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ABSTRACT

A binary operation * over real numbers is said to be associatve if
(x#¥)* z=x+{y*z) and it is said to be reducible if xxy=1x+z
or y+w=z+w if and only ¥ z = y. The operation # is said to have
an identity element 2 if x + Z = x. Roy [Roy, D. (2002}. On bivariate
lack of memory property and a new definition. Arn. Inst. Statist.
Math. 54:404-410] introduced 2 new definition for bivariate lack of
memory property and characterized the bivaciate exponential
distribution introduced by Gumbel [Gumbel, E. (1960). Bivariate
exponential distributions. 7 Am. Statist. Assec. 55:698-707] uner
the condition that each of the conditional distributions should have

the univariate lack of memory property. We generalize this definition
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and chamacterize different classes of bivariate probability distriby.-
tions under binary associative operations betweenh random variables,
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1. INTRODUCTION

Different types of bivariate exponentiat distributions have been
investigated for stochastic modeling purposes. Some of these distribu-
tions have been developed via characterizing properties such as the lack
of memory property (LMP) of the exponential distribution. Marshall
and Olkin (1967) proposed 2 bivariate lack of memory property (BLMF)
and studied a ciass of bivariate as well as multivariate exponential distri-
butions, Roy (2002) iatroduced a new definition for bivariate lack of
memory property (BLMP,} and characterized the bivariate exponential
distribution introduced by Gumbei (1960) under the condition that each
of the conditional distributions should have the univariaie LMP., We
generalize this definition and characterize different classes of bivatiate
probabiity disiributions wnder binary associative operations between
random variables. These include bivariate exponential, bivariate Weibull,
and bivariate Pareto distributions.

2. PRELIMINARIES

A binary aperation * over real numbers is said to be associative if

(x*y)*+z=x*(y*z) (2.1)
for all real numbers x, y, z. The binary operation * is said to be reducible
fx+xy=xszifandonlyif y=zandif ysw=zs wifand only if y = 2.
It is known that the general reducible continuous solution of the func-
tionat Eq. (2.1) is

x+y =g (glx) +g(»)) (22)

where g(-} is a continuous and strictly monoione function provided x, ¥,
x *+ y belong to a fixed (possibly infinite) interval A (cf. Aczel, 1966, 1987).
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The function g(-) in (2.2) is determined up to a multiplicative constant,
that 1s,

g @ () + 2100 = g7 (g2(x) + g2(m))

for all x, y in a fixed interval A implies g, (x} = ag, (x) for all x in that interval
for some & * 0. We assume hereafter that the binary operation is reducible
and associative with the function g(-} continuous and strictly increasing.
Furthermore, assume that there exists an identity element # ¢ ¥ such that

xsE=x, X€EA.

It is also known that every continuous, reducible, and associative
operation defined on an interval 4 in the real line is commutative {cf,
Aczel, 1966). Let X be a random variable with the distribution function
Fix) baving support A. Define

630 = [ explisg(a)} Flan), ~oo<s<om. 23)

Note that the function ¢y(s} is the characteristic function of the
random variable g(X) and hence dotermines the distribution function
of the random variable g(X)} uaniquely.

Examples of such binary operations are given in Castagnoli (1974,
1978, 1982), Muliere (1984) and Castagnoli and Muliere (1984, 1986,
1988). Far instance:

) If A= (—cc,00) and xxy=x-y, then gi{x) = x.

(i} If A=(0,c0)and x+y=xy,x> l],]y = 0 then g{x) = logx,

(i) iIf A=1(0,00) and x*y = (x*+)") t x>0, y>0 for some
g > (), then g{x) = x".

(iv) If A=(-1,0¢) and x*y=x+y+xy+1,x>—-Ly>-1,
then g{x} = log(1 + x).

(v) If A=(0,00) and x =y = xy/(x + ¥),x > 0, then g(x) = 1/x.

(¥) IfA—={(0,0c)and xxy={x+y)/(1+xy), x>0, y>0, then
glx)y=arth x.

