumber k2 making an angle a with the
positive x-axis, so that c = k2 sina. The expansion of incident wave potential is the same as (3.19), except that
k1 is to be replaced by k2. The velocity potential /k2

for this problem can again be expanded in terms of mul-
tipoles similar to (3.20) and the equations for an and bn are similar to (3.21) and (3.22) with k1 is to be replaced
by k2.

The far-field forms of /II
k2
; in the lower layer, can be written as

/II
k2
�

eib2xþk2y þ Rk2e
ÿib1xþk1y þ rk2e

ÿib2xþk2y as x ! ÿ1;

T k2e
ib1xþk1y þ tk2e

ib2xþk2y as x ! 1:

(

ð3:28Þ

Using the far-field forms of the multipoles given by (3.10) and (3.11) in /k2
we find that the expressions for

reflection coefficients Rk2 and rk2 are similar to (3.24) and (3.25) with appropriate changes, and the transmis-
sion coefficients are given by

T k2 ¼ pCl1
X

1

m¼0

ðÿ1Þmfibm coshml1 ÿ am sinhml1g; ð3:29Þ

tk2 ¼ 1þ pCl2
X

1

m¼0

ðÿ1Þmfibm coshml2 ÿ am sinhml2g: ð3:30Þ

3.3. Normally incident wave train

Now for the case of normal incidence, a = 0, the modified Helmholtz equation reduces to the Laplace’s
equation and solutions of Laplace’s equation singular at y = f < 0 are rÿncosnh and rÿn sinnh, n P 1, and
these have the integral representations

cos nh

rn
¼

ðÿ1Þ
n

ðnÿ 1Þ!

Z 1

0

knÿ1eÿkðyÿf Þ cos kx dk;

sin nh

rn
¼

ðÿ1Þnþ1

ðnÿ 1Þ!

Z 1

0

knÿ1eÿkðyÿf Þ sin kx dk:

It is straightforward to add suitable solutions of Laplace’s equation to the symmetric and antisymmetric mul-
tipoles so that the boundary conditions are satisfied. We obtain
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/Is
n ¼

ðÿ1Þ
n

ðnÿ 1Þ!
knÿ1ðAðkÞeky þ BðkÞeÿkyÞ cos kx dk; ð3:31Þ

/IIs
n ¼

cos nh

rn
þ

ðÿ1Þ
n

ðnÿ 1Þ!
knÿ1CðkÞeky cos kx dk; ð3:32Þ

/Ia
n ¼

ðÿ1Þnþ1

ðnÿ 1Þ!
knÿ1ðAðkÞeky þ BðkÞeÿkyÞ sin kx dk; ð3:33Þ

/IIa
n ¼

sin nh

rn
þ

ðÿ1Þ
nþ1

ðnÿ 1Þ!
knÿ1CðkÞeky sin kx dk; ð3:34Þ

where now

AðkÞ ¼ KfkðDk4 þ 1ÿ �KÞ þ KgekðfÿhÞ=HðkÞ; ð3:35Þ

BðkÞ ¼ KfkðDk4 þ 1ÿ �KÞ ÿ KgekðfþhÞ=HðkÞ; ð3:36Þ

CðkÞ ¼ ½KqfkðDk4 þ 1ÿ �KÞ cosh khÿ K sinh khg

ÿ fð1ÿ qÞk þ KgfkðDk4 þ 1ÿ �KÞ sinh khÿ K cosh khg�ekf =HðkÞ ð3:37Þ

and the path of integration is indented to pass beneath the poles of the above four integrands at k = k1 and
k = k2. Here we have used the same notation without any confusion.

The multipoles (3.32) and (3.34) can be expanded about r = 0. Thus we obtain

/IIs
n ¼

cos nh

rn
þ
X

1

m¼0

Anmr
m cosmh; ð3:38Þ

/IIa
n ¼

sin nh

rn
þ
X

1

m¼0

Anmr
m sinmh; ð3:39Þ

where

Anm ¼
ðÿ1Þ

nþm

ðnÿ 1Þ!m!
knþmÿ1CðkÞeky dk: ð3:40Þ

Note that Anm is the same for /IIs
n and /IIa

n :
The far-field form of the multipoles, in the lower layer, is given by

/IIs
n �

ðÿ1Þ
n

ðnÿ 1Þ!
piðknÿ1

1 Ck1e�ik1xþk1y þ knÿ1
2 Ck2e�ik2xþk2yÞ; ð3:41Þ

/IIa
n � �

ðÿ1Þ
n

ðnÿ 1Þ!
pðknÿ1

1 Ck1e�ik1xþk1y þ knÿ1
2 Ck2e�ik2xþk2yÞ; ð3:42Þ

as x ! ±1. Here Ck1 Ck2 are the residues of C(k) at k = k1 and k = k2, given by

Ckj ¼ ½KqfkjðDk
4
j þ 1ÿ �KÞ cosh kjhÿ K sinh kjhg

ÿ fð1ÿ qÞkj þ KgfkjðDk
4
j þ 1ÿ �KÞ sinh kjhÿ K cosh kjhg�e

kjf =H 0ðkjÞ; j ¼ 1; 2: ð3:43Þ

3.4. Normally incident wave train of wavenumber k1

The incident wave potential

/II
inc ¼ eik1xþk1y ; ð3:44Þ

when expanded about r = 0, has the form

/II
inc ¼

X

1

m¼0

ðÿ1Þm

m!
km1 r

mðcosmhÿ i sinmhÞek1f : ð3:45Þ
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To solve this scattering problem we write

