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1. INTRODUCTION

Long range dependence phenomenon is said te occur in a stationary
time series [ X, n = 0} if the Cov(X;, X,) of the time series tend to zero
ag n— oo and yet it satisfies the condition

3 [Cov(Xe, X,){ = e.
)

In other words Cov(X,, X,} tends to zero but so slowly that their sums
diverge. This phenomenon was first observed by the hydrologist Hurst[’)
on projects involving the design of reservoirs along the NWile river
(¢f. Montanari®1) and by others in hydrological time series. It was recently
observed that a similar phenomenon oceurs in problems concerned with
traffic patterns of packet flows in high-speed data net works such as the
Internet {cf, Willinger et al.,® Norrosl'!). The long range dependence
pattern is also observed in macroeconomics and finance (¢f. Henry and
Zafforoni!). Long range dependence is also related to the concept of
self-similarity for a stochastic process. A stochastic process [X(#), 1 € R}
is said to be H-sclf-similar with index H >0 if for every ax0,
the procesges {X{ur),t € R} and the process {@"X(r),1 ¢ R} have the
same finite dimensional distributions. Suppose a self-similar precess has
stationary increments. Then the increments form a stationary time series
which exhibits long range dependence. A Gaussian H-self-similar process
with stationary increments with 0 <« H <« | is called a fractional Brownian
motion (fBm). A recent monograph by Doukhan et al.!! discusses the
theory and the applications of long range dependence and the propertics
of fractional brownian motion (see Tagqu®!), Tf H = 1/2, then the
fractional Brownian motion reduces to the standard Brownian maotion
also called the Wiener process.

Diffusion processes and diffusion type processes satisfying stochastic
differential equations driven by Wiener processes are used for stochastic
modeling in wide variety of sciences such as population genetics.
ecOnonIC processes, signal processing as well as for modeling sunspot
activity and more recently in mathematical finance. Statistical inference
for diffusion type processes satisfying stochastic differential equations
driven by Wiener processes has been studied earlier and a comprehensive
survey of various methods is given in Prakasa Rao.!'¥ There has been
a recent interest to study similar problems for stochastic processes
driven by a fractional Brownian motion to model processes involving
long range dependence. Le Breton® studied parameter estimation and
filtering in a simple linear model driven by a fractional Brownian
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motion. In a recent paper, Kleptsyna and Le Bretonl® studied parameter
gstimation problems for fractional Ornstein—Uhlenbeck type process.
This is a fractional analogue of the Ornstein—Uhlenbeck process, that is,
& continuous time first order antoregressive process X = {X,, 1 >0} which
i5 the solution of a one-dimensional homopenecus hnear stochastic
differential equation driven by a fractional Brownian mation {fBm}
WH = {WH ¢ = 0} with Hurst parameter H € (1/2, 1). Such 4 process is
the unique Gaussian process satisfying the linear integral equation

X,=Bfﬂ X, ds+aWi, 20 (L.1)

They investigate the problem of estimation of the parameters # and #°
based on the observation {X,,{} < 5 < T} and prove that the maximum
likelihood estimator @, is strongly consistent as T — oe.

Patametri¢c estimation for more general classes of stochastic
processes, satisfying linear stochastic differential equations driven by
a fractional Brownian motion and observed over a fixed period
of time T, is studied in Prakasa Raol%7 Tt is well known that
the sequential estimatior methods might lead to efficient estimators
from a process observed possibly over a shorter expected period of
observation time as compared to estimators based on predetermined
fixed observation time. We now investigate the conditions for such a
phenomenon. Novikow!?l investigated the asymptotic properties of a
sequential maximum likelihood estimator for the drift parameter in the
Ornstein—Uhlenbeck process. We now discuss analogous results for the
fractional Ornstein-Uhlenbeck type process,

2. PRELIMINARIES

Let (3, F,(F).P) be a stochastic basis satisfying the usual
conditions. The natural filtration of a process is understood as the

P-completion of the filtration generated by the process.
Let W¥ = (W4, ¢t >0} be a normalized fractional Brownian motion

(fBm) defined on (£, ¥, (F,), £) with the Hurst parameter H < (1/2,1)
that is, a Gaussian process with continnous sample paths such that
Wi =0, E(W) =0 and

E(WIWH) = 5[ 4% —ls— i), £20, 520, @1
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Let us consider a stochastic process {X,,7 >0} defined by {he
Stockastic mtegral equation

X, =0 f' "X(s)ds + oW, 120 (22)

where @ and o are the unknown constant drift and the diffusion

parameters respectively. For convenience, we winite the above integral
squation in the form of a stochastic differential equation

dX, = OX()dt + cdW!, X;=0, 120 (2.3)

driven by the fractonal Brownian motion W¥, Even though the
process X is mot a semimartingale, one can associate a semimartingals
Z =1{Z,, t+ > 0} which is called a findamental semimariingale such that
the natural filtration (¥F,) of the process Z coincides with the natural
filtration (%) of the process X (see Klepisyna et al.’l). Define, for
Jes=t,

ky = 2HT (% - )I‘(H + %) (2.4)

ky(t, ) = kst (2 — )1, (25)

