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CLARKSON INEQUALITIES WITH SEVERAL OPERATORS

BRAJENDRA BHATIA anD FUAD KITTANEH

ABSTRACT

SBeveral inequalities for trace noros of sums of n operators with roots of unity cosficients are
proved in this paper. When n = 2, these reduce to the classical Clarkson inaqualities and their
non-cotmmutative ;

1. Ioireduction

The classical inequalities of Clarkson [8] for the Lebesgue sprees L, and their non-
compmstative analogues for the Schatten trace ideals C,, play an Importast role in
analysig, operator theory, and mathematical physics. They have been generalised in
various directions. Among these are versions for more-general syrnmetric norms {4),
and for the Haaperup Lg-spaces [10], as well as refinemments [2]. In this paper, we
obtain extensions of these (and reiated) inequalities in anather direction, replacing
palrs of operators by n-tuples.

Let A be a linear operstor on a complex separable Hilbert spece. IF 4 is compact,
we dencte by {s;{A)} the sequence of decreasingly ordered singular values of A.
For 6 < p < 0o, let

1ty = [3 (o a9?] )

For 1 € p < oo, this defines a norm on the class O, consisting of operaters A for
which || A, is finite; this is called the Schatten p-rorm. By convention, ||A]l.e =
f1LA) is the operator bound norm of A. These p-norms belong to a larger class of
symmetric or unitarily invariant norms. Such a norm ||| - || is cheracterized by the
equality

H Al = W74V, (2}

for alt A, and unitery U and V. The class of operators €.y on whick such a norm
is defined is an ideal in the algebra of bounded operators. This is called the unitary
ideal corresponding to ||| - [il- When we use the symba! || A|l, or ILA|{, it is jtuplicit
that the operator 4 belongs to the class Cp or CYy),, respectively; see [3] for the
properties of these norms.

The case 0 < p < 1 is less interesting. In this case, expression (1} defines a
quasi-norm. In lieu of the triangle inequality, we have

A+ Bllp € 2771 (Al + |Bllp), fr0<p<L.

For 1 £ p % o0, we denote by g the conjugate index defined by the relation
1/p +1/g = 1. The symbol | 4] stands for the positive operator { A% A}1/2,
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We prove the following four theorems. In each of the statements, Ag, A1, ..., An-i
ar¢ linear opermtors and wg,w, ...,y are the nth roats of unity with wy =
S 0L ign—1

TueorReM 1. For 2 £ p 5 0o, we heve

n=~1 =1

n=l
n?PY A2 <Y

Z wy A.i
Fuild kemel}

Ffor0<px2, thasetnminequahhﬂﬁﬂmrw&mad.

n—1

< Y Ayl (3

Jmbt

THEOREM 2. For2 ip::m,wbam

nEnA [

§=0
Frb<p<?2, thmetnmm&quuhtmsamrewmd,

"4‘11 <! E (144 55- ()

j=0

THEOREM 3. For 2 < p < o0, we have

=1

E w#A

i=0

n=} n=1 n=-3}

3 145l S i
=0 Jmid)

for every unitarily invariant norm HI -|I\- For 0 < p < 2, these two inegualities are
reversed.

£nf !

(5)

THEOREM 4, For 2 < p < po, we have

n—1 rn—1
(Sram)” < 3 )3
j=0
For 1 < p £ 2, this inequality is reversed.

kAj

When n = 2, Theoremn 1 gives, for any pair A, B, the inequalities
227 () A2 + |BIZ) < |A+ Bl + |A— Bl < 2% (JAIZ +1B13), (7
for 2 € p £ oo, and the reverse inequalities for ) < p < 2. Theorem 2 gives
211445+ )BI2) < A+ BIE+ 4 - BIE< 22 {lAE+BIE),  (8)
for 2 € p < 0o, and the reverse inequalities for 0 < p < 2.
For p = 2, inequalities (7} and {2) both reduce to the parallelogram law
4+ Bl + 14 - B2 =2 (1Al + | B12) . (9)

The special norm [ - |z arises from an inner product {4, B} = tr A* B, and must
satisfy this law. The generalisation given in Theorem 1 can be obtained easily In
thie case,

The inequalitisg (B) ave ane half of the celebrated Clarkson inequalities. A recent
generalisation, due to Hirzallah and Kittaneh [L1], states that

204" + 1B < NA+BP+ (A - BP Il < 27T AP + 1B, (10}
for 2 € p < oo; the two incqualities arc reversed for 0 < p < 2. The inequalities (8)
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follow from these by choosing for {| - [f| the specisl norm fj -« |;. Theorem 3 includes
the inequalities (10) a= a special case.
When n = 2, ineguality (6) reduces to the megueality

I(AIE + I BIE)™? < || A+ BIE + 14— B, (11)

for 2 € p < @, and to the reverse inequality for 1 < p € 2. These constitute the
other half of the Clarksom inequalities. They are much harder to prove, and are
atronger, than the inequalities (8).

