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SUMMARY. Some oplimality reenlte have been derived on efficiency-balanced designs,
with epecial emphasis on binary designs. Heveral specifie appliestions have alsg been indicated,

1. INTRODUOTION

Although the history of efficiency-balanced (EB) designs can be traced
back to the work by Jonea (1959), the study of such designs underwent a vigo-
rous development over the lagt fifteenn yoars. Significant results on: charac-
terization problems relating o EB designs were obtained by Williams (1975),
Puri and Nigam (1975a), Kageyama (1880) and Dey, Singh and Saha (1981)
and usefnl construction procedures were proposed by Puri and Nigam (1975b,
1977), Dey and Singh (1980), Kageyama (1981), Kageyama and Mnukerjee
(1986) and Ghosh and Karmakar (1988), among others. The simplicity in
fthe analysis of BB designs has been nofed by various suthors but, with the
availability of computers, this property alone does noti seem to be very attrac-
tive and further stabistical justificabion, through optimslity considerations,
is enlled for. It however, appesrs that not much work has been reperted on
the optimality aspects of EB designs, especially in the non-equireplicate cass,
exoept for some results recently obtained by Das (1989), This point has been
noted, among others, by A, Dey in a private communication, The present
paper athompts to fill in this gap to some extent,

It 13 well-known (see o.g., Williams (1976), Dey, Singh and Saha (1981}
that an equireplicete KB design is variance-balanced and that for such designs,
particularly when they are binary, optimality results are available in +he
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literatiure (cf. Kiefer (1975)). TIn this paper, therefore, non-equireplicate EB
designs have been considered. In pratical situations, when the use of a non-
equireplicate design ie contemplated, it often happens that there are restrio-
tions on the availability of the treatments and, as such, a particular replication
patbern has %o be followed. In such sitvations, in addition to the number of
freatments, the number of blocks and the block gizes being fixed, the replica-
tion numbers may also be fized o priori from a practical standpoint. Hence
while studying the optimality aspects of a non-equireplicate EB design d*,
iti is often natwural to restrict attention tio the class 8(4*) of designs having the
same number of treatments, the same number of blocks, the same block aizes
and the same replication numhbers as d*. At this point. we deviate from the
traditional optimal design theory where optimelity iz explored within the
broader class 8y(d°) of designs with the same number of treatments, the same
number of blocks and the same block sizes as #*. This change, indeed, makes
our results theoretically restrictive. Bué still, the findings are practieally
usefuzl when, as indicated above, the replication numbers have to be fixed a
priori from extraneous considerations.

2, MAIN RESULTS

Congider an EB design 4* involving » treatments and b blooks such that
the i-th treatment ig replicated r; times in #* and the j-th blook in ¢* ha: size

by Agige; 1KjCb) Letr=(r. ..., ry), R =diaglr), ..., ), and
pe= 2 #s. 'The opbimality of 4* within the class 8{d"), as defined ahove,

=l
will be investigated. We assume the ususl fixed effects additive model with jn-
dependence and homoscedasticity of errors,

Let ¢ be the #x 1 vector of (fixed} treatment effects. Then a complete
el of B-l-normalized treatment contrasts is given by PE. where the (p—1)x v
matrix P safisfies

PRP = I, P1 =0, . 2.1

with 1 as the »x I vector with all elements unity. For any design d s S(d*),
let ¢z denote the coefficient matbrix of the reduced normal equations for #
(cf. Raghavarao (1871)). It is not hard to see that, under the design 4, the
information matrix for Pt is proportional to #(d) = PR-1C4R-1P’, and that
by (2.1),

v &
fr(Sd)) = v— & L ngy (k) e (2.2)
ful 4l
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where Ng = ((rgy;)) is the incidence mabriz of 4. For the EB design 4,
(/4s 18 proporiional o (R—n~1##), 80 that by (2.1), Hd*) is proportional 4o
the identity matriz. Hence by (2.2), along the line of Kiefer (1975) (sce also
Sinhe and Mukerjee (1882)), the following result is evidens.

Lemma 2.1 : Lek d* be an BB design and suppose

v b ¢ b
Z & Z E ndey/{rhy), e {2
Z H'ﬂ-ﬁm’(ﬂ@ > B I ity lreky) (2.8)
Jor every d e B(d*). Then d* is universally optimal in S(A*) for the estimation of
& full set of B—Y-normalized Irendment contrasts.

Binge universal opbimality implies D-optimality and sinee D-optimslity
with respoect to one complete set of treatment confrasta implios that with
respect to every oomplete sef of treatment conirasts, from Lemms 2.1 one
obtains the following result which is perhaps more important in terms of
applications,

Lemma 2.2 1 Let d* be an BB deaign and suppose the condition (2.3) holds
Jor every de 8(d'), Then d* is D-optimal in S{d*} for the estimalion of every
complete set of freaiment condrasts.