- IO s

wy = Ag' M, 2.7
and

ME = f“ "Ryt )AWE, £ 0, (2.8)

The process M7 is a gaussian martingale, called the fundamenral
martingale (cf. Norros et al.l'®), and its quadratic variation {M¥) = w]’.
Futther more the natural filtration of the martingale M* coincides with
the natural filtration of the fBm W Let

Ky(t, 5) = HQH — 1}% [ i —smlar, 0cs<e Q9)

The sample paths of the process {X,, + = 0} are smooth enough so that
the process O defined by

) = E:-F j; iyl 9, ds, te[0,T) (2.10)
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is well-defined where w? and ky arc as defined in (2.7) and (2.5)
respectively and the decivative is understood in the sense of absolute
continuity with respect to the measure generated by w¥. More over the
sample paths of the process Q belong to L([0, 7], dw”} as. [P]. The
following theorem due to Kleptsyna et alll associates a fundamental
semimartingale Z associated with the process X such that the natural
filtration (%,) of Z coincides with the natural filtration (%) of X.

Theorem 2.1. Let the process Z = (Z,,t & [0, T]) be defined by
)
Z,= [ kalt, 5)dx, @11)

where the function ky (¢, 5) is as defined by (L.5). Then the following results
hold.

(i) The process Z is an (F,)-semimartingale with the decomposition
Z, =8 fu O(s)dw® + aM®  (212)

where M¥ is the Gaussion martingale defined by (2.8),
(ii} The process X admifs the representation

X = fu 'K, (4 5)dZ, (2.13)

where the function Ky iy as defmed in (2.9), and
(i) The natural filtrations of (Z,) and (%,) coincide,

Kleptsyna et all} derived a Girsanov type formula for the
fractional Brownian motion. As an application, it follows that
the Radon-Nikodym derivative of the measure PI, gemerated by the
stochastic process X when @ is the true parameter, with respect to the
measure genetated by the process X when 8 = 0, i3 given by

aF] , L

afy _ _1 , 2.4

2RF = [ﬂ [ 0wz, - z6° [ @*aul (2.14)

From the representation {(2.12), it follows that the quadratic
variation (Z), of the process Z an [0, 7] is equal to #*wf a.s. and hence
the parameter ¢* can be estimated by the relation

im 3 {Zw ~Zw] = uf as. (2.15)
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where (#1) is an appropriate partition of [0, 7] such that

sup j'f — 7 — 0

as n — oo. Hence we can estimate o almost surely from any small
interval as long as we have a continuous observation of the process. For
further discussion, we assume that o® = 1,

3. MAXIMUM LIKELIHOOD ESTIMATION

We consider the problem of estimation of the parameter 8 based
on the observation of the process X = {X,, 0 < r < T} for a fixed time T
and study its asymptotic properties as T — e, These results are due to
Kleptsyna and Le Breton!® and Prakasa Rao {'41647]

Theorem 3.1. The maximum likelihood estimator 0 based on the
observation X = [X,,0 2 t < T} is given by

c={ e} [ omaz, G.1)
13 i3

where the processes O and Z are as defined by (2.10) and (2.11}
respectively. Furthermore the estimator Oy is strongly consistent as T — o,
that is,

lim Br =8 a.s. [Py) (3.2)
for every B € R.
‘We now discuss the limiting distribotion of the MLE E":r as T —» oo.
Theorem 3.2. Let
' (33)
= sYZ.. .
Re= [ o)z,

Asswune that theve exists a norming function I, t = 0 such that

7 »
B f 0P dw S5 asT— (3.4)
o
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where I — 0.as T — oo gnd 1 is a randoem variable such that P(n > 0) = 1.
Then

(IR IE{Rp)) > (Z. 1) as T - 3.5)

where the random variable Z has the standard normal distribution ond the
random variables Z and 5 are independent.

Proof. This theorem follows as a conmsequence of the central limit
theorem for martingales (cf. Theorem 149, Remark 147 in p. 63

of Rf.:f.“’]).
Observe that
IR
B —8) =21 3.6
T ( T ﬂ) I-}-{Rr} ( )

Appiving the Theorem 3.2, we obtain the following result.

Theorem 3.3. Suppose the conditions stared in the Theorem 3.2 hoid Then
| r5- Z .
I;{ﬂ,--—ﬂﬂ}~+-;r- inlaw as t — oo (3.7}

where the random variable Z has the standard normal distribution and the
random varigbles Z and y are independent.

