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genes from different data sources having different observational

scales; 2) separately rescoring the similarities, obtained from

different data sources, in the common scale of PPV, using yeast

GO-Slim: Process annotations; 3) power and weight coefficient

estimation and then integration of the PPVs, computed from

gene similarities for different data sources, through the proposed

scoring framework, WPBS, by adaptively maximizing the PPV

of the score itself using yeast GO-Slim process annotations [6]

of known genes, and 4) predicting functions of classified as

well as unclassified genes from clusters, obtained by applying

k-medoids algorithm on the proposed score. The function of a

gene is predicted by calculating the functional enrichment of

the cluster using MIPS annotation.

A. Methods for Measuring Similarities Between Genes for

Different Data Sources

Different data sources and their respective pair-wise gene

similarity extraction techniques are described in this section.

1) Phenotypic Profile: Brown et al. [1] first used pheno-

typic profiles for functional analysis of genes in budding yeast

by hierarchical clustering of the quantitative sensitivity profiles

of the 4756 strains with individual homozygous deletion of all

nonessential genes. From the clustering solutions, functional

predictions related to DNA repair, damage checkpoint path-

ways, and other functions, are made for some unclassified genes.

Analysis of the phenotypic profiles places a total of 860 genes

of unknown function in clusters with genes of known function.

These complete phenotypic profile data are downloaded from

the supplementary material of [1] and used in our investiga-

tion as one of the data sources. Pearson correlation is used as a

similarity extraction technique for phenotypic profile [1].

2) Gene Expression: To identify relationship among genes,

involved in multiple biological functions or processes, many mi-

croarray experiments with different biological origins are con-

ducted world wide. A key goal of microarray experiments is to

extract the fundamental patterns of gene expression inherent in

the data. In this investigation, the widely studied all yeast mi-

croarray data [2], [16], having 6221 genes and 80 time points, is

used for microarray gene expression analysis. We use centered

Pearson correlation for extracting gene expression similarity as

mentioned in the previous section.

3) KEGG Pathway: The KEGG database [4] provides path-

way information for genes involved in 221 pathways. This infor-

mation can be used as a reference for functional reconstruction.

For each of these 221 pathways, all the protein sequences except

yeast proteins, are downloaded from Protein Information Re-

source (PIR) [3]. Profile vector for each protein in yeast is com-

puted by comparing its sequence across 221 pathway databases,

using BLAST [17]. The pathway profiles of genes, computed

using KEGG pathway databases, are denoted as KEGG profiles.

To find the similarity between two genes using KEGG profiles,

we used the ratio of dot product value and OR value between

two profiles. Hence, the similarity matrix has a highest similarity

value of 1.

4) Protein Similarity Through Transitive Homology: Intu-

itively, one can assume that all the protein relations arising

from direct protein similarity search is available in the litera-

ture and will not help in predicting functions for unclassified

genes in a widely studied organism like yeast. On the contrary,

the transitive homology detection method [18] works by search-

ing the query sequence against the database with a conservative

threshold to find the closely homologous sequences and us-

ing these homologous sequences as seeds to search the database

to find remotely homologous sequences with a less conservative

threshold. For example [18], consider the transitive homology

between sequence a and sequence b through the third sequence

c. The E-values between sequence a and sequence c, sequence

c and sequence b, as well as sequence a and sequence b are

0.01, 0.005, and 20 respectively. The protein similarities Ba,c ,

Bc,b , and Ba,b are 0.8, 0.9, and 0.2 respectively. The similarity

between sequence a and sequence b cannot be detected with

their direct E-value. However, the value of Ba,b is assigned

to 0.8 × 0.9 = 0.72 because of the transitive sequence similar-

ity. In this investigation, homology comparisons are performed

among target proteins and 3 766 477 proteins downloaded from

PIR [3], by using BLASTP in BLAST [17].

5) Protein–Protein Interaction: Protein interactions assem-

ble the molecular machines of the cell and represent the dy-

namics of virtually all cellular responses [19]. While, genetic

interactions reveal functional relationships between and within

regulatory modules, protein–protein maps reveal many aspects

of the complex regulatory network underlying cellular func-

tion [8], [20]. Large datasets of protein and genetic interactions

in a consistent, well-annotated format is essential for interro-

gation of gene function. In this regard, manually curated cata-

logues of 238 313 protein–protein interactions are downloaded

from BioGRID [5] on February 2011 and binary interactions

(1 or 0) are used for indicating an interaction is present or not.

B. Computing PPV From Different Data Sources

The five datasets, used in this investigation, are accompanied

by their own way of extracting gene similarities (such as Pear-

son Correlation for phenotypic profile) and they have different

observational scales. So, a unified observational scale is needed

to integrate these datasets. This can be achieved by rescoring

the similarities in the common scale of PPV and using yeast

GO-Slim process annotations of genes in the SGD database [6].

