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Gravity-driven film flow with variable physical properties
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The laminar flow and heat transfer in an accelerating thin liquid film are considered with the view
tc examine the influence of variable demsity and transport properties. A new similarity
transformation is proposed which exactly transforms the hydrodynamic and thermal boundary layer
equations for vertically falling film flow into a coupled set of ordinary differential equations. The
resulting two-point boundary value problem is integrated numerically with empirical data for the
physical properties of water. For given inflow conditions, the temperature-dependency of the
dynamic fluid viscosity makes both the hydrodynamic and thermal boundary layers thinner with
increasing wall temperature. The expected thickening of the thermal boundary layer due to the
increasing thermal diffusivity is therefore more than outweighed by the decreasing viscosity. The
nonlinear variation of the physical properties makes these effects more pronounced at the lower

inflow temperature.

l. INTRODUCTION

Falling films are frequently encountered in the process
industry, e.g., in evaporators and condensers and for heating
or cooling purposes in chemical and nuclear reactors. The
hydrodynamics of gravity-driven liquid films and the accom-
panying heat and mass transfer have been extensively stud-
ied over the years. A prevailing assumption in the vast ma-
jority of these investigations is the constancy of the physical
properties of the ligquid. However, half a century ago
Voskresensky' accounted for the temperature-dependency of
the physical properties of a condensate film. Somewhat later
Poots and Miles® concluded that the discrepancy between
their analysis and the classical Nusselt theory was due to the
neglect of the nonlinear effects of varniable condensate prop-
erties and vapor drag in the latter simplistic approach. They
furthermore found that the effect of variable fluid properties
became negligible for Prandtl numbers above 1. More re-
cently, an extended study of laminar film condensation of
superheated vapor was presented by Shang and Wang.3 Their
analysis used the same empirical expressions for the density,
dynamic viscosity, and thermal conductivity as in the preced-
ing study by Shang et al® of laminar free convection of
water with variable thermophysical properties.

The purpose of the present study is to examine the influ-
ence of variable physical properties on the gravity-driven
laminar flow of a thin liguid film falling along a vertical
wall. The momentum and thermal (or mass) boundary layer
problem for a constant-property film was solved by
Andersson.’> By means of a Falkner-Skan-type of transforma-
tion, exact similarity solutions for the velocity and tempera-
ture fields were provided. Thereafter, Andersson et al®
adopted the Boussinesq approximation as a first approach to

account for temperature variations of the physical properties
of the falling liquid film, i.e., by allowing a linear variation
of the density with temperature in the body force term tn the
hydrodynamic boundary layer equation. With the same simi-
larity transformation as in Ref. 5 the governing equations
were transformed to a set of ODEs. The presence of a buoy-
ancy term in the transformed momentum eguation facilitated
investigations of both favorable (aiding) and unfavorable
(opposing) buoyancy on the hydrodynamics and heat trans-
fer.

In the present paper not only the denmsity but also the
viscosity and thermal conductivity will be allowed to vary
with the temperature. A Falkner-Skan-type of transformation
is therefore no longer applicable and a new similarity trans-
formation is required. Thereafter, the resulting set of ODEs
will be solved numerically. To demonstrate the effect of vari-
able physical properties on the flow and heat transfer, non-
linear empirical temperature correlations for water are used.
Results for a film with inflow temperatmre 20 °C will be
presented and compared with results for a film at 60 °C.

