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SUOMMARY. TFor given I normal populations with snloows mesns snd commen known
varianee, Alam {1970) suppested 8 two-stage procadare to sslect tho population heving the largeat
mean. He eonjectnred that under this praocsdure, the least favourable configuration {L.F.0.)
would bo the dlippage configuration. Thia procedurs has been subecquently studied by Tambwne
and Bechhofer {1977, 1079) and Miescke and Sehr {1930) while in the latter ancther two-stage
procecinre has been given and a similar eonjecture ia made about the EFC.  In thie paper both
thowe conjectures have been settled and both ate found e ba trme. Though the conjectnares heve,
wera mada for normal distribution, the preofs given in this paper hold for any dietribution whose
gsmpla mean haa MLE property.

1. INTRODUCTION

Let #y, 7y, ..., 7 denote k normal populations with unknown means
fs ftas ooy phe Tespectively and a common known vartance o > 0. Lsb
) & ey S ..., & figey denote the ordered set of values of the means. The
problem is to select the population with the largest mean i).

For given sample size mlet {Xg, “"Xini}* i=1,2 ...,k dencte %

independent samples from @y, m, ..., #x respectively, Define X;-— gl
Xy ... -|-XMI],£ = 1,2, ...,% Bechhofer’s fixed sample procedure {¥)

is to choose the cell corresponding to the maximum of Xy for ¢ =1, 2, ..., k.

Let POS{p, &) be the probability of eorreck selection under ¥ with the
true mean = (i, gy, -.., pp) such that g, < f € .0 € Pz < fi3. Noting

PCE{# :\_‘Z} — ?kﬁ' g&(””ﬂ_:t{x—m) ) @(ﬁ(ﬁ'—ﬁ) )

o feal o

AME {1980) subject clasriffeation ; GZFDN.

ey swords and phrasas : Two-atage selostlon procodure ; Least favourable configorsdion ;
Logeonesvity.
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where ¢ {-) iz the o.df. of standard normal variate, ome ¢an show the
monotonicity of POS (g : %) in s fe, ..o ftxq by showing

dPCR{p: .2 - _
B S Oi=12 .k, o (LY

Alam (1970) proposed the following two-stage procedure Py :
Stage 1: Take & independent ssmples (Xg, ..., X,, ) of size n,
$=1,2 .., k from =, .., T snd compute X; = n7?* (X‘1+"'+an1}

fori=1,2, ...k Select all population 7; with Xy > max {X;:§= 1,2, k)
—¢ where ¢ is & fized positive real number. If only one population is selected,
stop and assext that, this one has the largest mean, otherwise proceed to

stage 2,
Stage 2. Take additional independent samples {¥yy, ... ¥, tmg) Of size

ny, from the populations selected in stege 1 and compute ¥i = n;3
(Fat. + T ) for them. Then select the population giving the maximum

of {n,Xe+nyTy).

Thus procedure P, is a combination of two classical one-stayre procedures
where the first one (in stage 1) is due to Gupta (1958) and the second one is due
to Bechhofer (1854). In Alam (1970) the following conjecture wag made.

Congecture I: Let 8, > 0 be fixed, Consider
ﬂaﬂ = {jp ¢ R¥ A1) S F"[l’]""sn}
where for peli®, g, < ... & gy denote the ordered co-ordinates of p.
Then for every ée f,
inf POB (m: Py} = POB{, L, ...+, : Py).
wel,

Another procedure Py was given by Miesoke and Schr (1980). [P, differs
from P, ouly in stage 2 where the final deeigion is made in terms of the ¥y'#
instead of (R X¢+ny¥i¥e. A asimilar conjecture is made here, conjecture
11 (smy) :

inf POS (w: Py =POSK{E £ ..., 0-1-6,) : P) A+t R,
p:ﬂ;ﬂ

From now cowards wo shall denote
PGE{[.I‘. H P"] = PGS,{F] fiﬂ.‘j = 1,2
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Remork 1: Gupta and Miescke (1934) has shown that procedure P,
is inferior to P;. Procedure P, is only reasonable if the dats from stage 1
are loat and only the information about the subset devision im available at
stage 2.

It can be seen that both the comjectures I and I hold for indepen-
dent samples from populationy 7y, wr, ..., 7x where m has demsity glz—g),
1< ¢ £ k for some g, such that the sample mean of o, is MLR in . This
ean be verified by noting that in both the procfs we have used only the MLR
property of Xjand ¥yin gy and the fact that g4 is loostion parsmeter. In
particular equation {1.1) is also valid for such distributions since MLR in zq
implies stochastic ordering in wq.