As mentioned earlier, according to yeast GO-Slim process and

MIPS, there are 6069 and 6130 annotated genes (ORFs) for

yeast of which 4387 and 4737 genes, respectively, are classified

into some biological or functional process and the remaining

genes are unclassified. The PPV at a particular similarity value

(computed from a data source), using gene annotations, is de-

fined as [12]

PPV =
number of gene pairs sharing common annotations

total number of gene pairs
(1)

where gene pairs sharing common annotations are pairs of genes

having an overlapping yeast GO-Slim process annotation and

the total no. of gene pairs is the available gene pairs at a particular

similarity value for a particular data source. Fig. 1 compares the

similarity values obtained from different data sources in terms
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Fig. 1. Comparison among the data sources in terms of PPV versus the simi-
larity values.

TABLE I

DISTANCE CORRELATIONS AMONG DATA SOURCES

of their PPV. The protein–protein interactions (not shown in

Fig. 1) are binary relations and have a constant PPV of 0.69 at

a similarity value of 1.

C. Evaluation for Statistical Dependence Among Data Sources

A multisource integration framework is meaningful, when

these sources are independent of each other. In this regard, we

checked the statistical dependence of every data source with re-

spect to other data sources, using distance correlation. Distance

correlation is a measure of statistical dependence between two

random variables or two random vectors of arbitrary, not neces-

sarily equal dimension. Its important property is that this mea-

sure of dependence is zero if and only if the random variables

are statistically independent. Its maximum value is 1, indicating

an absolute dependence. The distance correlation between two

variables, X and Y, is defined as

dCor(X,Y ) =
dCov(X,Y )

√

dVar(X)dVar(Y )
(2)

where dCov(X,Y) is the distance covariance between X and Y

and dVar(X) and dVar(Y) are the distance variances of X and Y,

respectively.

Table I summarizes the results obtained by calculating the

distance correlations among different data sources. Here, PhP,

GE, KP, TH, and PPI indicates phenotypic profile, gene expres-

sion, KEGG pathway, transitive homology, and protein–protein

interaction, respectively. From the results, it is observed that the

off diagonal elements are close to 0.1 or 0.0, and indicate that

the dependence is negligible among data sources.

D. New Framework for Data Source Integration

The scoring of different data sources, based on the unified

observational scale of PPV’s (see Section II-B), allows us to di-

rectly compare and integrate the different types of datsets. The

PPV reflects the accuracy of datasets, but do not provide any

information about relative power and weight estimate of one

data source in presence of the other data sources. In this regard,

a new score, where PPVs computed from phenotypic similar-

ity P , gene expression similarity M , KEGG pathway profile

similarity K, protein similarity through transitive homologue

B, and protein–protein interaction information I between two

genes x and y are integrated through weights a, b, c, d, and e

and power estimates ap , bp , cp , dp , and ep , respectively. This

score is referred to as WPBS and is defined as

WPBSx,y =
a.P

ap
x,y + b.M

bp
x,y + c.K

cp
x,y + d.B

dp
x,y + e.I

ep
x,y

a + b + c + d + e
(3)

where, a, b, c, d, e, ap , bp , cp , dp , and ep , are varied within range

0 to α in steps of 1 to find a combination that maximizes the PPV

of WPBS for a user defined number of top gene pairs. For each

set of values of power and weighting coefficients, the top gene

pairs are identified with a gold standard cutoff value, determined

from KEGG pathway profiles, which provide 25 110 gene pairs

with similarity value 1 (so sorting gene pairs, corresponding to

their similarity value, is not possible and top 25 110 pairs are

treated as a single group) and constant PPV of 0.87, using yeast

GO slim process annotations. The final values of a, b, c, d, e,

ap , bp , cp , dp , and ep , are found to be 1.3, 3.7, 1.0, 30.1, 1.2,

8.1, 1.4, 3.5, 7 and 4, respectively. The following can be stated

about the score:

1) 0 ≤ WPBSx,y ≤ 1
2) WPBSx,y = WPBSy ,x (symmetric).

In WPBS, the rescored similarity spaces, available from dif-

ferent data sources, are adaptively transformed using a set of

power and weight coefficients. Intuitively, more important sim-

ilarity spaces should be assigned larger weights and smaller

powers (as PPVs are less than 1) than less important ones, while

irrelevant ones should be assigned zero weight. Some typical in-

stances in the exhaustive search process, showing the variation

of PPV of WPBS for different sets of power and weight coef-

ficients (assigned to PPVs of different data sources), ranging

from 0 to 100, are shown in Fig. 2.

III. RESULTS

We now use MIPS October 2009 classification to evaluate the

performance of WPBS as yeast GO-Slim process was used for

determining the weights and power coefficients. First, we com-

pare the gene pairs, obtained from various integration methods

and data sources, and then we predict the functions of unclassi-

fied genes from clustering solutions. Evaluation of gene pairs,

based on independent training and test set, is also performed.