Il. PHYSICAL MODEL AND MATHEMATICAL
FORMULATION

Let us consider the accelerating flow of a thin liquid film
down along a vertical wall, as depicted in Fig. 1. The film
Reynolds number is sufficiently low so that the flow remains
laminar and the free surface is free of waves. Uniform flow
enters the system at x=0 with a constant temperature T, and
falls vertically down along the smooth wall which is kept at
a constant temperature T,. A hydrodynamic and a thermal
boundary layer with thicknesses &x) and 84{x) develop
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FIG. 1. Schematic representation of gravity-driven film flow and coordinate
system.

along the wall. The flow outside the hydrodynamic boundary
layer rethaims quasi-one-dimensional and is governed by the
inviscid equation of motion

pUdU/ldx = pg, ()

where g is the gravitational acceleration. With zere velocity
and infinite film thickness at the inlet x=0, Eq. (1) is readily
integrated once to give

Ux) = (2gx)'2 @

This particular form of the mwsmd flow solution belongs to
the classical Falkner-Skan-type’ of free-streams U(x)~x™
for flow along wedge-shaped bodies with included wedge
angle 2am/(m+1)- The part of the liquid film outside the
thermal. boundary layer is unaffected by the heat transfer
between the vertical wall and the fiuid and therefore femains
isothermal with temperature T,

The velocity and temperature inside the hydrodynamic
and thermal boundary Iayers are governed by the conserva-
tion equations for mass, momentum and thermal energy

é é
E(pu) + 5(90) =0, 3
ou ou of odu
p(u:,,'; + v;;) =pg+ 5(;&5) C))
NER L
A\ )T o\ y ®
with boundary conditions
u=v=0T=T, aty=0 {6a)
ulx,y) — U(x) asy— 8x) (6b)
T(x,y) =+ Ty asy— x). (6c)

Streamwise diffusion of streamwise momentum and heat
have been neglected in (4) and (5) in accordance with aero-
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dynamic boundary layer theory. The coupled problem de.
fined by Egs. (3)-(6) is identical to a compressible boundary
layer problem, except that heat generation by viscous dissi.
pation u(du/dy)? is assumed to be negligible and the ugp/ gy
term is absent in (5) since the present fluid is incompressible
by nature. In the hydrodynamic context, this system has three
dependent variables: «, v, and T. To render the boundary
value problem (BVP) determinate, however, the temperature
variation of the film density p, the dynamic Viscosity u, the
thermal conductivity x, and the specific heat C, must be
known. The special case with constant physxcal propemes
simplifies to the problem considered by Andersson.’ In thay
work, a Falkner-Skan-type of similarity transformation was
devised which exactly transformed the governing PDEs into
a set of ODEs.

lii. SIMILARITY TRANSFORMATION AND SOLUTION
PROCEDURE

In the present study where we aim to investigate the
influence of variable physical properties (p, 4, «, and C,),
we devise a new similarity transformation inspired by the
Howarth-Dorodnitsyn  transformation in  compressible
boundary layer theory, see e.g., Schreier.® Let us first define a
stream function ¢(x,y):

¥ i

U=yt TP (7
such that mass conservation {3) is automatically satisfied.
The similarity variable 7 and the new dependent variables f
and © are defined as:

3U \2
7)=(;};) L(P/Po)dy, ®)
Wx.y) = po(4U °x) (), ©
(7 = —_——T(;”'z ;0T°, )

where U=U(x) is given by (2). Here, py, pg, Ko, and Cyo 2r€
the values of the fluid properties of the incoming liquid at
x=0, ie, at temperature Ty, and = po/p, is the corre-
sponding kinematic viscosity. It should be emphasized that
the transformation (10) exists only if T, # 7,,. In the special
case T,,=T,, however, the trivial solution T(x,y}=T, solves
the thermal energy Eq. (5) subject to the boundary conditions
(6a) and (6c) and no similarity transformation is needed.

The coupled boundary layer problem (3)~(6) now trans-
forms into the following BVP:

Ll Z(1-f% =0, (1
[ ] +ff + (1 9=

P L & (12)
( K0® ) + Cpo Pl'o f@ -0,

(13a)

f=f'=0 and®=1 atyn=0,
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TABLE L Local Nusselt number Nu, for film fow with constant fluid prop-
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ties.
;
Nu, Re; "2
Pr Present Andersson (Ref. 5)
0.03 0.10910309 0.109103
0.06 0.14923170 0.149231
0.10 0.18682623 0.186825
0.30 0.29686354 0.296863
0.60 0.39184572 0.391845
1.00 047757197 0477572
3.0 0.71927337 0.719274
6.0 0.92341665 0923417
100 1.10671261 1.10671
300 1.62338539 1.62339
% 10 ®m s w8 ®m % % % 1o
T(%c)
ff—71 and®—0 as p—oo, (13b)  FIG. 2. Temperature variations of density p, dynamic viscosity u, and ther-

where Pro= pgCpo/ ko is the constant Prandtl number of the
isothermal inflow.