Hemark 2 ¢ glz—p) is MLR in & if and only if g is logeoncave
(Karlin, 1968). Also note thaf logeomcavity is closed under conwvolution
(Dasgupte, 1980).

We first give the proof of eonjecture IJ for & > 2 in Section 2, The
proof of conjecture I is similar to thet of conjecture II and is given in
Bection 3.

2. Proo® OF COKJECTURE II

The mein idea of the proof is to introduce a function PCSE(p) (need
not ba probability) such that PCS(m) > POS(u) % p and then to show

inf CSPYw) = PCSt, &, ..., -8} ¥ te B
pelds

Let uy now defino, POS,(u|®) = Probability of correct seleckion given
thet & = (@, ..., &) i9 observed in the firat stage,

POSg(i) = &[Rt PCy(p|2)f, ()de . (20)

wheref“(m) is the density of (X,, Xj ..., Xz). Let py={0,0, ..., 0,0).
Now, to prove conjecture IT it is sufficient to show
POS,{p) > POS;(1e) ¥ B < proo With gz = 5, e (2.2}
ay the P8, is invariant nnder translakion i.e.
POS, (i1, fhas ... fix) = PCBalpey -0, ftat-a, ..., fix-ta) ¥ ac k.
Without loss of gemerality we consider gy = @iy, Wwhere B = (&, ..., B).
Define POS ) = agﬂk PGSE(H[;E}J’F{;B]&I. e (2.3)
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Az in P,, the final decision i3 based only on ¥y's, a result similar to (1.1) holds
and we have for all pu < p,, With pp = &,

PCBy{| &) > POBy{pel ). . (2.4
Hence from (2.1) and (2.3),

PCS,() > POSH)- .. @8
Again as POSy{ug) = PCSs{ie), to show (2.2), it is sufficient to show

POR3(p) > PCSH{p)s e {2.6)

where B = {i#, #a, ..., S e =100,0,...,0 8,) with gy = 8,. Now fo show

(2.6), without logs of gemerality we consider g < fa... < fipy < fig = &

For this we may have any of the following configuration for 1 < r  k—1,
Hy= = = Py < gy e M < o = o

Hence {2.6) (i.e., conjecture 11), follows from the following result by considering
directional derivatives in he direction (1, L, ..., 1, 0, 0, ..., 0] (with r many 1’s).

3 PCS;(w)
Com

Now for fized £ > 0 and o > 0, used in stage 1 of P,}, define
O, = {lwg, %, - 2} i |—ay| o [e—mtel ZeNij=2,3..,4
A, = EBxC,

Clearly, A, BE.

Result : ) ¢ 0. e (27)

Lot POBYw : 8) = | PCSg{uU[a?)fF (se)de.
weld
Consider PCS3(p @ 4)),
lim 8PS : 4,)
30 ity

= lim I POS(u.ja) (- @) )

= %PGS;{;;} [As A, T R%, ase— 0]

Hence if we prove the following Lemma (2.1) the above result will be proved
and thereby proving conjectuwe II completely.

d PCSp:4,)
oy

Lomms 2.1 : & 0% £ > 0 fizved. e (2.8)
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Proof of Lemme 2.1 : Fix 0 < 8 £ ¢ ie. &is very emall compared to e
et =(1,0,0, ..., 0)¢ B* and

u(d) = POSy( (w+8e,) : 4,)
#(0) =PC8H{n : 4,).

__oPCHip: 4y

Note that w{0) 5y

For 2 < i, < k, define
W) = A, NfweRb iz o i £ 1
and (@, Fe—0) < & (& o)}
Wi =4, N{zeBr o, > a¥iti
and %, € > & B T —c—B}.