A characterization of the multivariate normal distribution through a
binary operation which is associative is given in Prakasa Rao (1974, 1977)
for Gaussian measures on locally compact abelian groups. Some charac-
terizations of probability distuributions through binary associative opera-
tions have been studied in Muliers and Prakasa Rao (2003}, extending
carlier results in Prakasa Raa (1992, 1997).
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Let X = (X, X1) be a bivariat¢ nonnegative random vector with the
bivariate survival function

Sanx)=PX1 >x,X>x), xx=0, x>0 (2.4}
satisfying the functional equation

S(x1 -+t +8) = S(x1,x) 8(t.0), x>0 x>0 >0 (2.5)

The above functional equation represents a particniar type of BLMP.
Marshall and Olkin {1967) characterized the class of bivariate distribu-
tions with the exponential marginal distributions satisfying the above
functional equation. They have shown that the unique solition of the
above functional equation is the bivariate disiribution with the survival
function given by

§(x1,x2) = exp{~Aix| — Apxp — A2 max(x;, x2}}. (2.6)

This bivariate distribution is a mixture of an absolutely continnons
distribution and a singular part that concentrates its mass on the line
x; = x3. This family of distributions has been found usefu! for applications
in reliability theory (cf. Basu and Block, 1975; Galambos and Kotz, 1978).

Muliere and Scarsini (1987) characterized a class of bivariate
Marshall-Olkin type distributions that peneralize the Marshall-Olkin
bivariate exponential distribution through a functional equation ivol-
ving binary associative operations. These classes of bivariate distributions
do pot necessarily have exponential distributions as their marginal distri-
butions and their form depends on the associative operation. They con-
ceptrate positive mass on the line x| = x; as in the case of bivariate
exponential distzibution introduced by Marshall and Oikin {1967).

Let = be a binary associative operation with an identity element 2.
Suppose that the survival function S$(xy,xs) satisfies the functional
equatons

S(x1 1, x2 % £) = S(x1, x2) S(2, ), (2.7)

Si1(x1 # 1) = Si(x1) S1(1), $100) = §(x1, 2), {2.8)
and

Sa{x1 % 1) = Sy{xz) $a(8), Sa(x2) = 5(&, x2) (2.9)

for all x;.x, > &
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Muliere and Scarsini (1987) proved that the only continwous solution
of the functional Eqs. (2.7)42.9) is

S(xt,x2) = exp{—A1g(x1) — Lag{x2} — Aag{max(xy, x2))} (2.10)
with 4;, 43, 41z > 0 where g{-) is the function cotresponding to the binary
agsociative operafion #.

Different specializations of the binary associative operation = lead to
different bivariate survival functions.

Example 2.1. If x*y=x1y, then g(x) = x and

S(xy, x2} = exp{—~Adix) — dax2 — A1 max{x;, x:))}. (2.11)
This is the Marshall-Olkin disinbution.

Example 2.2, If x + y = xy, then g{x) = logx and

S(x1,%2) = xp x5 (max{m, x2)) . (2.12)
This is the bivariate Pareto distribution over the set {1, 20) X (1,00).
Example 2.3, If x « y = (® + y)!*, then g(x) = +* and

S(xy, 17} = exp{—A % — A5 — A max{x], x3)}. (2.13)
This is the bivariate Weibull distabution (¢f. Marshall and Olkin, 1967;

Moeschberger, 1974).
Recently, Roy (2002) introduced a new concept of BLMP.

Definition. Let S(x, %) be the bivariate survival function of a non-
negative bivariate random vectot (X;, X2). The survival function S(xy, x2)

is said to possess bivariate lack of memory property BLMP; if and only
if for all xy, xo, v and w,

S(x1 + 1,42} 8(0, x2) = S(x1, x2) $(¥1,32) (2.14)
and

Slxy,x2 + ¥2) 8(x(,0}) = S(IIJI} S(Ilsﬁ}- (2-15}
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It is easy to see that if a bivanate distribution has the BLMP,
property, then the marginals posess univariate LMP. This can be seen by
snbstituting x2 = 0 in (2.14} or x; =0 in (2.15).