A simpie proof and a generalisation of the inegualities (B} were given by Bhatia
and Holbrook in {4]. Some of their ideas were developed further in cur paper [5].
In Section 2 we give a proof of Theorems 1 and 2 using these results. In Section 3
we discuse some extensions of these resuits as given in {4]. In Section 4, we uutline
a praof of Theorem 3, as well as procfs of some more general theorems, We follow
the approach taken in [11). This was based on results of Ando and Zkan (1], and
we show how these can be generalised to n-tuples. The harder Clarkson inequalities
(11) are usually proved by complex interpolation methods, In Section 5, we show
bow one such proof (as given by Fack and Kosaki [10]) can be modified to give
Theorem 4. Section 6 contains Further generalisations of Theorems 1-4, where the
w}‘ iy the inequalities are replaced by more general coefficients.

Sharper versions of {7), (8) and (11} have been proved by Ball, Carlen and Lich
[2]. by the use of deeper arguments. Our results go in a different direction.

2. Proofs of Theorems 1 and 2
Proof of Theoreir 1 for p 22 1. Consider the rn > n matrix

T=m#3r ﬂ'gj,kéﬂ—'l, {12}
where the entries T;p are operators. In {5, Theorem 1] we showed that
TN € 2 ITeliZ, for2<ps oo (13)
ik

Now, given n operators 4, ..., 4,1, let T be the block sirculant matrix
T =circ(Ap, ..., An-1]. (14)

This is the n x n matrix whose first row has entries dg,..., A,_;, and the other
rows are obiained by suceessive cyclic permutations of these entries. Let

L ¥ a =
Wﬂ WI . w.n_.j_
1 1 1
1 Wﬂ, I:L-']_ - wﬂ—]
Fﬂ —
n
=1 n—1 n—1
I_WD wh see o1

be the finite Fourier transform matrix of size n. Let W = F, ® [, This iz the block
wairix whose (7, k) entry is wl I /\/f. It is easy to see that, if T is the black circulant
matrix in (14}, then X = W*TW is a block-diagonal matrix, and the kth enlry on
its diagonal is the operator
fi=1
Xen =y uwkA, [15)
Jj=0
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Now note that

-1 lfn
il = X} = (Z aaly) (16)

Rl

Using {13)—{18), we obtain
=1 =1
[ZJ > wi Ay
k=0 §=0

for 2 < p < oo, For these values of p, the function f{z) = %7 is concave on the
pasitive half-line. Hence

2fp n-1
[:] <n Y 142, )

=0

RP1 [zﬁ”' + ...+ J:i’?, € (Ep+...+ Ty VP (18)
Using thig, we obtain frem (17) the inequality
n=1,n-1 Z -1
a*F 1N S kA u <ny 403, {19}
k=0 | jmd p im0

for 2 £ p € oa. This is the second ineguality in {3).

The first inequality in (3) can be obtained from this by a change of variables, Let

n—1
By=Y wfdy forf<kgn—1 (20)

F=(1
Replace the n-tuple {Aq, .. ., Ap—;) in the inequality just proved by {Bay..-s Bo_1).
Note that the a-tuple whose 4th entry s Ej w¥B; ig the same as the n-tuple
{ndp, ndy,...,mA,-1) Up to & permutation. This feada to the first inequalicy 1n {3}
When 1 € p < 2, inequality {13} is reversed; see {8, Theorem 1. So mequality
(17) is reversed. The function fi{z) = £%/F ig convex in thig case, and inequalivy (13)
is reversed. As n result, both the inequalities in (3) are reversed. This completes the
proef of Theorem 1 for 1 £ p € ou, The ease 0 < p < 1 is discuaged in Section 3. Do

Proof of Theorem 2 for p 2 1. 'The proof of Theorem 2 runs paraliel to that of
Theorem 1. For T as in (12) we huve, from [5, Theorem 2|,

S IR < (TYp,  for 2€ p < oa, (21)
ok

and the inequality is reversed for 0 < p < 2. Start with this instead of (13}, and
follow the steps of the proof of Theorer 1. Onc obtaing Theorem 2 for 1 < p < x0.