Note that W7(8), % = 2, ..., k and W;;{&‘], ty = 2, ..., k are all disjoint, for the
structure of 4, and the fact shat & £ ¢,

Now a(8) = PCS, ((#4-8¢) : 4,)
= [PCS (|24, @M

= J PGS | ®Mul2y 9, 2, ..., ) div.
= I PGSoluty|(23+-0, . ... z)fpu(edee

(by change of varisble end the fact that A4, = Rx(,
does not change with eny location change of z,)

&
- w;{ﬂ POSy{pa| 14,7, @)+ 0 e ()i

K
F I [ POSylp| L (vy@)—ce U NiLig) Fulaide

0 ‘n“

+ | RCBypg| w8, ay, ..., Tx} falwMe

k &
= 2,45, 00 3, 45 0B a) (2.9)
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x
where F(d)= T {Wg&[ﬁ] J W;';la'}).
gt

?;n($] = [m;ni xﬂl oy .".B‘},
I, (#) = (subset selocted in stage 1 when a is observed)—{1, fo}

and
PUS, (i1, ] J{x)) = Probability of correct selection given thet subset J{w)
is gelected in stage 1, when  is observed. Here J{@) _{1,2, ..., &}

Note that PCS,(py| Jix)) = POS,{py | ).
Again,

%(0) = [ PC{pel 1, (7, (@} U {1, id)fpie)do

k
=
ig—2 w";(ﬂ

I 5
+iE [ POBy(pg) I, (y,, (@) —c.e) ) P fule)d

o= IF;[&]

4 POSi ) feta)da

i E
-2 Aﬂ,o“‘”}ni A7 (14B9) (eay). o (210)
Note that
im ~ [A+ (5)—dA¥ {a)]
ﬂ—"'ﬁ? [ iﬂ.ﬂ o iﬂ!ﬂ

== Jlim f
F—0 ﬂan{(m., R T R -k I )

[POSwol T, ()00 L) —PCBali 11, (,, @HHe.e) U €L, ig)]

1 #""l‘ﬂ
fpgl...nt{a:ar .o ZE). [Tm;o-l'!ﬂ“d {Eﬁﬂfkﬂl] dxs .., AT, w211

[Since from deflnition of A, Wf&{ﬁ)=d=m{m:m‘u+ﬁ}mﬁq‘i5&l and
:t:‘.-1—ﬂ—3-r::.43‘1 < 2:‘0-1-6} and a3 Vi (@)} does not depend on' x;, (2.11) i
well-defined].

= @y oy 1) ‘Lﬁ“ S 2w I}EPGB,[MI‘{. (ry, (@)--c.e) 1 1))

P08y I, (7, (). L) {L, i fisle, -0, 2y, 2 .. ta)dlty ... d2p
= D" {aay). o (2]
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, .1 [ M
[(3.12) follows by noting that lim == [% A {aa}dwi] = fu % )
and then by Dominated Convergence Theorem].

Similarly,

.1 - -
lim 5 {47 @4 )]

g L iy [ PO, Ty (7o) —c.ea} U i)

—P{i8, (H|Ifn(‘}f§a(m)—c.el} ELN so}) ] i (:trﬂu—c, @, -.1:1,) diy...d2x

= - DE,, (8ay). e (213)
Let m£ﬂ=zﬁ+umdz;=x;vi;&io.

Then. from {2.13), for all 3 # 1, k.

B, = ! (B8, Loy (ve (#)F2.00) U {2})
Canilzn - -w): o +opa'¥ izt 1}

~PC8s(p0 | I.sﬂ{?’go(ﬁ}-!—ﬂrﬂﬂ U1, 41 .ﬁ'l'{zgo= ®g «rr Bg=1s
24,10 By ks -0 28) g g .. B e (2.14)
[{2.14) follows by nobing thas in the relovant region for all 4, = 1, b,

PC8y{po[ 1, [y, @) —c-e) ) o)
=PCBy(po |1, (v, (®)-+0e) L {11}
and POy 1, (7, (o) —c.e0) U L, o))
=P08, (o] 1, {7, (2)+-ce) 1 {1, ig})]
Now note that By(8) = By(8) s

PC8y{mg |2y, T3 ... m)=PCBa(py | 2,16, 2, 2, ... Ta) Y z & 4,— W5} ... {2.15)

This is because the mubset J(xy, %y, ..., 0p) differs from Jix,+38, g, ..., ¥x) for
2ed,, only if , Hen close t0 @,y OF Zpe—¢. 'These causss have been taken
into acoount in W(8). Also mnote that, by the structure of 4,, {2.15) holds
for npe—8 < 2y < Zimare

A ]1-18
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Now dPCR( : 4)
Oty

= uN0)

k k
= L Dt— % D
L=t B 2 b

b1
=Di-Di+ % (D} —D3 )
'tu—ﬂ

< 0, by the following observations :
() Dy > 0 [follows from (2.13)]
() D} < 0[In (2.12), for ip = k, PCSyo} I, (¥, (@)+ee) L {1) = 0
as the aeb (I:,,{Tiu{m}”]"”l} 1) {1}) doen nob conbain kj
(i} Di:, % D‘-o for © = 1, k, follows from (2.12) and (2.14), by noting that

f P..{zi0.= L IR ziu-l’ Z;Du'i"ﬁ: z‘uﬂ’ ce BR)

fu{zgﬂ‘l‘ Cydgs %3 rna zk}

_ .f.ul'.(zgo] 'fg‘n (f’iu+ﬁ} 51
], jlltzio-l_ ) fg‘“ {3;0)

ad f is MLR {(or, totally positive of order 2),
iy % M 8nd ¢ > 0.
This proves Lemma 2.1.

