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PATHWISE SOLUTIONS OF STOCHASTIC
DIFFERENTIAL EQUATIONS

By RAJEEVA L. KARANDIKAR
Indian Statistical Institute

SUMMARY. A formuh ror ovaluating pnhm. the solution to a stochastio diffarential

oquation with i lo diffe is obtained vnder the wsnal lipschitx oondi.
tion on the ocoofficisnts. As an application of this result, a formula for the natural inoressing
prooess i with a i local ingale ia obtained.
I. INTBODUCTION
In this paper we ider Stochastic Diffe ial Equations (S8DE) with

somimartingale differentinls, These have been considered earlier in the
literature by Protter (1877) (for continuous semimartingale integrators),
Doleans-Dade (1976), Doleans-Dade and Meyer (1975, 1976), Emery (1978)
and Bichteler (1979). We consider the continuous case. Our methods are
different from the methods used earlier and are simpler. We use a suitable
“time change” to get estimates for the Stochastic integral. Protter also
applies a time change (See Portter, 1877, p. 248), but he uses it to get an
inequality for the norm he considers on the space of oontinuous semimartin-
gales. We employ a slight modification of the usual iteration procedure.
In the usual iteration procedurs, the n-th iterate is a stochastic integral of a
functional of the (n—1)-th iterate. In our method, the n-th iterate is an
approximation to the hastic integral involved, the approximation being
pathwise. Our estimates ahow that these “‘approximate iterates” converge
almost surely to a solution of the original equation, so that we bave a formula
to evaluate the solution pathwise. It should be noted that Bichteler (1879)
also iders pathwise soluti but he needs to use repeated limits to
evaluate the solution. More recently, Bichteler (1980) has obtained a f 1

similar to ours using different methods. As a q of our main result
we get ‘“‘pathwiss integration formula” for stoohastio integral. This, wnf.h
Ito's formula, gives a nice formuls for the jated natural inoreasing

proceas of a continuous local martingale. For a similar formula see Kunita-
Watanabe (1967, Theorem 1.3). Simple proof of a result on convergence of
solutions of SDE aa the coefficients converge can be obtained by our method.
But for a time ohange, the details are same as in Friedman (1975) for the
Brownian motion case and henoe omitted.
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122 RAJEEVA L KARANDIEAR
Professor P. A. Meyer has drawn our attention to Kazamaki (1974) where
q with imartingale differentials were first considered. Our
methed of time change is same as in Kazamaki where existence and uniqueneas
wore trented in a special case.

Professor H. Kunita has drawn our attention to the works of Wong and
Zakai (1066); Stroock and Varadhan (1972). These authors consider SDE
with Brownian motion differentials. They approximate the solution to the
SDE by those to ODE. The approximations given by Stroock and Varadhan
converge in the sensc of distribution, those of Wong and Zakai converge in
the quadratic mean.

2. NOTATIONS AND PRELIMINARIES
(Q, 8) is a fixed mensurablo space. A filtration &F = (F) ;30 i8 an
increasing right continuous fomily of sub o-fields of 8. P will always denote
a probability measure on (Q. .8) and &P will denote the filtration obtained
by augmenting each & by P-null sets from the P-complotion of 8. For
a & and P as above, let
@) = {X : X i3 a continuous, & adapted process}
B(F) = (X : Xis aleft continuous. Fadnpted process having right limite.}
AB) ={Xe@F): X(0)=0andt— X(, w) has bounded variation
on bounded intervals for all we Q.}
LF. Py ={Xe@F) : X(0) =0 and (X(), F) is & P-local Martingale.}
S(F P)={Xe@F) : X = M+B MeHF P)and Be AF)}
AF)=T: (T is a F stop time.}
A vector (or matrix) valued process is said to belong to a class of prooesses,
say & if ench of its components belongs to €.
If X ¢ 8(F) and T ¢ 2Z), following Protter (1977) we dofine the stopped
process X7 by XT (¢, w) = X{(t A T(w), w) 14,
A process H is said to be locally bounded if

aT, e S); T, oo, 8t | Y[ < n.

Let B = Eq = C([0, 0), 72%) be tho metric space of continuous func-
tions ou [0, ) into 74 equipped with the topology of uniform convergence
on compact subsets of [0,c0). For pe B, ¢t > 0,let |p|i = sup |p(s)].

[T YT}
(.| denotes the usual norm on #2¢. Similarly ||.| denotes the norm, root
of sum of squares of the entries, on matrices.)
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For M6 (5P, P), let < M, M >Pg®&) be its associated natural
increasing process. For A ¢ A(F), let |4|e (&) be the process
]
|A](, w) = oj' |dA(s, w) |.
Definilion : 0 = (040); 50 C &) is called a '‘atrict & time change” if
ggw) = 0, lim oy(w) = oo, and ¢ - o(w) is a strictly increasing continuous
(=)
function for all we Q.