The case 0 < p < 1 is discussed in Section 3. O

The inequalities of Theorems L and 2 are sharp. For 07 s n—1, let A; be the
dinganal mattix with its (4, 7) entry egual to 1, and all its other entries equal to 0.
In this case, the first inequalities in (3) and 4), respectively, are equalities. On the
other hand, if we choose 4; = {mﬂ,w{,. . n—l} for 0 € 7 € n -1, »e gee that the
other bwo inequalities are eyualities in thie case.

A simple consequence of inequality (7) is the following result, proved in [6].
Let T be any operator, and ot T — A 4 18 be its Cartesian decompasition with A
wud 8 Hermitian. Then, for 2 € p £ 0,

2221 (A2 + || AI|2) < |TI2 < 2% (| A{Z + {Blla) (22)
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and the inequalities are reversed for 0 < p < 2. Note that in this cese we have,
from (8},

IAJE + |BIZ < ITUR < 2572 (AU + 1 B1E) (23)
for 2 < p < oo, and the reverse inequalities for {§ < p € 2. The inequalities (22) can

be derived from (23] by a simple convexity argnment. More subtle norm inequalities
for the Cartesian decomposition may be found in [7] and [8].

3. Extenslons and remarks

We hava proved Theorems 1 and 2 for p > 1, using results given in {5]. There

are other connections between [d], [5] and the present paper. We point cut some
of them.

1. Let T ba the block matrix {12), and let U/; be the block-diagonal operator
U; = ding {udl,... .02 _ 1), 0<j<n—1
Let A; = U3TU;. The second inequality in (3) then gives
w272 Y A Twl3 < ITUR, for2<pg oo
3k
Thia is the inequality complementary to {13), proved in [5] by other arguments,

2. A unitarily invarient norm [|] - ||| is called a QQ-norm if there exists another
unitarily inveriant norm fj| - I such that ||| 4[| = ||4* Al||". The Schatten p-noxms
for p > 2 are (J-norms, since || Af|Z = ||4*A||,;». The crucial observation in [4f is a
reipterpretation of the Clarkson inaqualities {8) in such a way that a generalization
10 -norms and their duals becomes possible. The next remarks concern similar
generalisatinns of Theorems 1 and 2.

3. The following useful identity can be easily verified.

n—1 ,n-—1 * ~a—1 n—-1
%Z (Em;mj) (Zwﬁaj) =D A4, (24)
b= =D F=0 =0
For n = 2, this reduces to
{A+ B (A+B)+{A-B)(A-B)
2
4. 'We use the notation Ag®. .. B A,_1, or A, for the block-diagonal opevator

with operators A; as its dlagonal entries.
For positive operators Ay, 0 € j € 7 — 1, we have the inequality

— A*A+ B*B. (25)

; (26)

n—1
MAo D ... @ Auallf < m(z Aj) B0S. ..aan”
5=0

for all unitarily invariant norms {5, Lemma 4}. For the pnors, this gives (for
positive operators)

mn—1

24
§=n

n—1 P
3 HalE < . l€p<o (27)
q=0 @
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For «+ = 2, this is a starting point of a proof of the Clarkson inequalities (8), and
its generalisation as in (26) led to stronger versions in [4].

To bring out the relevance of Q-norms, we give a different proof of Theorem i,
pased on the identity {24) and the inequality [(27).

Anothier proof of Theorem 1 for ali p 3> 0. Let Ap, ..., An—1 be any operatorts,
and let By be the sum defined in (20}). Then, for 2 € p < oo, we have

n—1 n—1

D iBE =3 HBiBulipr
k=0 k=0
n—1

3" BiB:
k-0

n=1

3 AA

=0

Ma—1 2/p
Zn ‘Zlmzﬂjﬁﬁ:]

|.J'='u

d

&2

72

[ n=-1

2/p
=z| S (11Ajn§)""“]

L =i

- n—1 pja 2%
>nlnto2(( 3 L 4) ]

L F=0

n—1
=n??y | A2,

F=u
In this chain of reasening, the second equality fullowa from the identity (24), while
the three inequalities are derived from the triangle inequality, {27} and {18), respec-
tively. This proves the first inequality in (3). For 0 < p < 2, the three inequalities
useq in the derivation above are reversed. It has been noted [6, Lemma 1] that for
positive operators 4; and G < p £ 1,