3. ProoF OF CONJEOTURE |

As the proof of conjecture I is exactly similar to that of conjecture TI,
only the important stepas are given here. Here also we consider
& By S . & Bey << pe without losa of generallity.

Observe that

POS,(p (@) = POS( {32 o} 1),

where PGE,((;I.—[—E ) |a!)meana the probability of selecting the k-th popula-

tion by choosing the population corresponding to the mazimum observation
{maximum emong the popalations given by J{w)). Here for given o, the obset-
vations follow

N (l’a+% - :EIE) .
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FHoneo posiy = [ POS({ut?t o)in)fiee .. @)
Ag in the earlier proof, define
PoSe = ( PO5((mt7ta) lo)pare . @2

Now by analogous argument, to prove eonjecture I, it is suffloient o prove
the following lemma.

Lemma 3.1: -@Csa;i‘“:ﬁe} & 04 fized € > 0,
1
where
‘ - — ﬂ
POSIe: )= | POS, (;:.ﬁai 2) |)f (e} e (3.3)

-

Proof of Lemme 3.1 : As the proof of Temma 3.1 is similar to that of
Lemma 2.1, only the main steps have been shown here.

POS? ( (u+8e,) : A,)

= J PR (gt %{ﬁl-l-ﬁ, T oo &g ) 21+, @y, o) f, (0D
2

&
g X PGSE{F0+ (T{u(m]"‘ﬂeﬂlf lu(?t,}(-’ﬂ} +¢. %)U{l}]f (x)de

ig=2 w;rﬂ "

+ 2 I PGS&“"‘O+ (Tin [ﬂ?) ‘3'-31“1 ;n(?;n(ml'—ﬂ'ﬂﬂu{lr ‘0}} f F{m}dw

fp=it r{a}

[ POBgpyt-2 (xp Ty - 2|20, Bpye ) fleM .. (34

‘dﬁ W8

[(3.4) follows in exactly the same way se (2,9) and the inequality i
due to the fact that, for y > 0, POS{ptmta.6J@)) < POS,
(w-2] J(@)) a8 in (L.1)]

= E i, (3}+z Ag, O+B,0) (ay)

=u{) (ssy).
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Now

3
POSI(r: 4 =
r:dg) 2 — W{ o
POS (o 21, (+6.3) | T, (1 - +02) 1, i) S

+ § I FOB,; (#, + [?‘n{m} — .67} Ifu{?’gﬂ[m) — e&) U {io})flae) dee

=t W @
+ A,-—'L?[l} POB, (g, + %mlm}f, () da ...(3.)

[(3.5) is defined like (2.1¢) in exactly the same way aa {3.4)]
t

— £ —t
= {;ﬂﬂ +o B+ E_ﬁ A (8} + By(8) (say)

= %{0) (say).
Asin Lemms 2.1 F, (8) = B,{0) as PCS; (7y + — (xv o B} (g - B, 2y, wl)

EPCEM-{' {#1, #mi?}: I{#l.! " xﬁ]}: “II"' e Ae —W {3}-

Now

dPCH; (p: 4,)
By

= lim 874 [POS (u-+-¢; : A)—PCS] (13 40)] < lim 47 s {8)—w{0)]

ﬂ—}ﬂ

— % lm & 145, ) — 4 o @I+ £ Km & [E;M(a;#A' (@)
fy=t 5> ¢ fo=5 03 0 >

= i-’:-::t D‘"‘ ‘uﬂ ".5;'; {say)
gn fsince Dy 3 0, D} < 0 as in Section 2,
MsnD ={ -‘b‘wﬂ%lkb}r deriving equations asnalogous to (2.12),
(2.18) a.nd [2.14}.]
Thus the proof of Lemma 3.1 follows,
Acknowledgement. The authors are grateful to Professor Somesh Des
Gupta for helpful sugpestions.
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