/II
k1
¼ /II

inc þ
X

1

n¼1

anðan/
a
n þ bn/

s
nÞ; ð3:46Þ

where an and bn are unknown constants to be determined.
To solve for an and bn the polar expansions of the multipoles (3.32), (3.34) and the incident wave (3.45) are

substituted into (3.46) and applying the body boundary condition
o/II

k1

or
¼ 0 on r = a and using the orthogonal

properties of the trigonometric functions, we obtain two infinite systems of linear equations for unknowns an
and bn which are

am ÿ
X

1

n¼1

anþmAnman ¼ ÿi
ðÿk1aÞ

m

m!
ek1f ; m ¼ 1; 2; . . . ; ð3:47Þ

bm ÿ
X

1

n¼1

anþmAnmbn ¼
ðÿk1aÞ

m

m!
ek1f ; m ¼ 1; 2; . . . : ð3:48Þ

Since left-hand sides of the systems of equations are of the same nature and the right-hand sides of the systems
differ by a factor ÿi, we find that

an ¼ ÿibn: ð3:49Þ

Thus /II
k1

is obtained as

/II
k1
¼ /II

inc þ
X

1

n¼1

anbnð/
s
n ÿ i/a

nÞ; ð3:50Þ

It follows immediately from (3.41) and (3.42) that as x ! ÿ1

/II
k1
� /II

inc: ð3:51Þ

The far-field form for /II
k1

in the lower fluid can be written as

/II
k1
�

eik1xþk1y þ Rk1e
ÿik1xþk1y þ rk1e

ÿik2xþk2y as x ! ÿ1;

T k1e
ik1xþk1y þ tk1e

ik2xþk2y as x ! 1:

(

ð3:52Þ

Using (3.50) we can obtain the reflection and transmission coefficients:

Rk1 ¼ rk1 � 0; ð3:53Þ

T k1 ¼ 1þ 2pi
X

1

n¼1

ðÿ1Þn

ðnÿ 1Þ!
anknÿ1

1 Ck1bn; ð3:54Þ

tk1 ¼ 2pi
X

1

n¼1

ðÿ1Þ
n

ðnÿ 1Þ!
anknÿ1

2 Ck2bn: ð3:55Þ

3.5. Normally incident wave train of wavenumber k2

For an incident wave of wave number k2 the mathematical analysis is the same except that k1 is to be
replaced by k2 in the above equations. Also the far-field forms of /II

k2
, in the lower layer, can be written as

/II
k2
�

eik2xþk2y þ Rk2e
ÿik1xþk1y þ rk2e

ÿik2xþk2y as x ! ÿ1;

T k2e
ik1xþk1y þ tk2e

ik2xþk2y as x ! 1:

(

ð3:56Þ

Here also we find that the reflection coefficients Rk2 and rk2 are identically zero. For the transmission coeffi-
cients we obtain
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T k2 ¼ 2pi
X

1

n¼1

ðÿ1Þ
n

ðnÿ 1Þ!
anknÿ1

1 Ck1bn; ð3:57Þ

tk2 ¼ 1þ 2pi
X

1

n¼1

ðÿ1Þ
n

ðnÿ 1Þ!
anknÿ1

2 Ck2bn: ð3:58Þ

3.6. Numerical results

In Figs. 3–6 the reflection and transmission coefficients are shown for the case of a wave train of wave num-
ber k1 obliquely incident on the cylinder submerged in the lower fluid. In all the plots immersion depth ÿf/a is
2, the depth of the upper fluid layer h/a is 2 and q (density ratio) is 0.5, �/a = 0.01 and D/a4 = 1.5. The dif-
ferent curves correspond to different incident wave angle a, which are 15°, 75°, 80°, 85°, 89°. From Figs. 3
and 5 it is observed that as the angle of incidence increases, jRk1 j increases while jT k1 j decreases. Also jRk1 j

Fig. 3. Reflection coefficient due to a wave of wavenumber k1 incident on a cylinder in the lower layer (D/a4 = 1.5, e = .01, h/a = 2, q = .5,

f/a = ÿ2).

Fig. 4. Reflection coefficient due to a wave of wavenumber k1 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, q = .5,

h/a = 2, f/a = ÿ2).
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is somewhat smaller in comparison to that of Linton and Cadby [6] and jT k1 j is somewhat larger in comparison
to that of Linton and Cadby [6]. This is due to the presence of the ice-cover. For a = 15°, the reflection coef-
ficient jRk1 j is seen to be quite small. In fact for small a, jRk1 j becomes negligible.

The reflection coefficient jrk1 j and transmission coefficient jtk1 j of waves of wave number k2 for an incident
wave of wave number k1, shown in Figs. 4 and 6, respectively, are smaller in comparison to those for wave of
wave number k1, but their non-zero values show that there is some conversion of energy from one wave num-
ber to the other.

The case of an incident wave of wave number k2 is more interesting due to the presence of cut-off frequen-
cies. For this case, Figs. 7–10 show the reflection coefficients jRk2 j, jrk2 j and transmission coefficients jT k2 j, jtk2 j
against Ka for h/a = 2, q = 0.5, f/2 = ÿ2, �/a = 0.01, D/a4 = 1.5. The different curves correspond to different
values of the incident angle a, viz. 14.9°, 16.6°, 17.76°, 19.20°. When a = 19.20° which is greater than the crit-
ical angle ac = 18.95° for the given values of the different parameters, there is no wave of wave number k1
propagating in the fluid. From Fig. 1 we have the following cut-off frequencies: Kca = (0.09,0.86);
(0.13,0.665); (0.17,0.54) corresponding to the incident angles 14.9°, 16.6°, 17.76°, respectively. For these

Fig. 5. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, h/a = 2,

q = .5, f/a = ÿ2).

Fig. 6. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, q = .5,

h/a = 2, f/a = ÿ2).
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angles and for frequencies lying between two appropriate cut-off frequencies will there be conversion of energy
from one mode to the other. jrk2 j, jtk2 j for the incident wave number k2 are shown in Figs. 8 and 10. From these
two figures we observe that for a particular frequency just less than the cut-off frequency there is maximum
reflection and minimum transmission of the incident wave of wave number k2. For a = 14.9°, 16.6°, 17.76°
there are two spikes in the curves because of two cut-off frequencies. When a = 19.20° which is greater than
the critical angle, there is no spike on the curve. All the numerical values of the reflection and transmission
coefficients have been checked for their correctness from the energy identities.