Roy (2002) proved that a hivariate random vector X = {Xy, X;)
follows BLMP; if and only if X follows the bivanate exponential
distribution mtroduced by Gumbel (1960} with the survival function

5(x(, x3) = exp{—~dix1 — Aaxz — A max(xy, x2)} (2.16)

It was shown further by Roy (2002) that the failure rates
8. . .
ri(x1,xa) = -5-[-- logS(x,x2)), i=1,2 (2.17)
H

are locally constant in the sense that r;{x),x2) = r{0, x2) for all x; and x;
and similarly, r2(x;, x2) = ry(x,0) for all x; and x,. Similarly, the mean
M;(xl,xz} - E(x,' - .I;IK] E xl,xg 2 Iz), = 1,2 [213}

are locally constant.

3. MAIN RESULTS

Lot X = [X,,X;) be a bivariate random vector with the survival
function S{xy,x;). Let * be a binary associative operation with the
identity & satisfying the equations

S(xr * y1,%2) S(2, x2} = S(x1, 22} §{0,x2) (3.1)
and

8(x1, %2 % y2) 8(x1,8) = §{x1, x2) S{x1, y2)- (3.2)

Suppose that S(x),x) >0 for all xy >Fand x; > & Let g{-) be a
continuoens strictly increasing function associated with the binary associa-

tive operation as described earlier. It is known that the function g(-) is
unigue up to a multiplicative constant. Note that g(#) = 0. Furthermore,

xyxx2 =g (gln) + gla)). (3.3)



SuPpnse that the function g() defined above is differentiable with the
derivative g'(x) > 0 for all x > & We now characterize the class of all

bivariate distributions satisfying the functional equations (3.1) and (3.2).
Observe that

& S{I] *t xz)
Mi(x,x Ef —-'—dr

= (s, xz)
f @) & (3.4)

from Eq. (3.2) and the right side is a function of x; alone. Let us denote it
by K3{xz). Hence

i 1 S(I]}I;)
Ki(x2) Mi(x, %) J“]S(xl * £, x7)dt (3-3)

forall xy > & and x2 > &. Let

o0
Ay (xy,x2) Ef S(xl * f, xo)dr
F

e £(%) |
‘fx, Stum) e Tt — g (36)

Observe that
a4 _ _5(;1,x1]g'{x1)
dx| £(g1(0))
_ S, x)g' () (3.7)
g'(é}
Combining relations (3.4)-(3.7), we get that
1 — S(.x], .1'1) (33)
Ki(x2)  Au(xy, x2)
B (3.9)
T Af(xg, 22} |
therefore
gm) 1 B
ge) Ki(x) Ai{x1, 1)
_ Ologdr (3.10)

3.#]
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Solving this differential equation, we obtain

gix) 1
.Wé}m-— —log A; + By (x2} {3.11)

for some function By{.). Therefore

o) = exp| -S04t 1) (3.1
which implies that

Slxt, x2) = &, 212) i [“ % K; (lxz} A (IZ}] ‘ (313)
Therefore

S(x1,7) = Ly {(x7) exp [— if%} e (lxz) (3.14)

for some functions X (x;) and L{(x,}. This relation was derived from
(2.14). Similarly, it follows from (2.15) that

- _glm) 1
S{xe, 22} = La(x) exp o) Kﬂxl]] (3.15)

for some functions Ka{x;,) and Lz(x,). Hence

g{.l]}__l = X1 1EX —'g_{fﬂ_l
?ﬁ?m(le] = Lalx) P[ r4t3 Kz(xl)] (3.16)

for all xy, x3. Let x; = & in the above identity. Then it follows that

L@ esp| - £ ) = LaGar)enp |- £ | oem

Ly(xz)exp [—

2'(3) Ki(e) £'(8) Kafx)
or equavalently,
log y(e) — [E 2| = log Lot (3.13)

for all x; since g(#) = 0. Therefore

La(x} = explas + Big(x1}] (3.19)
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for all x; for some consiants oy and §, and hence

S(x1, x2) = explon + figlx) + 1,8(x2) Hz(x1)] (3.20)

for some constants 1, ;. ¥, and some function H; depending on x only.
A similar apalysis starting with substituting x; = & in the identity (3.18)
shows that

