anbhyi : The Indian Journal of Statistios
Too0. Yolame 52, Beries A, Pt. 1, pp. 127-130.

EXISTENCE OF UNBIASED ESTIMATES IN SEQUENTIAL
BINOMIAL EXPERIMENTS

By SUBIR KUMAR BHANDARIE

Indian Stalistzeal Institule
and
ARUP BOSE

Purdue University, U, 8.4

SOMMARY., For sequontial Berponlli trials, a netesgary conditiom for a Pmmiu
funotion to be unbiasedly estimeble i thet it ba continuous. Depending on the sxistence of the
moments of the eorissponding atopping time and the sstietor, these funetiong are diffarsptiabls
upto a given ordor. Wa alzo study the implications of thess results to the problem of sstimeking
min {#, I —p} unbiasedly.

1. IxrroDUgTION

Let (X4}, i 1 be a sequence of ii.d. Bernoulli r.v.’s with P(X;=1)=p and
PXg== 0} =1—p, 0<Cp <1, DBasu (1975} posed the problem of generating
an event with probahility p*, x = 0. Banerjee and Sinha (1979) pursued this
prohlem and were led fo the problem of estimability of g{p) = min{p, I—p).

Singh (1964) had proved that if (Xy), ¢ 32 1 are iid. cbgervations from
some parametric family G,, 6¢ ) and there is a fixed sample size estimator
which estimates & unbiasedly, then a sufficient condition for & parametric
fanction g{f) to be estimable on the basis of 2 random samyple size ¥, is that
1 be in Baira class ¢ or 1.

This result is clearly applicable to the Bernoulli asituation. However,
Singh’s sequential plans are not true sequential plans gince he assumes N
to be independent of the entire sequence (X5}, 2 > 1.

In the Bernoulli case, we consider the elase of all true sequentisl plans
(with no external randomirstion), By quite simple arguments, we are able
to show that if a parametric function is (unbiasedly) estimable, it is necosasrily
eontinnous, Higher order smoothness can be proved under sxistence of
moments of the sample size and the estimator.

The original motivation for writing this paper was to ses whether there
are sequential plens allowing the unbissed estimability of the fumetion
Ap) = min{p, 1—p). As a consequence of our mein result, this ia not posgible
if we restrict our attention to proper or hounded estimators and with expected
sample size finite.
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2. THB MATH RESULTY

Let (X¢), i > 1 be a sequence of i.i.d. variables with P(X; = 1) = p,
PXi=0)=1—p,0 < p<-1. Any realization of this sequence can be
viewed az a path in the Bret quadrant of R? Starting from the origin, at
the i-th trial (i 3> 1), we move one step to the right if X; = €, and one step
above if X; = 1. A non-reandomised stopping rule tells us whether to stop
or continme sampling after we have reached a given point—this depends on
the path traced upto that point. Hence if T denotes the point where we
stop, then Pu(T = (», ¥)} = K(z, y) p¥{1—p) where K is an integer with

0g Kz, 9} £ (m;y) Only closed plans are relevant and so we assome
Py{T'<0)=1, or in other words, % K(x,g)pH(l—p)¥ =} for all p, 0<<p < 1.

If T—=(x, y), the random sample :i;: Nypis given by Np =2-4y. An estimator
¢ is & funotion defined on the possible points (x, ) of 7. A parametric funetion
g{p) is maid to be (unbiasedly) estimable if there exists a stopping rule T and
an estimator ¢ such that
T ez, 9) [ PoT = (2, 9)) < cofor 0 < p < 1
and =
mi efw, Y)Py(T = (=, ) = g{p) for 0 < p < L.
Theorem 1 : If g{p) iz unbiasedly estvzmable, then g 8 conftnuous.
Progf . Let et and e be the positive and negative parta of & and let

g+(p) = L et (o, NPT = (=, )

g (p) =2 e (2 NPT == (2, y)).
Then g,(p) and g_(p) exist and g(p) = g+(p)-g_(p). It iz enough to prove
that g¥(p) is continuous on any subset {z, b] of (0, 1).