The ODE (11) governing the flow in the hydrodynamic
boundary layer is coupled to the thermal boundary equation
{12) via the temperature-dependent density and viscosity. In
the particular case with constant fluid properties, this cou-
pling vanishes and both the similarity transformation
{8)~(10) and the resulting BVP (11)-(13) degenerate to that
considered by Andersson.

A criterion for exact similarity to exist is that all coeffi-
cients in (11) and (12) are either constants or functions of »
only. In the following section, empirical temperature corre-
lations will be given for the fluid properties; i.e., p(T), (D),
«(T), and C,(T). Since the temperature T is uniquely related
to the dimensionless temperature @(%), ie., T(x,y)=T,
+0(n)-(T,-T,) according to Eq. (10), the requirements for
similarity are fulfilled in the present context. In compressible
boundary layer theory, however, the so-called Chapman-
Rubesin parameter (pu/ pypig) in Eq. (11) is often taken as a
constant to assure similarity.

The nonlinear two-point boundary value problem
{L1)~(13) defined on the semi-infinite interval 7 e [0,%) is
first formulated as a set of five first-order ODEs and there-
after integrated as an initial value problem over the finite
interval ne[0,7,], whereas five corresponding adjoint
equations (adjunct to analytically determined variational
equations) are subjected to backward integration. Particular
attention is paid to assure that 7, is sufficiently large. The
accuracy of the adopted integration procedure can be verified
by comparisons with the results in Ref. 5 for constant fluid
properties, see Table 1.

IV. EMPIRICAL CORRELATIONS FOR THE PHYSICAL
PROPERTIES

In order to solve the transformed boundary layer prob-
lem for a particular fluid, the variation with temperature of
the physical properties is required. Here, we consider water
at atmospheric pressure and adopt the empirical correlations
suggested by Shang et al.:*

mal conductivity x for water at atmospheric pressure, According to the
empirical correlations (14)-(16) adopted from Shang er al. (Ref. 3). Here,
each property has been normalized with its value at 0°C; ie.,
po=999.8 kg m™>, p9=1.787-107 kg m™' 57!, x=0.563 Wm™ K"!.

p(T)=[-4.88 X 103K T -273K)%* + 999.9) kg m™>,

(14)
(T =exp[— 1.6 - 1150K - T~ + (690K - T~1)?]
X103 kgm™ s, (15)
K(T)=[-8.01 X 1075K~%T-273K)* + 1.94
X 103K (T-273K) +0.563) Wm™' K™, (16)

Here, T is taken as the absolute temperature in Kelvin. The
correlations (14) and (16) Were deduced by Shang et al. % on
the basis of experimental data® for water over the tempera-
ture range 0—100 °C. The deviation of (14) and (16) from
the experimental data was reported to be within 0.35% and
0.18%, respectively. The viscosity correlation (15) for water
used by Shang et al.* was taken from Chang'® and compared
with experimental data’ to within 1.8%. The variation of p,
i, and « with temperature according to Eqgs. (14)-(16) is
shown in Fig. 2. It is readily seen that the relative variation
of the density is practically negligible compared to the sig-
nificant variations of the thermal conductivity and, in par-
ticular, of the viscosity. It is well known that the specific heat
capacity C,, is practically independent of the temperature for
most hqmds For water, as considered herein, the variation of
C, over the temperature range 0- 100 °C is less than 1%. We
therefore take C,= C_,,0=4 20-10° Jkg™' K™! in accordance
with Shang et al An immediate implication of the above
assumptions is that the Prandtl number Pr= uC,/« varies
from about 13 at 0 °C to ~1.76 at 100 °C, i.c., a reduction
by a factor of about 7. This substantial decrease of Pr with T
is primarily due to the reduction of u but alsc due to the 20%
increase of x from 0 °C to 100 °C.
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FIG. 3. Characteristic velocity profiles f'(#) for some different AT (in K)
for T,=20 °C. The solution for AT=0 corresponds to the one-parameter
problem with constant fluid properties and apply for any T, # T,