Remarks, If the random variable » is a constant with probability one,
then the limiting distribution of the maximum likelihood estimator is
normal with mean 0 and variance #~%. Otherwise it is a mixture of the
normal distributions with mean zero and variance n~2 with the mixing
distribution as that of #.

4. SEQUENTIAL MAXIMUM
LIKELIHOOD ESTIMATION

We now consider the problem of sequential maximwm likelithood

estimation of the parameter #. Let 4 be a nonnegative number. Define
the stopping rule t(%) by the rale

o) = inf s [ Qi )dul 2 A, @4.1)
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Klstptsyna and Le Bretonf! have shown that

lim f OH()du = +o0 as. [Py] 42)
for every 8 € R. Then it can be showa that Py(7(h) < oo} = 1. If the
process is observed up to a previously determined time 7, we have
observed that the maximum likelihood estimator is given by

be={]f ' Gyt ]_l [ 054z, @43)
The estimator
diny= b
=| f;ﬁ et [ owaz,
=i L @ o)z, (4.4)

is cailed the sequential maximum fikelihood estimator of 0. We now study
the asymptotic properties of the estimator 8(h).

We shall fist prove a lemma which is an analogwe of the
Cramer-Raoc inequality for sequential plans (t(X), 8 {X)} for estimating
the parameter & satisfving the property

Ef8.(0) =10 @.5)
for all 8.

Lemma 4.1. Suppose ther differentiation under she integral sign with
respect to & on the left side of Eg. (4.5) is permissible. Further suppose that

Eef f“ e F(s)dw? } < 00 (4.6)
Jor all . Then
Var,[8,(X)} = (EE{-‘{:W Qz(g}dw:i})‘_l {4.7)

for afl 6.
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Proof. Let Py be the measure generated by the process X(r), 0 < ¢ < (X}
for given 6. It follows from the results discussed above that

aPy )
oA d (Gl AL T2

1 o)
-3(6* - 6}) _{; Qz(s}dwfl as. [P). (4.8)
Differentiating (4.5) with respect to § under the integral sign, we get that
- =(X) _ X} w1l
ald.®| [ owaz. -0 edur]}=1. (4.9)
Theorem 2.1, implies that
dZ, = 80, duwl + dMH {4.10)
and hence
T ﬁ T K T u
f“ O(s)dZ, = L Q) + j; o(s)dm?. 4.11)
The above relation in turn implies that
X} X
Eg[ jﬂ Q(s)dz, — 6 fﬂ g?(s}duf] =0 4.12)
and
X) H i) TiX)
E,,{ fu Qs)dZ, — 8 L O (s)duw? }2 = E,{ j; g (s)du?
(4.13)

from the properties of the fundamental martingale M¥ and the fact that
the quadratic variation (M™), of the process M7 is wi. Applying the
Cauchy-Schwartz inequality to the left sade of Eq. (4.9), we obtain that

Varg{8.(X)} = (E”U.,m QZ(S)dw?])FI (4.14}
for all 8.

Definiion. A sequential plan {=(X), 8_(X) is said to be efficient if there
i3 equality in (4.7) for all 8.

We now prove the main result.
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Theorem 4.2, Consider the fractional Ormstein-Uhlenbeck type process
governed by the stochastic differential Eq. (2.3} with ¢ = 1 driven by ihe
fractional Brownian motion W¥ with H & {1/2, 1). Then the sequensial pian

(r(h), 3(!:)] defined by Fgs. (4.1) and (4.4) has the following properties for
ali 0:

G 8(h) =8 is nommally distributed with Eg(B(h)) =8 and
Var,(6(1)) = kY
{il) the plan is efficient, and
(iii) the plan is closed, that is, Py(1(h) < ec) = 1.

Proof. Let
Ie={ Qtau 4.15
r— L Q(E) F" ‘[ ' )
From the results in Karatazas and Shrevel’! Revuz and Yor!™! and
Tkeda and Watanabe ! it follows that there exists a standard Wiener
process W osuch that

Jy = W({J};} as. {4.16)

with respect to the filtration {¥ ,r>0} under P where 7, =
mffs: {F), > #}. Hence the process

(&}
j; O(s)dM (4.17)
is a standard Wiener process. Observe that
by =n [ * oz,
LU
=wfo [ " P + [ 'm Q(s)am? |

Tk}
=8+57 [ o(s)am?
1]
=0+ kT
=0+ &~ W({T),) (4.18)

which proves that the estimator 8(4) is normally distributed with mean
# and variance A7, Since

B[ Ceae}=h, @19
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it folows that the plan is efficient by the Lemma 4.1. Since

T
Po(e(h) > T) = Pﬂ[ fn Q) dul < .'1] (4.20)
for every T = 0, it follows that Py(z(h} < oc) = 1 from the observation
7o ]; " P ydul = %) =1. (4.21)
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