For a “strict F time change” o and X e 8(&), let & denote the filtra-
tion (\‘7,'),»_0 and oX denote the process (cX)(¢, w) = X(o; (w), w). Let

7, denote the map X —»o0X. Let Afw) = u if oy{w) = ¢, Le[0, ), we Q.
We now list some properties of a atrict time change.
Lemme 1 : .(a) If T ¢ &) then Ar ¢ Ao F) and Sr = (175’)‘1_.
(b) A is a “strict 03 time change” and Ao F) = &.
(©) If X e 3(F) and T € RF) then o(XT) = (¢X)'7.
(d) m, is a bijection between (2UF) and &cF)), where &L is any of Lhe class
of processes defined al the beginning of this section.

(©) Let 8¢ 8 P) and fe B(F) and X be defined by X(t) = | fdS.
0
Then (@X)s) = {l (@f)d(oS).

Proof : Observe that V & = V &,,» 50 (a) follows from Lemma 10.5
20 30

in Jacod (1979, p. 312). (b), (c), (d) are casy to verify. For a proof of (e)
sce Lomma 10.8 in Jacod (1978, p. 318).

The following lemma is tho koy step in all our convergence arguments
in the later sections.

Lemma 2: (a) Let Se S(F. P). (Rtvalued), S = M+A4, M ¢ LL&P, P)
and A s A(SP), salisfy (s).

Foralli <landweQ, < My, M; >P(l, w) and | 4,|(t, w) are absolutely
(s) conti Sfunctions of 1 with derivatives bounded by one.

For fe D(&), (7R4®)7" valued), we have

Bl [ JaS)1* < 81+ {' EUf 1%, w)du,
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(b) Let 8 e &(F, P). There exisls a sirict FP time schange o suck thy
o8 satisfies (*).

Proof : (a) To prove (a), suffices to show (i), (ii) hold.
0 Bl M1 <4 § B, wld
and

(i) B| [ fd4|2< llbf E\fI1*(u, w)dsn.

Observe that

[ ] 1 . 2
B = E e 2 (E {he)

a 1 [
<IE X Esup ( jj”d)[,)lhy Cauchy-Schwarz inequality.
1=1 & V0

i=1

¢ 1 t 2
<H X X E( ff‘,dM,) , by Doob’s maximal inequality.
]

=1 gl

1 ¢
=4#Z X B[ |fyltd< 3y M;>Pby L isometry
11 @
for Stochastic integral

4 1 ]
<H Z X E | |fiy|¥u)de by condition (s).
=1 Jo1 0
¢
=4l [ E||f|%x, w)du by Fubini.
o
(ii) follows similariy from Cauchy-Schwarz inequality, Holder’s inequality,
condition (*) and Fubini.

For (b), defiine

1]
Afw) = Ex (< My, M >P(t, w)+| 44| (8 w) 2

(where 8 = M+ A as in (a)). Let oy{w) = u, if Au(w) =4 Thou it is casy
to verify that o is & strict 5P time change and o'S satisfies the condition (*).
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3. MaIN RESODLT
Tet b: Q%[0,00)x E— A4® 72! be such that (C1) holds.

n ()% peE b. ., p)e B(F).
[(ii) W2 0.5:Qx[0.t)xEis ¥ @ 84,y ® 71,, measurable.

fn

(.V, is tho smallest o-field on £ with respect to which the family of maps

fo
{p—p(s): s < Iy} is measurable.

Observe that if b satisfies (Cl), and T ¢ J()&F. then b7 also satisfies (C1)
(e t, p) = w) bTw, t A T(w), p).
>0

For b satisfying (C1), dc@(F), S and P such that S¢ 8B, P), we
consider the SDE

Xy = ¢(l)+‘;{ (., u. X)dS(w). .. (D

If X satisfies (I) we say X is a solution of (I) for (¢, b, 8) (or ¢, b, S, P) if we
want to stress that the integral in (I) is on (Q, .8, P).

Lemma 3: (a) If X is a solution of (1) for (¢. . S) and T € AF), then
XT is a solution of (1) for (¢T, bT, ST).
(b) If T, T 0. T,e3). X&@S) are such that XT" is a solution lo

(1) for (¢T“, br", ST")j‘or every n then X is « solution to (1) for (¢, b, 8).

Proof : We only have to observe that (i) in (Cl) implics that if
Ipv=pal; 0. then bl t, py) = b, 1, py) ¥ we Q. Honco

bT0r, 1, X(w)) = 67w, 1, XT(20)) ¥ X € C(F), T € A3).

() and (b) now follow from properties of stochastic integral.