V. RESULTS AND DISCUSSION

In the present context, the empirical cormelations
(14)-(16) are recast in terms of the dimensionless tempera-
ture &(7) defined in Eq. (10). The temperature 7 in Eqgs.
(14)-(16) is therefore taken as T=T,+ATO(#), where
AT=)\(T,~Ty). Here, X is a dimensionless parameter equal
to unity, except in the special case of temperature-
independent fluid properties for which A=0. In general, how-
ever, the property relations take the form

p=p(8:;T,AT); p=p(O;Tp,AT);
(17)
= K{®; Ty, AT).

The boundary value problem is thus a three-parameter prob-
lem of which the solution depends on T and AT, together
with the Prandtl number of the incoming film Pr,. Here, Pry
is uniquely related to the inflow temperature 7. Let us now
recall that the similarity transformation does not exist in the
special case T,=T,, for which the trivial solution T{(x,y)
=T, is readily obtained. The particular parameter value
AT=0 only arises if \=0 and thus implies that constant fluid
properties are assumed, i.e., p=p,, =/, and k=, The
solutions for AT=0 are therefore equivalent with the solution
of the one-parameter problem in Pry (Ref. 5) and the results
are valid for any 7\, # T,

Some characteristic similarity profiles for the velocity
and temperature fields are shown in Figs. 3 and 4, respec-
tively. The inflow temperature was taken as T=20 °C in all
cases. This temperature cormresponds to an inflow Prandtl
number Pr,=6.98.

Figure 3 shows that the velocity f* in the hydrodynamic
boundary layer is substantially affected by the temperature,
This is an indirect effect through the temperature-dependent
viscosity y in the diffusive term in Eq. (11). Since the vis-
cosity decreases with 7, the diffusive momentum transport is
correspondingly reduced with the consequence that the thick-
ness & of the hydrodynamic boundary layer decreases with
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FIG. 4. Characteristic temperature profiles ©(z) for some different AT (in
K) for T,=20 °C. The solution for AT=0 corresponds to the one-parameter
problem with constant fluid properties and apply for any 7, #7,.

increasing AT. When the wall temperature is lower than that
of the incoming film, i.e., AT<0, the water adjacent to the
wall is cooled. The viscosity is therefore locally increased
and the boundary layer thickens as compared with the special
case AT=0, in which constant fluid properties are assumed.
The opposite situation occurs when the wall is heated, i.e.,
AT>0.

At a first glance at the temperature profiles in Fig. 4, it is
observed that the thickness &, of the thermal boundary layer
is somewhat less than half of the hydrodypamic boundary
layer thickness &. This is in accordance with the traditional
rule-of-thumb &/ 8p= [Pr. Moreover, also the thermal
boundary layer shrinks with increasing AT, i.e., with en-
hanced supply of thermal energy from the wall. The ob-
served thinning of the thermal boundary layer is contrary to
the effect expected by the increasing thermal diffusivity « in
Eq. (12). That effect is therefore more than outweighed by
the increase of f in the convective transport term in (12),
which is brought about by the higher velocity f'.