For the case of normal incidence, Figs. 11 and 12 show the transmission coefficients for the case of an inci-
dent wave of wave number k1 incident on a circular cylinder in the lower fluid for �/a = 0.01, h/a = 2, q = 0.5,
f/a = ÿ2. The different curves correspond to different values of D/a4, D/a4 = 0.1,0.5,1, 1.5,2. Fig. 11 shows
that jT k1 j first decreases as Ka increases for low to moderate values of Ka but it increases as Ka further
increases for any D/a4. Fig. 12 describes the behavior of jtk1 j which is complimentary to the behavior of
jT k1 j: Also Figs. 13 and 14 show the transmission coefficients due to a wave of wave number k2 incident on
a cylinder in the lower layer. Fig. 13 (Fig. 14) describes the behavior of jT k2 j which is similar to the behavior
of jtk2 jðjT k2 jÞ:

Fig. 7. Reflection coefficient due to a wave of wavenumber k2 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, h/a = 2,

q = 0.5, f/a = ÿ2).

Fig. 8. Reflection coefficient due to a wave of wavenumber k2 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, h/a = 2,

q = 0.5, f/a = ÿ2).
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4. Cylinder in the upper layer

A horizontal circular cylinder of radius a has its axis at y = f(>0) and its generator runs parallel to the z-axis
(f/a > 1). Polar co-ordinates are again defined via (3.1) and suitable multipoles have the forms

/Is
n ¼ KnðcrÞ cos nhþ cosh nk cosðcx sinh kÞðAð0Þ

n ðkÞevy þ Bð0Þ
n ðkÞeÿvyÞ dk; ð4:1Þ

/IIs
n ¼ cosh nk cosðcx sinh kÞCð0Þ

n ðkÞevy dk; ð4:2Þ

/Ia
n ¼ KnðcrÞ sin nhþ sinh nk sinðcx sinh kÞðAð1Þ

n ðkÞevy þ Bð1Þ
n ðkÞeÿvyÞ dk; ð4:3Þ

/IIa
n ¼ sinh nk sinðcx sinh kÞCð1Þ

n ðkÞevy dk; ð4:4Þ

Fig. 9. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, q = 0.5,

h/a = 2, f/a = ÿ2).

Fig. 10. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the lower layer (D/a4 = 1.5, e/a = 0.01, h/a = 2,

q = 0.5, f/a = ÿ2).
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where

AðjÞ
n ðkÞ ¼

1

2
½fvðDv4 þ 1ÿ �KÞ þ Kgeÿvhfðÿ1Þnþjþ1ðð1ÿ qÞvÿ ð1þ qÞKÞevf

ÿ ð1ÿ qÞðvÿ KÞeÿvf g�=HðvÞ; ð4:5Þ

BðjÞ
n ðkÞ ¼

1

2
½ðÿ1Þ

nþjþ1
fvðDv4 þ 1ÿ �KÞ þ Kgð1ÿ qÞðvÿ KÞevðfÿhÞ

ÿ ð1ÿ qÞðvÿ KÞfvðDv4 þ 1ÿ �KÞ ÿ KgeÿvðfÿhÞ�=HðvÞ; ð4:6Þ

CðjÞ
n ðkÞ ¼ ÿqK½ðÿ1Þ

nþjþ1
fvðDv4 þ 1ÿ �KÞ þ KgevðfÿhÞ ÿ fvðDv4 þ 1ÿ �KÞ ÿ KgeÿvðfÿhÞ�=HðvÞ;

j ¼ 0; 1 ð4:7Þ

where the contour is indented below the poles k = l1 and k = l2 in the complex k-plane.

Fig. 11. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the lower layer (e/a = 0.01, h/a = ÿ2, q = 0.5,

f/a = ÿ2).

Fig. 12. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the lower layer (e/a = 0.01, h/a = 2, q = 0.5,

f/a = ÿ2).
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The far-field form of these multipoles, in the lower fluid layer, is given by

/IIs
n � piðCð0Þl1

n cosh nl1e
�ib1xþk1y þ Cð0Þl2

n cosh nl2e
�ib2xþk2yÞ; ð4:8Þ

/IIa
n � �pðCð1Þl1

n sinh nl1e
�ib1xþk1y þ Cð1Þl2

n sinh nl2e
�ib2xþk2yÞ; ð4:9Þ

as x ! ±1, where CðjÞl1
n and CðjÞl2

n ðj ¼ 0; 1Þ are the residues of CðjÞ
n ðkÞ at k = l1 and k = l2, given by

CðjÞli
n ¼ ÿqK½ðÿ1Þnþjþ1fkiðDk

4
i þ 1ÿ �KÞ þ KgekiðfÿhÞ ÿ fkiðDk

4
i þ 1ÿ �KÞ ÿ KgeÿkiðfÿhÞ�=biH

0ðkiÞ;

i ¼ 1; 2; j ¼ 0; 1: ð4:10Þ

Fig. 13. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the lower layer (e/a = 0.01, h/a = 2, q = 0.5,

f/a = ÿ2).