Yl < 34

and also that the inequality (27) is reversed in this case; see (8, p. 111] or [12,
. 20). The inequality {18) is reversed too m this case.
This prosves Thenrem 1 for all g > 0. |

% Let us now recast Theorem 2 in the mould of [4]. Taking pth roots, we rewtite
the first inequality in (4) as

n—1 =L
22D Al < DB 2< p < o0,
g=¢ ‘» My b
where B is as in (20), and then as
n--1 n—1 I
G [Dal| <|Brd. 2cr<w (22)
F k=) 2

7 copics - y=l
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(For brevity, we use the notation @a copiesX to mean the n-fold direct sum
X&X®...5X.) In tke same way, the second inequality in (4) can be rewritten as

n=1 n—1
2| BB <nl|PAi]. 2<w<on
k=0 7 j:-ﬂ' B
and then as
n-1 n—1
] &b [@Bﬁ] salEPai|, 28 p<e {29)
n copiea & k=0 p Fuli v

In this form, the inequalities (28} and (29) shed some of their dependence on p,
compared to the [equivalent) inequalities (4). What is left of p can be removed too.
The inequelities (28) and {29) are true for all -norma. For the duals of {-norms,
they are reversed. This can be proved using the ideas expounded in [4] and in this
paper. We do not give the details here.

6. The case ) < p < 1 of Theorem 2 is proved on the same hines as those used
in Remark 4 above.

7. It is temapting to attempt a generalisation of Theorem 1 on the same lines
as for Theorem 2 in Remark 5. Let us start with the special case, n = 2. The first
inequality in {7) can be rewritten as

lA® Al +iBe Bl < [A+BIZ+14—- Bl for2€p<oo  (30)
This i the same as saying that
A" A® A*All, + |B*B @ BB,
€A+ By*'(A+ By + {4 -BY(A-Blllp, forl€p<x. (21)

To sk whether the inequality (30) might be true for all Q-norms is to ask whetler
{31) might be true for sll unitarily invarient norms; that is, whether we have

ilA* 4@ A™Alj + |i|IB*5 & B* Bl
<A+ B (A+B)mol| +{{A—- By({A- B)ao]| (32)

for all unitarily invariant norms. The answer is: ‘no’.
On 8 x & matrices, consider the porm

AN = [(3104) + (AN + (33(A) + 82(AN?]"".

Let A = diag(1,1,0,0) end B = diag{0, 0, 21/4,0). The direct sums involved in {32)
are then 8 x § matrices. Bach of the two norms on the left-hand side of (32) is aqual
to 2+/2, while each of the two norms on the right-hand side is equal to (4 +2y/2)1/2.
Thus the putative inequality (32) is not alwavs valid.

&, Ball, Carlen and Lieb [2] have proved the following inequalities for 1 £ p € 2
2 1
VAIZ + (o~ DIBIZ < (14 + BIZ + 14— BI2);

i 2
LA+ (0 = DIIBIE < oz (WA + BIS + 14 — BREY.
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Compare the first of these with one of the inequalities in (7):
= 1
2MP(lAlR + 1BI3) < 5 {14+ BIZ+ 114 - BIE),

and compare the second with the inequality obtained by following some of the steps
of Remark 4:

1 2/
1415 + 1B < 5(14+ BIZ + li4 - BIE)™

4. Proof of Theorem 3, and generalisations

This section has to be read along with the paper of Ando and Zhan [1] and that
of Hirzallah and Kittaneh [11}. We indicate how the results obtained there for n =2
can be proved for n > 2,

Hecall that & non-negative function f on [0, o) is said to be operator monotone
if F{A)} 2 f{B) whemever A and B are pasitive operators with A = H. The fanction
£(t} = 7 is operator monatone for 0 < p € 1. Thus for 1 € p < oo, the inverse
Function of f{} = ¥ is operatar monotone; see [3, Chapter V).

THeoREM b {Generalized Ando-Zhan theorem). Let Ap, ..., Aq_y be positive

operators. Then for cvery unitarily invarisut norm, the following statements hold.
(i) For every non-negative operator monotone functior f on [0, 00),

:g;f(fif}ll Hf(i 4)

=0
{il) This inequality is reversed if f is a non-negative increasing fnction on {b, co)
such that F{0) = 0, f(o0) = oo, and the inverse fimcetion of f is operatar monotone.