§(x1, %2} = explir + Bag(x2) + y28(x1 ) H1 (x2)) {3.21)

for some constants oz, f5, 7, and some function H depending on x; only.
Bquating the relations (3.20) and (3.21), it folows that

oy + Frg(x1) + nigln () = o + Bog(a2) + ng(a)}H ()
(3.22)

for all x; and x;. Let 3 = x; = @ in Eq. (3.22), Then it follows that
x = 2 since g(&) = 0. Henee

Pre(x1) + ngla)Hax) = Baglxe) + vag(x)Hixz) (3.23)

for all x; and x». Fix a value of x; = xop such that g{xa) # 0. Then it
foliows that

Brg{x,} + yig(xn)Ha(x1) = Brg(x20) + y28(x1 1H (20}
= o1 + cag{x1) (3.24)

for some constants ¢; and ¢;. Therefore

_ o+ cag{xy) — Biglx)
Halx) = 118{x20)

= 3 + €48{x1) (3.25)

when 7, # 0 for some constants ¢; and ¢;. In pacticular, we have

8{x1, x2) = exploy + frg(x1) + 718(x2){c3 + caglxi})]
= exploy + Brg(xn) + Bzg(x2) + faglxr)g(x2)]. (3.26}
It is clear that the above representation kolds even if y =0 from

Eq. (3.20). Let x; = x3 = & in Bq. (3.26). Then it follows that &) = { since
g(2) = O and S{&, 5) = 1. Suppose that S{x;, &) < 1 and 5(¢,x;) < 1 for all
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X1 > € Or xp > & Then it follows that 8, < 0, §, < 0and 0 < —8; < §,4,.
Hence we have the following theorem.

Theorem 3.1, Suppose a bivariate random vector X has the BLMP,
property under a binary associative operation + with an identity &, that
is, its survival function S(x),x} satisfies the conditions

S{xy *+ y1,%2) (8, 02) = S(x1, x2) S{y1,%2) (3.27)
and
S(xl,.tg E }‘1] S(A‘.‘l, E) = S(I[,Ig) S[I],}'z]. (328)

for all xy 2 ¢ and x3 > . Further suppose that 5(x1,&) <1 and
S(&,x2) < 1 for ali x| > € or x; > & Then there exists constants 1) > 0,
Ay 3 0,0 < As < 414y such that

S(xy, x) = exp[~Aig(x) — dagi(xz) — Aag(x))g(x) (3.29)

for all x) > € and x3 > € where g(-) is the function corresponding to the
birary associate operation ».

Remark 3.1. By choosing the binary associate operation * as the addi-
tion operation on the set of real numbers with the identity £ =0, we
obtain that g(x) = x and hence derive the characterization of the brvan-
ate exponential distribution given in Theorem 3.1 of Roy (2002) as a
corollary to Theorem 3.1 given above. As pointed out by Roy (2002),
the characterization results obizined in Johnson and Kotz (1973), Zahedi
{1985), and Roy and Gupta (1996) alzo follow as special cases of our
resuits,

Remark 3.2, A multivariate extension of Theorem 3.1 can be obtained
by mathematical induction. The multivariate version of BLMP; property
under the binary associative operation * with an identity & can be defined
as follows. A k-dimensional random vector X = (X,,..., X, ..., X} I8
said to have the MLMP; property under a binary associative operation
+ with an identity & if ifs survival function S{xjy,xz,...,x:) satisfies the
conditions

S(t15 .oy Xpt, Xi ¥ Yio Xpsely - - ,Ik)S(Ih- TN L TR I o g )
= S(I[, bew gy :-xi:}S(x]:- e s X1 Yis Fiely e - .,Ii—}
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for all x; > &{=1,2,... k. Further suppose that
S(E,...,,E.IE,E,...,E){1, i=1,2...,k

Then it can be shown that the class of all such multivagiate distribufions
are those with the survival functions of the form

S{xil"'}'xl-‘.l"‘lxt) = EKP["E:A.;I; -—Z:Zjijxixj—.-

= 111...1.1'112 .- -xk] . [330}
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