Define Fp)= T e, HPYT = (3, o).

FHUAE®

On [a, b] each gt ie continuoms (in fact & polynomial in p) and g% T4,
pointwise. Hence by Dini’s theorem {page 248, Apostol, 1974), thia con-
vergence is uniform, which in turn shows that g, i= vontinnous on iz, 5. {1

Remarks : (1) As a conzequence, if for a stopping time T, B (Np) < o0
for 0 < p < 1, then p— EyNyp) is continuous.

(2} We believe that continuity of ¢{p) is suffictent for ite estimability
but we have not been able to prove it.

The following theorem strengthens vontinuity to differentiability vnder
stronger oconditions,
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Theorem 2 : Suppose g is unbicsedly estimadble by an estimator ¢ ond a
stopping rule T such that ExleNp| < 00. Then g is continuously differentiable.

Proof : Fix [a, 6} (0, 1) and define 7. ¢% a3 before. It is encugh to
show that ¢, is continuously differentiable on {g, b)

@) = I {15 e g) Pl = @g).
Define  Rip)= 3 (7% e PUT = (2, 9)

Note that by the assumption that Hp|eNx] < oo, B (p) exists and further,
| Bi(p)] € cBy(Wp et I{T 2 1)) | Ofor very fixed p

by dominated convergence theorem.

By Theorem 1, Ex(Nz et I{T > n+1)) is continuous in p and henoo the
ahove convergence im uniform.

By dominated convergence theorem, as n— oo,

WP fi0) = 3 {2 7L) € PoT = @ )

and as shown above, this convergence is uniform.

On the other hand, gl{p} — g.(p) for every fixed p. This ¢,(p) exists
end gi(p) = f(p) (see Theorem 9.13 of Apostol (1974)). The continuity of
g.(p) follows easily (e.g. by Theorem 1). [

Remarks : (3) Exsctly the same argumenta show that if EpjeNE| < oo
for some integer & > 1, then g{p) is & times continuously differentiable. Hence
if ByNT) <<co then p— Ey(N7x) ie continuously differentiable.

(4} We conjecture that if Eyje|exp (zNr)) < oo for some & > 0, then
g{2) is real analytic,

3. ESTIMATION OF y(p) ~ MIN (p, 1—p)

Bince g(p) lies between 0 and 1/2, it is realistic to restriet attention to
only hounded estimators, If we restrict ourselves further to stopping rules
which have finite expected stopping times, then g(p) is not unbissedly estinaa-
able. This follows ivumediately from Theorem 2.

We give below examples of a large olass of stopping rules which allow us
to estimate g(p) (with posaibly proper estimators).
A 1-17
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Define 9 = p(1—p). Then it follows easily that

min(p, 1—p) ==

o (92—2)!
= t‘gz;l)!;! P1—pF"

(This relation also follows from the theory of random walks). Hence for any
stopping rule for which {at least) the points (z, ) are boundary points, we
can estimate g(p) by
B (22—2) !
¥ = G W K@, 9)

s () otherwise.
However, it is easy to sec that any such estimator is highly improper since

Kz, z) < (2:) .

We have not been ahle to get a plan with a proper estimator of g{p).
Note that any such estimator has to be positive at some points {z, y), = % .
Further, by Theorem 2, ¢g{») is not unbiasedly estimable by a bounded esti-
mator with finite expected stopping time for all p. This remains true for any
other g(p} which is nondifferentiable.

This leads us to the problem of characterizing all plans which yield (proper
or improper) estimators of g(p). It is easy to see that a plan which includes
a8 stopping points, the points {(1, 1), (v+1, 2), (x, z+1) ; 2 = 2, 3, ...} enables
to estimate g(p). This is because for any z, pr+l @492 @+ — p%¢*. This
argument can be pushed further. For instance a plan ineluding {(x, ),
(To+2, %), (T, %g+-2}; ® F# 2y, £=1,2,...} as stopping points, yields an
unbiased ostimate of g{p). These facts make the problem of characterization
diffionlt to solve.
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