2 (33)

Ando and Zhan [1] have proved this for n = 2. An analysis of their proof shows
that all their arguments can be suitably modified when n > 2. In partienlar, in
their crucial Lermma 1 we can replace the sum 4 + B by 37 A;, and then check

that the same proof works. Using this, we can prove the following theoren:.

THEOREM 6. Let Ag,...,An—; be any operators. Then for every uwnitarily
invariant norm, the following statements hold.
(i} For every incresging function f on [0,00) such that f{0) = 0, f{oo) = ac
and the inverse function of g{t) = f{+/?) is operatar monotone,

" lz.f(,?ﬂjfl <= A g”fﬂj’) |
< Ef{nmj-n |

(i) The two inequalities inr (34) are reversed for every nonnegative function f
on [0, c0) such that A{t) = F{/T) is operator monctone.

The n = 2 cage of Theoremn 6 has been proved by Mirgaliah and Kittaneh [11],
Their arguments can be modified by replacing the Ando Zhan theorem by its
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geperalisation, pointed out above. Their Lemms 1 needs no change. At one stage,
we nead the identity
] 5.: W;A
Jl:-ﬂ

This is just the identity (24), and svbstitutes for its n = 2 version used in [11,
p. 366, line 6). We leave the rest of the details to the reader.

The two parts of Theorem 3 follow from the corresponding parts of Theorem 6
if we choose f{t) = t* with p 2 2 and 0 < p £ 2, respectively.

=1

=3 1A% (35)

j=o

REMARK. Note that [1, Corollaries 1-3] and [11, Cerollaries 2 and 3] can also
be generalised to n-tuples of operators in this manner.

%. Proof of Theorem 4

Imitating the standard complex interpolation proof of the n = 2 case, we give a
proof of Theorem 4 for 1 < p £ 2. The ideas are the same as those used in [10),
At a crucial stage, we need a generslisation of the parallelogram law provided by
Theorem 1.

LEMMA. Let 4;,...,An—1 be cparators in the Schatten p-class O, for some
1 < p 5 2, Let By be the sum defined ip (20), and let ¥, 0 £ kX< n—1, be
operators in the dual class C;. Then

éﬂ”"(ZIlA;ilp)”p(ﬂfimuP) " (36)

=0 k=0

n-1

trz Vil

Preof. Let A; = |A;)W; and Y; = Vi[Y:| be right and left polar decompositions
of 4; and ¥;, respectively. Here, W; and 1} are partial isometries.
We have 1/2 € 1/p < 1. For the complex variable z = z-+ip with 1/2 < 5 £ 1, let

Aq(2) = AW
Yi(z) = NYlBr a0y, 40 =)
Nule that Aj(lfﬂ) = A; and Yill/p) =Y. Let
n—1}
Flzy=u Y Yilz)Bulz).
k=0

The left-hand side of {36) iz | f{1/p)). We can estimate this if we have bounds for
|f(z)| at z=1/2 and z = 1. If z = 1, we have

o Ya(2) (2} = [|¥ally | tx Val Y|~ | 4570 W],
Using the information that for any operator T,
e 7| < 1T, and  [|XT200 < |XINTH H2]
for any three operators X, T and Z and unitarily iovarisnt norm [[f - [fl, we sec that

| Vil2) A (2 € NYRUENA N, for all D€ 4 k< ne— L.
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Hence
n 1 w—1 n—1
1= |y v < (T n z)(Triz), e
k=0} k=0 j=0
when &= 1.
When ¢ = 1/2, the operators 4,{z) and ¥;(z) are in O3 and

n=-1

(£ € ) [ Ya(2) Bel2}

n—1
< 3 1Yel2) 2 iBrl2)

[ 1]
< (g nnfz)u%)m(g IIB;.:[z)Ili)m

= g 1¥%42) na)m (3; 418 .

The equality at the last step is a consequence of Theurem 1, specialised to the case
p= 2. Note that when z = 1/2, we have || A;()|13 = 14515, and [¥(zHIZ = I¥x[Z-
Hence

r-1 12 ym—1 1/2
1(2)] < !/ IYelE WA:E ) (38)
gl (i) (3 1)

F=t
when x = 1/2. If M, is the right-hand side of {37) and M; that of (38), then by
the three-line theorem we have, for 1/2 £ 1/p < 1,

£ (1/p)}  MECIP—112pg 301 /p)
This gives {36). ]

Now, te prove Theoremn 4, let By = Uz |By| be a polar decomposition, end let
Ya = [ Be ]l P8P UL
It is easy to see that
te Y5 Br = | Brllz = [¥x|lZ-
B0 we get, fram (36):
n—1 n—1 /g o r—1 1/p
)
S imdg <ntio( Snang) (X 8u)
=0 =0 ==}