There is yef: another implication of Lemma 2.1, For any design d in S(d*),
let ¢z denote the minimum efficiency with reapect to a treatment contrast in d,
where efficiency is relative to the corresponding (unblocked) completely ran-
domized design with the same replieation numbers. A #ypical treatmens
contrast is of the from E'Pf, where P i3 as defined above and E is & {(v—1) 1
non-null vector. Henoe by (2.1), for a connected design d e S{d"),

$e¢ = ;ﬂil; EPRPEE POFPE = A POTP N = Anu(Hd)), ... (2.4)

where for any square matrix 4, Ay{d) (Apn(d)) denotes ifs maximum
(minimum) eigenvalue and 4~ stands for any generalized inverse of A.
Trivially, for a disconnected design d{e 8{(d")), dg = 0. Bince universal
optimality implies XE-ophimality, the following result is ovident from
Lemma 2.1.

Lemma 2.3 :  Led d* be an BB design and suppose the condition (2.8) holds
for every de 8(ad*). Then Qas 2 @4 for every de S(dY).

Note that the oplmaliby criterion in Lemma 2.3 is analogous to the
E-optimality criterion. In order to indicate specific applications of the aboye
lemmas, we now consider EB designs with exacsly two distinet replication

numbers and exactly two distinet block sizes-—most of the EB designy reported
in the literntore are of this type. With such an EB design J*, one can find
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non-empty pets Gy, Gy, T, T, such that (i) ¢, G, provide a disjoint partition of
(1,2, ...,9} ; Py, Ty provide & disjoint partition of {2, ...,8), (i) ry =
fordeGy;r=rforie@y ;¢ # " (g =FforjeT ;ly=k"forjely;
k' 7 k7. Without loss of generality, let

v < R oo (2.0)

For eovery dedS(d*), let Ap¥)= E & ngy; 8 & =1, 2. Aa every
ety 76T,

d{eS(@*)) has the same raplieation numbers and the same block sizes as J*

writing A+ 1 = f3 for the sake of notational simplicity, it followa from (ii} and

(iii) above that for ded(d*),

b D = o —fy, BP D = b —fp, RGP = (b—p) K —wr' fs, .. (2.6)

whera w and u are the cardinalities of @&, and 7', respectively (0 < w < v,
0 << wu<_b). Hence for every 4 e 8(d*),

b b L b
22 nlyllik) > DO mayflecks)
§=1 4=1

fml fal

= {F &y g+ (%" Y Lor —fe) Hr" Ry Sk —f3)
Ry b —ulk” —wr' +fg)

= a+ (%’*;“) (%_El,) Jas o (2.7)
by {2.6), where A is the same for all designa in 8{d*). Note that equaliby holda
in (2.7) provided 4 is binary and that by (2.5), the coefficient of f; in the
right-hand member of (2.7) is positive. Furthermore, by {2.6), fz 3> max
{0, wr'—{b—u)k"} = f), say, for each de8(d*). Hence by (2.3), (2.7),
the following result holds.

Theorem 2.1: Let d* be a binary BB design such that fp = f,. Then
a* i3 optimal in S{d*) in the senses considered in Femmaa 2.1--5.3,

3. APPLICATIONS

The results in the last section, particnlrsly Theorem 2.1, are helpful in
exploring the optimality of a large variety of EB designg available in the liters-
ture. Tn order to save space, we cannot deal with each and every available

EB design. However, it appesrs thet the examples presented below have a
fairly wide coverage
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Example 3.1, Let N,, N, be incidence matrices of balarced incomplote
biock {BIB) designa with parameters v, b, vy, &, Ay and 2, by, 7y, £u, A, res-
pectively. Supposo there exist positive integers x, y such that

xr _ ﬁ’j{iﬁ'i' 1}_1511%_’,1 — "'n{ﬂ”‘ﬂ k "IH“EJ‘E} (3.1)
¥ kalry—A) kgryie—ky) o .

Then, as shown in Corollary 2.4 in Kageyama (1981) {(see alsgo Theorem 5 in
Puri and Nigam (1977}), the design 4" with incidence matrix

v (Iﬂ,1 ...151 0. )
N, N,..N,

"l-_....v..—......a"k_.__v.._-..-i'

x times o fimes

is EB with paremeters v = #-41, b = ab, +-yb, vy = ab, oT ar,-tyry, & = k1
or k; (here for a positive infeger a, 1, is the o X 1 vector with all elements unity),
By (3.1},

' oby—(ery +yra) = yrdlly—i— 1)/ (R k),

g0 that xb, is groater than, less than or equal to wr, +yv, decording as k, is grea-
ter thar, tess than or equal to k,-+1 respectively. If %, = k,--1, then 4*
becomes & variance-balanced design. Consider therefore the case &y =& &, --1.
If &y << &+ 1, then using the notations of the last saction, i is easy to see that
== 1% =gyby, ' = aby, 2* = k;+1, sc that f, = 0. Ako, fiu = 0. Further-
more, ¢* is binary, Hence by Theorem 2.1, d* ia optimal in S(d*) in the senses
considered in Lemmas 2.1—2.3, On the other hand, if %, > %, +1, then
wes B u=2ah, r=antyr, " =k, f,=wvr,=fn, and as before the
optimality of d* follows.