Now given b such that (C1) holds; ¢, S e &F), 72 valued, such that
S{0) = u; wo define a process X “pathwise” (i.c., X(1, 1) is defined only in
terms of g(n, w), S(u, w), blw, u, p) for pe £ and 0K u <! and prove
(wider some conditions on b) that X is the unique solution of (I) for (¢, 3, S, P),
where P is any measurc s.t. Se 8(F, P). To this ond, let

a(w, ¢, p) = b{w, L+, p),
Xolt, w) = ¢(t, ).
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Define {T7}i 50, X, 7 » 1 inductively by
Tow) =0
Tia(w) = inf {t > TNw) : fa(w, ¢, X, (w)—a(w, THw), X, (w))] > 29

X w)y = ¢(t, w)+ lg a(w, Ti(w), X ,_(w)[SEATT (), w)

—SEATHw), 0)].
(obsorve that cach sum is a finite sum. so X, ¢ &2) and that for cach »
lim 7% = ).
‘
Let
Q, = {w: X,(, w) converges in £}

and

Llim X {1, w) ifwe Qy

X, w)y =
0 ifweN = Qf,

Theorem 1: Lel ¢.b, S, X as above. assume thal b satisfies (C2):

3 o locally bounded process K s.t.
(C2 [
. b, £, py)-~b(w, 8, po)il & K(t 1) py Py | % w, b pr. Py

Then for every P such that 8¢ S(#P. P), X is a solution of (I) for
(@, 6,8, P), and P(N) = 0.

Proof: Fix a Pst. SeS&FFP, P).

First, assume that ¢ and b satisfy (C3)

5 & constant K < co, such that
(C3) [, w)i < K, 160w, £, 0) < K.
[ 1B, &, py)—blew, &, pp)it & K |py—py} for all w, ¢, py ps.
‘Then we have
b, & p)I < (] +1p17)-
Fora> 1 let
Salls w) = blw, 4, X, _y(w))
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and
aalty ) = 2 alu, Th0), X, (0001, 23, gon -
Then,
Ifa- gall € 277
and

X0 = 40+ § .85,

Let o be a strict FP time chango such that R = oS satisfies the condition
(*) (Lemma 2). Observe that
of ()= 0fwirCO| = (1S sow)—Frusl@a)ll
< len"xn-u"l"u
= K|oX,—oXunl

and
@X 00 = @B+ | (0. )iR.
Hence
EleX, -oX,[;" < 80+OK(1+K)P
and for n 3 1

]
Bl0X,,—0X,|* < 81401 [ Elogufu)—og,(w)| du

< IO 12014 | B o, (0)—af o) W)

< LU+ K [ EoX,—0X, | idu).
0

Fix 0 < #, <. Then for some K, < co, we have
) = BloX ,—oX,|}

satisfies
o) € X,
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¢
) < K,(Z""«]-a[ a, (u)du) 0L i<, np L

So, by induction it follows that

al) < 2K 2™,

This inequality with Borel-Cantelli lemma implies that X (., w) converges
in E as. P, so that P(N) =0,

and E[a’X,,—ch[‘,g < {

-
T

val ) = A0, 0<1<t,

where £,(f) > 0 a8 7 — co.

Thus
I' log o) —of(u)[Pdu — 0
L]
where
fit, w) = dw, ¢, X(w)).
This implies

§ oS0 - § fuds,

which shows that X is solution of (I) for (¢, b, S, P).

Uniqueness : Let X’ bo any solution of (I). Then,
t
EloX—oX'| < 81+4IK [ B|oX —oX'|Fdu,
a

and
oX(0) = o X’(0) = ¢(0).
Henes,
EjoX—oX'|* =0 forall £ 3 0.
Thus X = X’ as. P.
Now to relax conditions (C3) on ¢,b, get UntT ©, UpeAF) st

¥m>1 ¢"" bU™(, ., 0), K’ are bounded. This can be done because
de®3); b, ., 0)e B(&) and X is locally bounded.
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Lot us observe that XY™ can be obtained from (U™, 59" $U) by the
samo formula by which X, was defincd in terms of (¢, b, S). Thus by oarlier

part of the proof; xum converges to u solution of (1) for (", 4Y™, sU=, p).

Thus P(¥) =0 ; and Xﬁ"'—o X" as. P, for all m > 1.

Thus X*™ is a solution of () for (:;Sl."‘. bu'“, §%m, P).

Lomma 3 now implies that X is a solution of (1) for (4, 6, 8, P). Uni-
queness follows from Lemma 3 and uniqueness in bounded case.