Fig. 14. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the lower layer (e/a = 0.01, h/a = 2, q = 0.5,

f/a = ÿ2).
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The polar expansions of the multipoles, similar to the case when cylinder is in the lower fluid, are

/Is
n ¼ KnðcrÞ cos nhþ

X

1

m¼0

BðsÞ
nmImðcrÞ cosmh; ð4:11Þ

/Ia
n ¼ KnðcrÞ sin nhþ

X

1

m¼1

BðaÞ
nmImðcrÞ sinmh; ð4:12Þ

where

BðsÞ
nm ¼ �m coshmk cosh nkfðÿ1Þ

m
Að0Þ
n ðkÞevf þ Bð0Þ

n ðkÞeÿvfg dk; ð4:13Þ

BðaÞ
nm ¼ 2 sinhmk sinh nkfðÿ1Þmþ1

Að1Þ
n ðkÞevf þ Bð1Þ

n ðkÞeÿvfg dk: ð4:14Þ

4.1. Obliquely incident wave train of wavenumber k1

For this problem /I
inc is given, in the upper fluid, by eib1xg1ðyÞ; where g1(y) is defined in (2.12). The polar

expansion of /I
inc is given by

/I
inc ¼

X

1

m¼0

�mImðcrÞ½ðÿ1ÞmM1e
ÿk1ðhÿf Þ þM2e

k1ðhÿf Þ� coshmm cosmh

þ i
X

1

m¼0

�mImðcrÞ½ðÿ1Þmþ1
M1e

ÿk1ðhÿf Þ þM2e
k1ðhÿf Þ� sinmm sinmh; ð4:15Þ

where

cosh m ¼
k1

c
¼

1

sin a
;

and

M1;2 ¼
fð1ÿ qÞk1 ÿ Kgfk1ðDk

4
1 þ 1ÿ �KÞ � Kg

Kqfk1ðDk
4
1 þ 1ÿ �KÞ cosh k1hÿ K sinh k1hg

: ð4:16Þ

The velocity potential /I
k1
is expanded similar as (3.20), where /s

n and /a
n are the symmetric and antisymmetric

multipoles developed for the upper fluid, respectively. After applying the body boundary condition,
o/I

k1

or
¼ 0 on

r = a and also using the orthogonal properties of trigonometric functions, we obtain the two infinite system of
linear equations

am

Zm

þ
X

1

n¼1

BðaÞ
nman ¼ 2i½ðÿ1ÞmM1e

ÿk1ðhÿf Þ ÿM2e
k1ðhÿf Þ� sinhmm; m ¼ 1; 2; . . . ; ð4:17Þ

bm

Zm

þ
X

1

n¼0

BðsÞ
nmbn ¼ �m½ðÿ1Þmþ1

M1e
ÿk1ðhÿf Þ ÿM2e

k1ðhÿf Þ� coshmm; m ¼ 0; 1; . . . : ð4:18Þ

These equations were solved by truncations to 5 · 5 systems to produce the numerical results. The reflection
and transmission coefficients can be extracted from the far-field form of the potential /I

k1
; using (3.20), (4.8)

and (4.9) with (3.23), and are given by
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Rk1 ¼ p

X

1

m¼0

fibmC
ð0Þl1
n coshml1 ÿ amC

ð1Þl1
n sinhml1g; ð4:19Þ

rk1 ¼ p

X

1

m¼0

fibmC
ð0Þl2
n coshml2 ÿ amC

ð1Þl2
n sinhml2g; ð4:20Þ

T k1 ¼ 1þ p

X

1

m¼0

fibmC
ð0Þl1
n coshml1 þ amC

ð1Þl1
n sinhml1g; ð4:21Þ

tk1 ¼ p

X

1

m¼0

fibmC
ð0Þl2
n coshml2 þ amC

ð1Þl2
n sinhml2g: ð4:22Þ

4.2. Obliquely incident wave train of wavenumber k2

For this problem /I
inc is given, in the upper fluid, by eib2xg2ðyÞ; where g2(y) is defined in (2.12). The polar

expansion of /I
inc is same as (4.15), except that k1 is replaced by k2. The velocity potential /

I
k2
for this scattering

problem can again be expanded in multipoles similar to (3.20) and the equations for an and bn are similar to
(4.17) and (4.18) with k1 replaced by k2.

The reflection and transmission coefficients can be extracted from the far-field form of the potential /I
k2

using (3.20), (4.8) and (4.9) with (3.28). The expressions for Rk2 and rk2 are similar to (4.19) and (4.20) with
appropriate changes, and the transmission coefficients are given by

T k2 ¼ p

X

1

m¼0

fibmC
ð0Þl1
n coshml1 þ amC

ð1Þl1
n sinhml1g; ð4:23Þ

tk2 ¼ 1þ p

X

1

m¼0

fibmC
ð0Þl2
n coshml2 þ amC

ð1Þl2
n sinhml2g: ð4:24Þ

4.3. Normally incident wave train

Now for the case of normal incidence, a = 0, the modified Helmholtz equation reduces to the Laplace’s
equation and solutions of Laplace’s equation singular at y = f > 0 are rÿncosnh and rÿn sinnh, n P 1, and
these have the integral representations

cos nh

rn
¼

1

ðnÿ 1Þ!

Z 1

0

knÿ1ekðyÿf Þ cos kx dk;

sin nh

rn
¼

1

ðnÿ 1Þ!

Z 1

0

knÿ1ekðyÿf Þ sin kx dk:

Here the appropriate multipoles have the forms

/Is
n ¼

cos nh

rn
þ

1

ðnÿ 1Þ!
knÿ1ðAð0Þ

n ðkÞeky þ Bð0Þ
n ðkÞeÿkyÞ cos kx dk; ð4:25Þ

/IIs
n ¼

1

ðnÿ 1Þ!
knÿ1Cð0Þ

n ðkÞeky cos kx dk; ð4:26Þ

/Ia
n ¼

sin nh

rn
þ

1

ðnÿ 1Þ!
knÿ1ðAð1Þ

n ðkÞeky þ Bð1Þ
n ðkÞeÿkyÞ sin kx dk; ð4:27Þ

/IIa
n ¼

1

ðnÿ 1Þ!
knÿ1Cð1Þ

n ðkÞeky sin kx dk; ð4:28Þ
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where

AðjÞ
n ðkÞ ¼

1

2
½fkðDk4 þ 1ÿ �KÞ þ Kgeÿkhfðÿ1Þnþjþ1ðð1ÿ qÞk ÿ ð1þ qÞKÞekf ÿ ð1ÿ qÞðk ÿ KÞeÿkfg�=HðkÞ;