Exomple 3.2. Let N, be the incidence metrix of a BIB design with para-
metera ¢y, b,, ry, &y, A; and puppose there exist pogitive integers x, y such that

¥y = A0k 1—>,. o 13.2)
Then, as shown in Corollary 2.5 in Kageyama (1981}, the design 4* with in-

cidence maftrix
e (IFL“' lm 0 ...0 )
Iﬂl"‘ IIIFl N, ... N
PRSP W

x times ¥ fimes

is EB with psramters ¢ = o1, & = oo L-yb,, vy = 20, or yry-+2, =2
or I, (here for a positive integer a, I; is the g x a identity matrix). Conaider
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tho case & > 2 (if &, = 2 then it can be geon that 4* reduces %0 a BIB design
for which optimality reanlts are well-known}, Then from (3.2), it follows
that xwy = yri+x Hence w =12, w=12v, ¢ —gr+2, k' =k, #0 that
fo=2vy. AlS0 fgr = zv; and d* is binary. Hence by Theorem 2.1, d* ia opti-
mal in S{d*) in the sensea congidered in Lemmas 2.1—2.3.

Example 3.3. Lot N, be as in the last example and leb there exist positive
infugers #, ¥ suoh that
efy = Aylort —ry(e—1). e {8.3)

For positive integers e, o', let Jg 40 = 15l,., Jg = Ja 4. Then ag shown in
Corollary 2.8 in Kageyama (1881), the degign d* with incidence matrix

yo ()
Jﬂl_Iﬂl aa J'H],_I'F.I 'N].I'“*JNI
! —t 'l.__..,r.__-l'

kol
a timen i times

is EB with paramebers v = ¢, 1, b = xo,1yd,, vy = ov, or z{n,—1)+yn,
ky =k or v. Clearly, &, < »;, and by (3.8), v, < z(v,—1}+yr,, Hence
w=1, a=yb, =20, ' =9, f,=0 Also fypr = 0 and 4* is binary.
Hence us in the iust example, the optimality of d* in 8{d*) followa.

Example 3.4, Let N, be in Example 3.2. Then, as shown in Kageyama
and Mukerjes (1986) (sse alao Das and Ghosh (1985)), the design d* with inci-

dence madrix
N — N, Ji-'l. r—4,
l; 1 | 3

is EB with parameters 2 = »,4+1, b = by+r—A;, n=2rn—4, or B, k=
k,+1ory,. Congidering the non-frivial cage b, +1 < v, one obfaina w == 4,
w=by, ¥ =2r—Ay, ¥ =0, fy=wr. Also, fyp» —wn end &7 is binary
and aa before the optimality of d* in S(d") follows.

Exgmple 2.5. Lot NV, be as before. Assume thab v, = 2A;. 'Then, &a
shown in Corollary 2.6 in Kageyama {1981} (goe also Das and Gthosh (1085)),
for an arbibrary positive integer y, the design d' with incidence mairix

N == (Nl Jﬂ:,ﬂ)
Y

is EB with parameters v == ¥ 1, b = b}y, g = ry or Y, by = &y, or 9+ 1.
CIBEI'].jl', w=1, ﬂ:ﬁl.?":‘—*y,k'=ﬂ1+1,fn=ﬂ- Bhlﬂﬁf¢i=0 and. # ia
binary, the optimality of d* in 8(d*) again follows by Theorem 2.1.

3 3-11
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Bzomple 3.6. Lot N, be as in Example 3.2 and assume that y = ry{p, 4 1}
(vy—2k;—1) is a positive integer. Then, following Kageyama and Mukerjeo
(1986), the design d* with incidence matrix

N = (Ni JI.a':'l-llﬂ')
o1

is EB with parameters v = v;-+-1, b = by, vy = ry+y or by, &y = k-1
o wtl Claly, w=v, w=b, ¥ =rity, b —o+l, f=max
(0, yr;—¥). Butfp = oyr,. Hecne fi > f,, and the sufficient condifion for
optimalitty given by Theorsm 2.1 fails. However, one can directly check the
eondition (2.3). After some tedious algebra, ik can be seen that (2.3) holds
(and hence ¢* is optimal in §(d") in the senses congidered in Lemmas 2.1—2.3)
if, in parficular,

of—Buy (3, + 1)+ (@ — ky+2) < O. . (34)
Fhe condition (3.4) is satisfied for practically useful values of o, (i.e., when g,

is nob 100 large). The derivation of (3.4) is omitbed here buk may be obsained
from the authors.

It appears that the above examples provide a reasonable coverage of the
binary EB designs available in the liferature—in particular, they demonstrate
that many of tho binary EB designs given by Puri and Nigam (1977), Kago-
yama (1981), Das and Ghogh (1985) and Kegeyama and Mukerjee (1986) are
optimal in the senses considered in Lemmas 2.1—2.3. It may be noted
that the EB designs dus o Dey and Singh (1980) and Ghosh end Karmaker
(1988) are either non-binary or, whon binary, heoome equireplicate and hence
varianice-balanced (of. Kageyama (1982)); therefore, these designs have not
besn considered here.
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