Exactly the same qualitative features as those observed
in Figs. 3 and 4 were found also for inflow temperature
Tp=60 °C, which corresponds to an inflow Prandt! nurnber
Pry=2.96 (velocity and temperature profiles are therefore not
presented herein). Results for the wall gradients of the veloc-
ity and temperature for both T,=20 °C and T,=60 °C are
compared in Figs. 5 and 6, respectively. These important film
characteristics determine the local skin-friction coefficient

Cr= 72— = Pule qi2 ger2. () (18)

and the local Nusselt number
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FI. 5. Variation of the wall shear stress f"(0) with AT (in K) for
1,220°C (solid line) and T,=60°C (broken line). The solution for
AT=0 corresponds to the one-parameter problem with constant fluid prop-
erties and apply for any T, #T,.

x o
Tw_TO ay

Nu, =-

3 12

(19)

where Re,=U-x/v, is a local Reynolds number and
U=(2gx)'?; cf. Eq. (2).

The wall gradient f(0) in Fig. 5 increases monotonically
with the temperature difference AT in both cases, simply
because of the thinning of the hydrodynamic boundary layer
with increasing AT, cf. Fig. 3. The adjustment of the fluid
velocity from no-slip (' =0) at the wall to the free-stream
velocity ('=1) at the edge of the hydrodynamic boundary
layer therefore takes place over a gradually narrower region
& This thinning effect, which primarily stems from the
temperature-dependent viscosity, is even more pronounced

0.8

-

-

-
-

. -

T

aT

?G' 6. Variation of the heat tansfer rate ®'(0) with AT (in K) for

20°C (solid line) and T,=60 °C (broken line). The solution for

.mi:(} coresponds to the one-parameter problem with constant fluid prop-
© and apply for any T,, # T,
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for Ty=20 °C than for Ty=60 °C. The nonlinear variation of
£ in Eq. (15) is greater at the lower temperatures in the
interval T [0 °C,100 °C], as seen from Fig. 2. The tem-
perature dependency therefore plays the most important role
at Ty=20 °C in Fig. S. If instead of the nonlinear correlations
(14)-(16) we had adopted linear or inversely linear tempera-
ture correlations, the results would be independent of the
inflow temperature 7,. The particular parameter value
AT=0 does not imply that T,,=T,, but arises if A\=0 and thus
makes the temperature dependency of p, 4, and « vanish.
The present problem then reduces to the film-fiow problem
with constant physical properties considered by Andersson”
and f"(0) becomes equal to 1.03890 just as in Ref. 5.

The heat transfer rate at the wall is directly related to the
temperature gradient ©'(0) shown in Fig. 6. When the wall
temperature exceeds the inflow temperature, ie., AT>0,
heat is transferred from the wall to the liquid film, whereas
the heat transfer is reversed when AT<0. The magnitude of
the dimensionless tempetature gradient at the wall is a mono-
tonically increasing function of the temperature difference
AT both for Ty=20 °C and for Ty=60 °C. This is a conse-
quence of the thinning of the thermal boundary layer with
increasing temperature differences, as shown in Fig. 4. As
suggested above, the thinning of the thermal boundary layer
is directly associated with the thinning of the hydrodynamic
boundary layer. This conjecture is consistent with the high
Prandtl number asymptote

12 7 13
Rex) . (Pr————';' '(0) )

(20

3 1
Nu, (m +

“Tas\ 2

derived by Evans'! for the Falkner-Skan-type of free-streams
U(x)~x™. Here, I" denotes the gamma function and m is 1/2
according to Eq. (2). This high-Pr asymptote is valid also in
the present case, provided that the temperature dependency is
negligible for all physical properties but x. The wall heat
flux should therefore be proportional to [£"(0)]'? in the limit
as Pr—o.

It is evident that the Prandtl number Pr= uC,/ « varies
with the temperature as a result of the temperature depen-
dency of the physical properties, notably x and . The effect
of the variable Pr is, however, properly accounted for in the
present analysis via the temperature-dependent in the mo-
mentum Eq. (11) and the temperature dependent « in the
thermal energy Eq. (12). It should therefore be emphasized
that it is the Prandtl pumber Pry of the incoming flow that
enters into the transformed BVP (11)-(13). The substantially
higher heat transfer rate for To=20 °C than for T,=60 °C in
Fig. 6 is simply due to the lower Pry in the latter case.