ð4:29Þ

BðjÞ
n ðkÞ ¼

1

2
½ðÿ1Þ

nþjþ1
fkðDk4 þ 1ÿ �KÞ þ Kgð1ÿ qÞðk ÿ KÞekðfÿhÞ

ÿ ð1ÿ qÞðk ÿ KÞfkðDk4 þ 1ÿ �KÞ ÿ KgeÿkðfÿhÞ�=HðkÞ; ð4:30Þ

CðjÞ
n ðkÞ ¼ ÿqK½ðÿ1Þ

nþjþ1
fkðDk4 þ 1ÿ �KÞ þ KgekðfÿhÞ ÿ fkðDk4 þ 1ÿ �KÞ ÿ KgeÿkðfÿhÞ�=HðkÞ;

j ¼ 0; 1; ð4:31Þ

the contour being indented below the poles k = k1 and k = k2 in the complex k-plane.
The polar expansions of these multipoles, in the upper layer, valid for r < f, are

/Is
n ¼

cos nh

rn
þ
X

1

m¼0

EðsÞ
nmr

m cosmh; ð4:32Þ

/Ia
n ¼

sin nh

rn
þ
X

1

m¼1

EðaÞ
nmr

m sinmh; ð4:33Þ

where

EðsÞ
nm ¼

1

ðnÿ 1Þ!m!
kmþnÿ1fðÿ1Þ

m
Að0Þ
n ðkÞekf þ Bð0Þ

n ðkÞeÿkfg dk; ð4:34Þ

EðaÞ
nm ¼

1

ðnÿ 1Þ!m!
kmþnÿ1fðÿ1Þ

mþ1
Að1Þ
n ðkÞekf þ Bð1Þ

n ðkÞeÿkf g dk: ð4:35Þ

We note that unlike the case of multipoles singular in the lower layer, the coefficients in the polar expansions
of /Is

n and /Ia
n are not the same.

The far-field behavior of these multipoles, in the lower layer fluid, is given by

/IIs
n �

pi

ðnÿ 1Þ!
ðknÿ1

1 Cð0Þk1
n e�ik1xþk1y þ knÿ1

2 Cð0Þk2
n e�ik2xþk2yÞ; ð4:36Þ

/IIa
n � �

p

ðnÿ 1Þ!
ðknÿ1

1 Cð1Þk1
n e�ik1xþk1y þ knÿ1

2 Cð1Þk2
n e�ik2xþk2yÞ; ð4:37Þ

as x ! ±1, where Cð0Þk1
n and Cð1Þk1

n are the residues of Cð0Þ
n ðkÞ and Cð1Þ

n ðkÞ at k = k1 and k = k2, respectively,
and are given by

CðjÞki
n ¼ ÿqK½ðÿ1Þ

nþjþ1
fkiðDk

4
i þ 1ÿ �KÞ þ KgekiðfÿhÞ ÿ fkiðDk

4
i þ 1ÿ �KÞ ÿ KgeÿkiðfÿhÞ�=H 0ðkiÞ;

i ¼ 1; 2; j ¼ 0; 1: ð4:38Þ

4.4. Normally incident wave train of wavenumber k1

For this case /I
inc is given, in the upper fluid, by eik1xg1ðyÞða ¼ 0Þ; where g1(y) is defined in (2.12). The polar

expansion of /I
inc is given by
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/I
inc ¼

X

1

m¼0

ðk1rÞ
m

m!
½fðÿ1ÞmM1e

ÿk1ðhÿf Þ þM2e
k1ðhÿf Þg coshmhþ ifðÿ1Þmþ1

M1e
ÿk1ðhÿf Þ þM2e

k1ðhÿf Þg sinmh�;

ð4:39Þ

where

M1;2 ¼
fð1ÿ qÞk1 ÿ Kgfk1ðDk

4
1 þ 1ÿ �KÞ � Kg

Kqfk1ðDk
4
1 þ 1ÿ �KÞ cosh k1hÿ K sinh k1hg

: ð4:40Þ

To solve this scattering problem, the velocity potential /I
k1
is expanded as in (3.20), where /s

n and /a
n are sym-

metric and antisymmetric multipoles obtained for the upper fluid. After applying the body boundary condi-

tion,
o/I

k1

or
¼ 0 on r = a, and using the orthogonal properties of trigonometric functions, we obtain the two

infinite system of linear equations for unknown an and bn given by

Fig. 15. Reflection coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01, h/a = 2.5,

q = 0.5, f/a = 1.25).

Fig. 16. Reflection coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01, h/a = 2.5,

q = 0.5, f/a = 1.25).
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am ÿ
X

1

n¼1

anþmEðaÞ
nman ¼ i

ðk1aÞ
m

m!
½ðÿ1Þmþ1

M1e
ÿk1ðhÿf Þ þM2e

k1ðhÿf Þ�; m ¼ 1; 2; . . . ; ð4:41Þ

bm ÿ
X

1

n¼1

anþmEðsÞ
nmbn ¼

ðk1aÞ
m

m!
½ðÿ1ÞmM1e

ÿk1ðhÿf Þ þM2e
k1ðhÿf Þ�; m ¼ 1; 2; . . . : ð4:42Þ

These equations were solved by truncating to 4 · 4 system to produce the result presented below.
The reflection and transmission coefficients can be obtained from the far-field form of the potential /I

k1
;

using (3.20), (4.36) and (4.37) with (3.52), and are given by

Rk1 ¼ p

X

1

n¼1

an

ðnÿ 1Þ!
knÿ1
1 ½ÿanC

ð1Þk1
n þ ibnC

ð0Þk1
n �; ð4:43Þ

Fig. 17. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01,

h/a = 2.5, q = 0.5, f/a = 1.25).