A. Comparative Study

Here, we compare the PPV of gene pairs identified by the pro-

posed framework, WPBS, with those identified by our previous
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Fig. 2. Comparing the values of PPV using WPBS, by varying weight and power coefficients of PPV of different data sources for top 25 110 gene pairs. When
a particular coefficient is varied the others are kept constant at the values shown in the figure.

“biological score” in Ray coworker, 2009, [15], Lee et al.’s prob-

abilistic network (top 34 000 gene pairs downloaded from the

website [21]), Lee et al.’s probabilistic network using the same

datasources as in WPBS, and individual data sources, using

MIPS annotations (see Fig. 3). We sorted the similarity values

obtained from WPBS, other scores and datasources, separately,

in descending order, and drew a curve for top gene pairs verses

PPV from the sorted data for each form of data source. The

PPVs for protein–protein interactions has a constant value of

0.69 and not shown in Fig. 3. It is evident from Fig. 3 that the

curve of WPBS is above the other curves, achieved higher PPV,

better than related methods and data sources, and the top 25 110
gene pairs obtained from WPBS has a PPV greater than the gold

standard KEGG pathway profiles. Moreover, the performance

of WPBS is also found superior to the other scoring frame-

works for top 100 000 gene pairs that can be used further for any

gene network or gene function prediction. The top 100 000 gene

pairs predicted by WPBS with PPV above 0.78 are available in

http://www.isical.ac.in/∼shubhra/WPBS/toprelationwpbs.txt in

tabular (tab delimited) form.

B. Gene Function Prediction Based on Clustering Results

In this investigation, genes are clustered by applying k-

medoids algorithm on WPBS. The k-medoids clustering is one

of the simplest partitive unsupervised algorithms that partitions

the data into k clusters. The main idea is to define k medoids,

one for each cluster, and chosen from the datapoints. The next

step is to assign each data point to the nearest medoid. When all

Fig. 3. Comparison between the WPBS, related methods, and individual data
source in terms of PPV (using MIPS October 2009 annotations) versus the
number of top gene pairs.

the points are so assigned then, k new medoids are recalculated

from the data points of each cluster by minimizing the squared

error, involving the distance between points, labeled to be in a

cluster, and a point designated as the medoid of that cluster. The

whole process is repeated until no more changes are observed in

the locations of all the k medoids. For simplicity, the value of k

in this investigation, is chosen as 510 as there are 510 functional

categories in MIPS and the results for one of those instances,
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TABLE II

TOP 39 FUNCTION PREDICTIONS OF UNCLASSIFIED GENE (ACCORDING TO MIPS AND SGD 2009 CLASSIFICATION) AT P-VALUE LESS THAN 10−16

having the highest PPV, are reported. To predict a genes function

from the other genes in its cluster we use the following steps.

S1) 192 clusters are identified with functional enrichment in

one or more categories by selecting P-value less than

10−5 , using 510 different MIPS functional categories,

downloaded on October 2009. Clusters with P-values

greater than 10−5 are not reported.

S2) From these functionally enriched clusters we predict the

functions of 2877 classified genes and 334 unclassified

genes by assigning the function related with the smallest

P -value.

S3) Finally, we use the MIPS November 2011 classifica-

tion to check if classification is now available for the

genes, unclassified in MIPS October 2009 classifica-

tion but now functional predictions are made using our

method.

We divided our predictions in three sets, based on P -value

cutoff, which one can modify according to the desired level

of statistical significance of the predictions. While, the first set

contains functional predictions of 39 unclassified and 492 clas-

sified genes, predicted with 0.91 PPV using a P-value cutoff

10−16 , the second set contains functional predictions of 99 un-

classified and 1088 classified genes, predicted with 0.85 PPV

using a P-value cutoff 10−13 . The third set contains functional

predictions of 334 unclassified and 2877 classified genes, pre-

dicted with 0.75 PPV using a P-value cutoff 10−5 . These results

can also be regenerated by using our MATLAB code, available

at http://www.isical.ac.in/∼shubhra/WPBS/WPBS.html.

Table II summarizes the predicted functions for 39 unclas-

sified genes from 12 clusters in the first set. For each of the

predicted functions, the related p-values, number of function-

related genes in the cluster and the genome, is also shown in the

table. The related genes within each cluster and the PPV values

(between target gene and other cluster members) arising from

various data sources are available in tabular form (tab delimited

file) at http://www.isical.ac.in/∼shubhra/WPBS/unclassified1.

xls. Tables with similar format, containing the predicted

functions of unclassified yeast genes in set 2 and 3, are available

at http://www.isical.ac.in/∼shubhra/WPBS/unclassified2.xls

and http://www.isical.ac.in/∼shubhra/WPBS/unclassified3.xls,

respectively. The predicted functions for classified genes in set

1, 2, and 3 are available at http://www.isical.ac.in/∼shubhra/

WPBS/classified1.xls, http://www.isical.ac.in/∼shubhra/WPBS/

classified2.xls, and http://www.isical.ac.in/∼shubhra/WPBS/

classified3.xls, respectively.