This ia the same a3 saying that

fi—l r 1 gip
Suzdg<a{ Lhatg) . 1<rs? (39)
k=0 J=Lk

This preves Theorem 4 for 1 < p € 2. The reverse inequality for 2 £ p < 0o can be
obtained from this by a duality argument. O
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By a change of varigbles, a palr of complementary inequalities can be obtained as
in Theorems 1-3. As pointed out earlier [2, 4], the inequalities of Theorem 2 follow
from those of Thecrem 4 by simple convexity argnments. Theoremn 1 too can be
derived from Theorem 4 by such arguments. For example, for 2 £ p < o0, we have

from {6):

ln=ﬂ =i

On the positive lm.lf-lme, the function f(z) = r%7 is convex and the funciion
9(z) = £*/? i concave. Using this information, we can obtain the frst inequality in
(3) from the inequality (40). The proof given in Section 2 is based on easier ideas.

6. Further generalisations

An anonymous referee has made the interesting ohservation that our proofs of
Theorems 1 and 2 rely on one crucial property of the finite Fourier transform matrix
F,, namsly that 72 is & permutation matriz. More generally, lot R, be any n x

matrlx such that
R, =zP, (41)
where = is a complex number and P a permutation matrix. Then
R, R, =al,, wherea=)|z| (42)
For n = 2, some examples of such matrives are:
r V22 iva =2 1+ 1—4
[2—:-2 ‘ Lf—_ —8 ]’ acd [1-:ﬁ 1414’

whmrandsarerealnumbmmthr”gﬂands’ > 2.
Let R = R, ® . Then R acts naturally on »n X 1 column vectors whose entries
are operators Ag,. .., dnp-1. For a given operator R as above, let

A" = RA. (43}
With these notations, we have the following theorem.

THEOREM 7. Fbr?s;,ls';p:‘:oﬂ,wehaw

n—i1 n—i
aMP=A T E 14, l'i‘]' < Z RA” ||::- < pMEAPII2 E A4, II,, (44)
§=0 ¥=0

Proof. The proaof follows the steps in Remark 4 of Section 3. Replace the tuple
B there by 4’, Note that
n=1 -1
ZA Aj_aZA : Aj, (45)
Fmi)
and that for 2 € X £ p, the funetion f(r} = =2 is convex and g(z) = 2P is
concave. This leads to the first inequality in {44). The second can be obtained from
vhis on replecing A by A’ and noting that the tuple A” is a permutation of the
tuple A. We leave the details to the reader. O
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ﬁmTincludm a5 special cases, Theorems 1 and 2. If R, is the matrix
with wF as its (f,k) eniry, then & = n. Further, by choosing A = 2,p, we obtain
The:urems L and 2, respectively.

Similar generalisations of Theorems 3 and 4 may be obtained. Let us indicate
ihis brieBy. Replace the identity (35) by

Z A5 = o Z l441%, (46)

J=0
to ohtain, instead of (34}, the inequalities

(V3 ) |! <||Z o]
113 f (v i) Il
F=0
This leads ta the inequa.tit.iﬁs
n1=2,pf2 |J‘1_f|p HI ZH}F |
F=u (47)
g P 1g?l | > 1A

for 2 £ p € . The inequality (b) is included in this a& a special case.

Let ry; be the entries of the matrix K,, and let ¢ = mex|r;;|. If we replace
the tuple B in Section 5 by the tuple JtA, we obiain modified wersions of the
inequalities (37} and (38). For the firat of thess, we pick up an extra factor r on
the right-hand side; for the second, we nead to replace the factor n'/2 by o/2. The
interpclation argument then shows that

n—1

n-1 1fp ,m—1 1/p
trZYkAL| < rz[lfp-lfzjﬂlfq(z HAJHE) (Z Hﬂ"ﬂ) i
- j=0 k=0

This replaces the inequelity (36). Imiteting the rest of the argument in the proof
of Theoremn 4, one obtains at the end

=1 n—1 w’p
T pafE < re? [EMA,..-M;;) , (48)

=0 =0

for 1 < p £ 2. Once again, when R js the matrix with entries m;-ﬂ thena=n,r=1,
and the inequality (48) reduces to (39).

Acknowledgement. Theorem 7 and the ideas of Section & are due to an
anonymans referee, to whom we are most. grateful.
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