Remarks: (1) Let d=1I=1, heB(F). By taking $=0 and
b1, w, p) = h{t, w) in Theorem 1, we get a formula for evaluating the stochastio
integral | hdS pathwise, when § € 8(&, P). The same formula is valid when
$ is & right-continuous semimartingale, Sce Bichteler (1979, p. 65).

(2) If tho process K in condition (C2) is not locally bounded, but if

AT, e AF); T, 1t T. such that KT" is bounded, let X, be as in earlier cons-
truction. Let Q, = {w: X (¢ w) converges in u.c.c. topology, ¢ [0, T(w))}.

and

lim X (t, w) if L &[0, T(w)) and we €.
X(,w) =4 »
otherwise.
Then X is a continuous process on {[0. 7)) and the same proof will now imply
that X is a solution of (1) for (¢. b, 5) on the interval ([0, T)). (This is same
as saying that for any & stop time 1" such that 7° < T'on "7 > 0", XT' ig
i solution of (I) for (37”, bT’, §7”). Thus the main theorem of Protter (1077)
on existence and uniqueness follows as a consequence of Theorem 1.

(3) If wo congider the cquation Y(!) = @)+ [ FYdS, us in Emery
[

(1978, p. 248), our method gives oxistence and uniqueness of its solution when
Se¢ (&P, P). Further our solution does not depend on P.

As a consequence of pathwise integration formula, we have

Theorem 2: Let () bc an increasing family of sub o.fields of
B Fi=4,. Lo YeOF) be such that Y(0)=0. Let K (I, w) =j if
there existe 1y st 0=ty <N < .. <l KL<l | Yl)— Yl )| = 2%
0<i<ji [ YM)—Y(o)| < 277 if sty ), 0K 5 € G

A2-2
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Let
Xt w) = fim %
Let
Ulw) = inf{t > 0: X°(t -, w) # X'(t%, w)}
Let,
X(t, w) = X"t A Uw), w)
where

X, w) = X'(t_, w).

Then X is a continuous, &, adapted increasing process. Further, for
all Pst. Ye (&P, P); Xisaversionof <Y, Y >P

Proof: Fix P 8t. YeolF, P). Lot {TH,50n2> 1 be defined by
TS =0

Ti(w) = inf{t > Tiw) : | Y(t, w)— Y(Tyw), w)| > 277).
Observe that continuity of pathe implies | Y(T7)—Y(TT,,)| = 2.
Let

X, 0) = Y0, w)=2 £ Y(T ), )Yt A Thys(w), w)— Yt A THw), w)]
Then by Remark 1 and Ito’s formula,
X - Y’(l)—2j Y(8)dY(s) = < Y, Y >P(t), a8 P.
Writing
¥y = £ (YA T TUAT),
we got
X = £ (YUAT)= YA TN

Observe that K (t, w) =i if TP < ¢ < Ty
Thus,

Kt K¢ w)+1
Rl ¢ x0m < L 2EL
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and hence
X', wy = lim X (4, w).
n

But X, converges to < Y, ¥ >Pin E ns. P. Thus outside & P null set,
Uiw) = 0, X{w) = X'(w)= < Y, Y >P(w).

Further, each X, is & adapted and hence so is X’. Alxo, X' is an
increasing process. Thus U is a 3 stop time and X is itself &, adapted.
It is clear that X is a continuous process. Now &; = &, implies X ix G,
adapted. This completes the proof.

4. CONVERCENCE THEOREM
Fix a P on (Q, 8).

Following Protter we say Xm € @(F) converges locally in maximal

uadratic mean to X € &F) (X, LN X)if3 T e AD); Ty T oosuch
q

that lim E|XH—X" ~ 0 forall i 3 1.
m— x

L30M .
Let us observe that for a strict & time change 6, X ———— X in &F)

iff 0 Xpg s Xine (05), so that by first using o time change and then
proceeding as in Friedman (1975, p. 118), we can easily prove

Theorem 3: Let (b salisfy (C1), (C2) for one locally bounded

"" 1€mg =
process K. Further assume

Ol 4, 0)| € Kit, ), ¥ m: 1< mg o0
and for all N 2 1, for all bounded stop times T,
l.:rlu;u R bm(w, T, p)~ba (w, T, p)|. = 0 in Probability as m — co.
¢l &

LysQM

Let {8,,} C @3) be such that ¢, ———— ¢.

lEmE ®

Let X5 bo the solution to (I) for (¢m, b, S); 1< m < 0. then
Xm LN Xeo.

Remark : This implies Theorem 6.4 of Protter (1977, p. 258). But
by our methods we could not get convergence of solutions when the semi-
martingales converge (Theorem 6.1 of Protter, 1977, p. 256)). The difficulty
is that given a sequence {Sk} of somimartingales, it may not always be possible
to get a mtrict & time change o, such that .S satisfies (s) for all k.
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