Fig. 18. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01,

h/a = 2.5, q = 0.5, f/a = 1.25).
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rk1 ¼ p

X

1

n¼1

an

ðnÿ 1Þ!
knÿ1
2 ½ÿanC

ð1Þk2
n þ ibnC

ð0Þk2
n �; ð4:44Þ

T k1 ¼ 1þ p

X

1

n¼1

an

ðnÿ 1Þ!
knÿ1
1 ½anC

ð1Þk1
n þ ibnC

ð0Þk1
n �; ð4:45Þ

tk1 ¼ p

X

1

n¼1

an

ðnÿ 1Þ!
knÿ1
2 ½anC

ð1Þk2
n þ ibnC

ð0Þk2
n �: ð4:46Þ

Fig. 19. Reflection coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01, h/a = 2.5,

q = 0.5, f/a = 1.25).

Fig. 20. Reflection coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01, h/a = 2.5,

q = 0.5, f/a = 1.25).
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4.5. Normally incident wave train of wavenumber k2

In this case /I
inc is given by eik2xg2ðyÞða ¼ 0Þ; where g2(y) is defined in (2.12). Here we find that the expres-

sions for reflection coefficients Rk2 and rk2 are similar to (4.43) and (4.44) with appropriate changes, and the
transmission coefficients T k2 and tk2 are given by

T k2 ¼ p

X

1

n¼1

an

ðnÿ 1Þ!
knÿ1
1 ½anC

ð1Þk1
n þ ibnC

ð0Þk1
n �; ð4:47Þ

tk2 ¼ 1þ p

X

1

n¼1

an

ðnÿ 1Þ!
knÿ1
2 ½anC

ð1Þk2
n þ ibnC

ð0Þk2
n �: ð4:48Þ

Fig. 22. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01,

h/a = 2.5, q = 0.5, f/a = 1.25).

Fig. 21. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (D/a4 = 1.5, e/a = 0.01,

h/a = 2.5, q = 0.5, f/a = 1.25).
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4.6. Numerical results

Figs. 15–18 show the reflection and transmission coefficients for an incident wave of wave number k1 on a
cylinder submerged in the upper fluid layer for D/a4 = 1.5, �/a = 0.01, h/a = 2.5, q = 0.5, f/a = 1.25. The dif-
ferent curves correspond to a = 75°, 80°, 85°, 89°. The curve are somewhat similar to those for scattering of an
incident wave of wave number k1 by a circular cylinder in the lower fluid layer and display the same
characteristics.

The case of an incident wave of wave number k2 is more interesting due to the presence of cut-off frequen-
cies. Figs. 19–22 show reflection coefficients jRk2 j; jrk2 j and transmission coefficients jT k2 j; jtk2 j against Ka. The
different parameters are taken to be the same as in the previous set of figures and the different curves corre-
spond to different values of a, viz. a = 15.07°, 16.84°, 17.93°, 19.5°. When a = 19.5°, which is greater than the
critical angle ac = 19.13°, for the given value of different parameters, there are no waves of wave number k1

Fig. 24. Reflection coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).

Fig. 23. Reflection coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).
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propagating in the fluid. Here we have the following cut-off frequencies: Kca = (0.1,0.88); (0.15,0.7); (0.2,0.57)
corresponding to the incident angles 15.07°, 16.84°, 17.93°, respectively. For these angles and for frequencies
lying between two appropriate cut-off frequencies will there be conversion of energy from one mode to the
other. These figures are shown in Figs. 19 and 21. The reflection coefficient jrk2 j and transmission coefficient
jtk2 j for the wave of wave number k2 are shown in Figs. 20 and 22.

We observe from the curves of reflection and transmission coefficients for wave of wave number k2 that two
spikes in each curve occur at the cut-off frequencies (cf. Figs. 20 and 22). For a = 19.5° which is greater than
the critical angle ac = 19.13°, there is no spike in the curves of reflection and transmission coefficients in Figs.
20 and 22.

For the normally incident wave train, we choose �/a = 0.01, h/a = 2.5, q = 0.5, f/a = 1.25 for which the
reflection and transmission coefficients due to an incident wave of wave number k1 are depicted in Figs.
23–26. The different curves correspond to D/a4 = 0.1,0.5, 1,2. Figs. 23, 24 and 26 show that the reflection

Fig. 26. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).

Fig. 25. Transmission coefficient due to a wave of wavenumber k1 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).
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coefficients jRk1 j; jrk1 j and the transmission coefficient jtk1 j first increase as Ka increases, each attains a max-
imum value and then decrease as Ka further increases. Fig. 25 shows that transmission coefficients jT k1 j first
decreases as Ka increases, attains a minimum value and then increase as Ka further increases.

The reflection and transmission coefficients due to an incident wave of wave number k2 are shown in Figs.
27–30. The different curves correspond to D/a4 = 0.1,0.5, 1,2. jRk2 j; jrk2 j are shown in Figs. 27 and 28 and
jT k2 j; jtk2 j are shown in Figs. 29 and 30.

Due to the presence of ice-cover, the figures for normally incident wave train are somewhat different from
the figures given in the case of upper fluid with a free surface in two-layer fluid by Linton and McIver [3].
Reflection and transmission coefficients due to an incident wave of wave number k1 and k2 are oscillatory
in nature and reflection coefficients for both the incident wave numbers, transmission coefficients jtk1 j and
jT k2 j tend ultimately to zero for large Ka and also jT k1 j and jtk2 j tend to unity for large Ka. This may be attrib-
uted due to interactions of the incident wave trains between the boundary of the circular cylinder, ice-cover

Fig. 28. Reflection coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).

Fig. 27. Reflection coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).
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surface and interface between two-layer. Also we observe that the peak values of the curves decrease as D/a4

decreases in Figs. 23, 24, 26–28 and 29. But in Figs. 25 and 30 the peak value of the curves increase with
decreasing D/a4.