The validity of the new similarity transformation relies
on two rather different assumptions: (i} the range of applica-
bility is restricted to the initial part of the film such that the
boundary conditions (13b) can be justified; and (ii) the outer
part of the film must exhibit a velocity variation consistent
with Eq. (2). These assumptions will now be addressed sepa-
rately.

The range of validity is based on the existence of an
inviscid frec stream between the momentum boundary layer
and the surrounding quiescent atmosphere. This is no longer
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the case when the total volumetric film flow rate Q is con-
fined within the momentum boundary layer. For a film with

constant fluid properties, Andersson and Ytrehus'? showed
that the external free stream vanishes at

£ =0.1972k,- Qlv, (21)
where
he = (31Q/g)*? (22)

is the asymptotic limit of the film thickness h(x) attained
downstream of the acceleration zone where the film becomes
fully developed; see, ¢.g., Alekseenko ef al.'® The actual nu-
merical value in the above expression will obviously be
somewhat affected by the presence of variable fluid proper-
ties, but the above relationship suffices for the present pur-
pose. A further restriction might be that an isothermal layer
with temperature T, should be present outside the thermal
boundary layer. For Prandtl numbers above vnity, however,
the thermal boundary layer is thinner than the momentum
bourndary layer. The similarity transformation (8)-(10) and
the accompanying results there off are then valid within the
streamwise range 0 <x<x".

The distance x", for which the present approach is appli-
cable, accordinle depends on the flow rate (J and kinematic
viscosity ». Lynn' carried out some experiments with a mix-
ture of about 50% glycerine in water with kinematic viscos-
ity »=6-10"¢ m? s, For his highest film Reynolds number
@/v==200 and asymptotic film thickness h,,~2.79 mm, the
extension of the zone of validity becomes x* = 110 mm.

The. second assumption, on which the present approach
is based on, is the power-law variation of the free-stream
velocity U(x) in Bq. (2). This may be considered as a special
case of the more general variation

U(x) = (U + 2gx)1? (23)

considered by Bruley"® where U;, denotes the uniform inflow
velocity at x=0. This more general variation of U{x) does
not permit similarity solutions of the boundary layer problem
and Bruley therefore solved the governing boundary layer
equation (4) as a partial differential equation (with constant
fluid properties). Somewhat later, Cerro and Whitaker'® and
Yilmaz and Brauer'’ integrated the governing partial differ-
ential equations by means of a finite-difference approach.
They observed an extremely fast rearranging of the surface
position very close to the inlet when the initial film thickness
was significantly larger than k.. In the present case, however,
Uy, is assumed negligible in order to allow for exact similar-
ity to be achieved. This implies zero velocity U and infinite
film thickness 4 at the inlet x=0. In view of the finite-
difference solutions by Cerro and Whitaker'® and Yilmaz and
Brauer,'” however, the film rapidly adjusts itself over a prac-
tically negligible distance. The infinite initial thickness is
therefore of no practical concern.
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Vi. CONCLUDING REMARKS

A new similarity transformation (8)—(10) has been de-
vised to enable a thorough investigation of the influence of
variable physical properties on a gravity-driven liquid film
flow along a vertical wall. The temperature-dependency of
the fluid density prohibited the use of a Falkner-Skan-type
transformation, The adopted Howarth-Dorodnitsyn-type
transformation is applicable to general situations where the
variation of all fluid properties is essential.

Sample calculations using nonlinear empirical correla-
tions for water have been presented. Here, the temperature
variation of the dynamic viscosity turns out to play a crucial
role, not only directly in the momentum boundary layer but
also indirectly in the thermal boundary layer. In fact, the
reduction in viscosity due to a heated wall tends to accelerate
the liquid film and thereby indirectly make the thermal
boundary layer thinner. This observation conflicts with an
anticipated thickening of the thermal boundary layer due to
the enhanced thermal conductivity.
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