5. Conclusion

In this paper, we have studied the problem of water wave scattering by a horizontal circular cylinder sub-
merged in either layer of a two-layer fluid. The upper layer is of finite depth and is bounded above by an ice-
cover modelled as a thin elastic plate and the lower layer extends infinitely downwards. In such a situation
propagating waves can exist at two different wave numbers for any frequency, one of which propagates on
the ice-cover and the other on the interface. For obliquely incident wave train, and for some values of inci-
dent angle two cut-off frequencies are obtained here in contrast to only one cut-off frequency obtained for

Fig. 30. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).

Fig. 29. Transmission coefficient due to a wave of wavenumber k2 incident on a cylinder in the upper layer (e/a = 0.01, h/a = 2.5, q = 0.5,

f/a = 1.25).
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a two-layer fluid with free surface. The scattering problem is analyzed for both obliquely and normally inci-
dent waves of both the wave numbers using multipole expansions. When the cylinder is positioned in the lower
layer and waves are normally incident upon it, it was shown that zero reflections occur for any radius of the
cross-section of the cylinder and wave number. When the cylinder is in the upper layer, zero reflection is not
observed for normally incident wave train. However, for oblique incidence of the wave train, reflections by the
submerged cylinder indeed occur when the cylinder is positioned in either the lower or upper layer fluid. We
have found that for oblique waves incident along the interface when a cylinder is in either layer there are iso-
lated frequencies at which almost all the incident energy is reflected. The transmission and reflection coeffi-
cients for both obliquely and normally incident wave trains are depicted graphically against the wave
number in a number of figures. Energy identities are used as partial numerical checks for all the data points.
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Appendix A. Derivation of energy identities

Let the boundaries of a finite number of bodies lying in the upper layer be denoted by BI and those in the
lower layer by BII. Let / be the solution of a scattering problem with /n = 0 on the boundaries BI, BII. The far-
field form of / is then given by

/ � fRk1 ; rk1 ; 1; 0; T k1 ; tk1 ; 0; 0g ðA:1Þ

for the incident wave of wave number k1 and Rk1 ; rk1 are the reflection coefficients of the waves of wave num-
bers k1 and k2, respectively, due to an incident wave of wave number k1 and similarly T k1 ; tk1 for the trans-
mission coefficients. Let w ¼ /; the complex conjugate of /, then

w � f1; 0;Rk1 ; rk1 ; 0; 0; T k1 ; tk1g: ðA:2Þ

To obtain the energy identity, we use the modified form of Green’s integral theorem, as given by
Z

S

ð/Lnwÿ wLn/Þ ¼ 0; ðA:3Þ

where S denotes the boundary of the fluid region and the differential operator Ln is of the form

Ln ¼ D
o
5

on5
þ ð1ÿ �KÞ

o

on
; ðA:4Þ

o

on
being the derivative normal to S.
First we choose S in (A.3) to be the boundary of the region in the upper fluid bounded internally by

x = ±X, 0 6 y 6 h; y = h, |x| 6 X; y = 0, |x| 6 X and externally by the body boundary BI, and ultimately make
X! 1, and next to be the boundary of the region in the lower fluid bounded internally by
x = ±X,ÿY 6 y 6 0; y = ÿY, |x| 6 X; y = 0, |x| 6 X and externally by the body boundary BII, and ultimately
make both X,Y! 1.

For the upper layer, (A.3) produces
Z

y¼h;jxj6X

þ

Z

x¼ÿX ;06y6h

þ

Z

y¼0;jxj6X

þ

Z

x¼X ;06y6h

þ

Z

BI

 !

ð/I
Lnw

I ÿ wI
Ln/

IÞ ds ¼ 0: ðA:5Þ

The first integral in (A.5) is

ÿ

Z X

ÿX

ð/I
Lyw

I ÿ wI
Ly/

IÞðx; hÞ dx ¼

Z X

ÿX

/I
D

o
2

ox2
ÿ c2

� �2

þ 1ÿ �K

( )

wI
y ÿ wI

D
o
2

ox2
ÿ c2

� �2
("

þ1ÿ �K

)

/I
y

#

ðx; hÞ dx:

Use of the ice-cover condition (2.5) on y = h makes this integral identically equal to zero for any X.
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The second integral in (A.5) is

Z h

0

ð/I
Lxw

I ÿ wI
Lx/

IÞðÿX ; yÞ dy:

Making use of the far-field behavior of /I,wI for large X, this produces

2i

�

fDb5
1 þ ð1ÿ �KÞb1gðjRk1 j

2
ÿ 1Þ

Z h

0

ðg1ðyÞÞ
2
dy þ fDb5

2 þ ð1ÿ �KÞb2g � jrk1 j
2

Z h

0

ðg2ðyÞÞ
2
dy

�

þ i½fDðb5
1 ÿ b5

2Þ þ ð1ÿ �KÞðb1 ÿ b2Þgðÿrk1e
ÿiðb1þb2ÞX þ rk1e

iðb1þb2ÞX Þ

þ fDðb5
1 þ b5

2Þ þ ð1ÿ �KÞðb1 þ b2ÞgðRk1rk1e
ÿiðb1ÿb2ÞX þ rk1Rk1e

iðb1ÿb2ÞX Þ�

Z h

0

g1ðyÞg2ðyÞ dy: ðA:6Þ

Similarly the fourth integral in (A.5) produces

2i

�

fDb5
1 þ ð1ÿ �KÞb1gjT k1 j

2

Z h

0

ðg1ðyÞÞ
2 dy þ fDb5

2 þ ð1ÿ �KÞb2gjrk1 j
2

Z h

0

ðg2ðyÞÞ
2 dy

�

þ i½fDðb5
1 þ b5

2Þ þ ð1ÿ �KÞðb1 þ b2ÞgðT k1 tk1e
ÿiðb1ÿb2ÞX þ tk1T k1e

iðb1ÿb2ÞX Þ�

Z h

0

g1ðyÞg2ðyÞ dy: ðA:7Þ

The third integral in (A.5) is
Z X

ÿX

ð/I
Lyw

I ÿ wI
Ly/

IÞðx; 0Þ dx: ðA:8Þ

Finally, the last integral in (A.5) becomes
Z

BI

ð/I
Lnw

I ÿ wI
Ln/

IÞ ds:

Let the cross-section BI of the submerged cylinder be described parametrically by x = X(h), y = Y(h),
0 6 h 6 2p where h = 0 is chosen to be coincident with the line x = 0. Defining (n, s) as rectangular co-ordi-
nates along the normal and tangent to BI at any point of BI, then the functions /I,wI satisfy
ðr2

1 ÿ c2Þ/I ¼ 0; ðr2
1 ÿ c2ÞwI ¼ 0 where r2

1 ¼
o
2

os2
þ o

2

on2
þ jðsÞ o

on
; j(s) being the curvature as a function of the

arc length s. We now find that the last integral in (A.5) is

Z

BI

/IðDMs þ 1ÿ �KÞ
owI

on
ÿ wIðDMs þ 1ÿ �KÞ

o/I

on

� �

ds ¼ 0; ðA:9Þ

after using the conditions o/I

on
¼ 0; ow

I

on
¼ 0 on BI, the differential operator Ms in (A.9) having the form

Ms ¼
o
2

os2
ÿ c2

� �2

ÿ ðjðsÞÞ2
o
2

os2
ÿ c2

� �

þ j00ðsÞ þ 2jðsÞ
o
2

os2
ÿ c2

� �

ÿ ðjðsÞÞ3
� �

QðsÞ
o

os
;

QðsÞ ¼ ðY 0ðhÞÞ2ÿðX 0ðhÞÞ2

X 0ðhÞY 0ðhÞ
being a function of s.

For the lower layer, (A.3) produces

Z

y¼0;jxj6X

þ

Z

x¼ÿX ;ÿY6y60

þ

Z

y¼ÿY ;jxj6X

þ

Z

x¼X ;ÿY6y60

þ

Z

BII

 !

ð/II
Lnw

II ÿ wII
Ln/

IIÞ ds ¼ 0: ðA:10Þ

The first integral in (A.10) is
Z X

ÿX

ð/II
Lyw

II ÿ wII
Ly/

IIÞðx; 0Þ dx: ðA:11Þ
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The second integral in (A.10) reduces to, after using the far-field behavior of /II,wII for large X,

i
1

k1
fDb5

1 þ ð1ÿ �KÞb1gðjRk1 j
2
ÿ 1Þ þ

1

k2
fDb5

1 þ ð1ÿ �KÞb1gjrk1 j
2

� �

þ i½fDðb5
1 ÿ b5

2Þ þ ð1ÿ �KÞðb1 ÿ b2Þgðÿrk1e
ÿiðb1þb2ÞX þ rk1e

iðb1þb2ÞX Þ

þ fDðb5
1 þ b5

2Þ þ ð1ÿ �KÞðb1 þ b2ÞgðRk1rk1e
ÿiðb1ÿb2ÞX þ rk1Rk1e

iðb1ÿb2ÞX Þ�

Z 0

ÿ1

eðk1þk2Þy dy: ðA:12Þ

Similarly, the fourth integral in (A.10) reduces to

i
1

k1
fDb5

1 þ ð1ÿ �KÞb1gjT k1 j
2
þ

1

k2
fDb5

1 þ ð1ÿ �KÞb1gjtk1 j
2

� �

þ i½fDðb5
1 þ b5

2Þ þ ð1ÿ �KÞðb1 þ b2ÞgfT k1 tk1e
ÿiðb1ÿb2ÞX þ tk1T k1e

iðb1ÿb2ÞXg�

Z 0

ÿ1

eðk1þk2Þy dy: ðA:13Þ

Again, the third integral in (A.10) tends to 0 as Y ! ÿ1, after using the conditions at infinite depth.
Finally, the last integral in (A.10) becomes,

Z

BII

/IIðDMs þ 1ÿ �KÞ
owII

on
ÿ wIIðDMs þ 1ÿ �KÞ

o/II

on

� �

ds ¼ 0; ðA:14Þ

after using o/II

on
¼ 0 and owII

on
¼ 0 on BII.

Substituting all these results in (A.5), (A.10), and multiplying (A.5) by q and adding with (A.10) and using
the result

q /I ow
I

oy
ÿ wI o/

I

oy

� �

¼ /II ow
II

oy
ÿ wII o/

II

oy
ðA:15Þ

at the interface, we obtain after some algebra which includes the result

q

Z h

0

g1ðyÞg2ðyÞdy þ

Z 0

ÿ1

eðk1þk2Þy dy ¼ 0 ðA:16Þ

and after making X! 1,

Jb1
ðjRk1 j

2 þ jT k1 j
2 ÿ 1Þ þ Jb2

ðjrk1 j
2 þ jtk1 j

2Þ ¼ 0; ðA:17Þ

where

Jbj
¼ iðDb5

j þ ð1ÿ �KÞbjÞ
1

kj
þ 2q

Z h

0

ðgjðyÞÞ
2
dy

� �

; j ¼ 1; 2: ðA:18Þ

Thus we obtain the identity

jRk1 j
2 þ jT k1 j

2 þ Jðjrk1 j
2 þ jtk1 j

2Þ ¼ 1; ðA:19Þ

where

J ¼
Jb2

Jb1

: ðA:20Þ

Similarly for the scattering of an incident wave of wave number k2, we obtain the identity

jRk2 j
2
þ jT k2 j

2
þ Jðjrk2 j

2
þ jtk2 j

2
Þ ¼ J : ðA:21Þ

The relations (A.19) and (A.21) are the energy identities.
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