From our prediction results for unclassified genes in Table II,

we find that the gene YIL041W shows functional enrichment in

MIPS category “CELLULAR TRANSPORT.” Our examination

revealed that the protein, coded by this gene, is a BAR domain-

containing protein that localizes to both, early and late golgi

vesicles, and required for vacuole biogenesis and fluid-phase

endocytosis [6]. Now, endocytosis is one of the processes, re-

quired for cellular transport, by which cells absorb molecules by

engulfing them. Therefore, involvement of YIL041W in cellular

transport is a likely one.

The gene YHR219W has 28 cluster members and 14 out of

28 genes show functional enrichment in MIPS category “DNA

topology.” Our analysis predicts that YHR219W’s involvement

in “DNA topology” is likely due to its relation to helicase pro-

teins [6] which, it encodes within the telomeric Y’ element.

These proteins play important roles in various cellular processes

including DNA replication, DNA repair, RNA processing, chro-

mosomal segregation, and maintenance of chromosome stabil-

ity. It has been well known that the amino acid sequences of



RAY et al.: WEIGHTED POWER FRAMEWORK FOR INTEGRATING MULTISOURCE INFORMATION: GENE FUNCTION PREDICTION IN YEAST 1167

Fig. 4. Comparison between the WPBS and related methods in terms of PPV versus the number of top gene pairs using cross-validation procedure. To compare
the performance of cross-validation results with the proposed score (WPBS), the top curve is provided. The top curves is also presented in Fig. 3, and is provided
here for convenience. For the 2nd, 3rd, and 4th curve in the present figure, half of the genes with yeast GO-Slim process annotations are used to determine the
power and weight coefficients, and the other half of the genes with MIPS annotations are used to evaluate the gene pairs. The curves 5th, 6th, and 7th, show the
performance of some data sources when half of the genes with MIPS annotations are used to evaluate them.

these proteins contain several conserved motifs, and that the

open reading frames (ORFs) that encode helicase-related pro-

teins make up several gene families [22].

The gene YPR127W, along with its cluster members shows

functional enrichment in MIPS category “C-compound and car-

bohydrate metabolism.” According to SGD, this gene is dif-

ferentially expressed during alcoholic fermentation, a biologi-

cal process in which sugars (C-compounds), such as glucose,

fructose, and sucrose, are converted into cellular energy and

thereby, produce alcohol and carbon dioxide as metabolic waste

products. Hence, our prediction for category “C-compound and

carbohydrate metabolism” is a highly possible one.

Out of 39 unclassified genes, YCR070W is now renamed

as YCR069W, and classified within category “protein fate” in

MIPS. Our functional prediction, “modification by phosphoryla-

tion, dephosphorylation, autophosphorylation”, is a subcategory

of the function “protein fate” in MIPS. In SGD, YCR070W has

been deleted and and merged with YCR069W.

C. Evaluation Based on Independent Training and Test Sets

For evaluating the results further, we randomly separated the

set of 6072 genes into two disjoint training and test subsets

of 3036 genes each. While, the training subset of 3036 genes

is chosen randomly from yeast GO slim process annotations,

the the test subset of 3036 genes is chosen from MIPS annota-

tions. The training set is then used to determine the weight and

power coefficients and the independent test set is used to eval-

uate the gene pairs. The values of the coefficients are observed

to be close to the values mentioned in Section II-D, which, are

obtained using the full set (6072) of genes. The process is re-

peated 10 times and the cross-validation results are reported.

Fig. 4 shows curves for one of the cross-validation procedure

and the curves demonstrate that WPBS performs better than Lee

et al.’s probabilistic network, our previous integration method

and individual data sources.

IV. CONCLUSION

In this investigation, we proposed a weighted power method,

where, the weight and power coefficients for different data

sources are determined in a systematic and adaptive manner

using functional annotations of classified genes, available from

yeast GO-Slim process annotations. Functional categories of 39,

99, and 334 unclassified yeast Saccharomyces cerevisiae genes

are also predicted with 0.91, 0.85, and 0.75 PPV, respectively.

We also want to mention that, function prediction of some

dubious ORFs and pseudogenes is a limitation of our ap-

proach and all other computational approaches, which involve
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methods, based on similarity searching. In this regard, we

computationally filtered out all pseudogenes and dubious ORFs

from our prediction results by preparing a list of them from the

file orf_coding_all.fasta, available at ftp://ftp.yeastgenome.org/

sequence/S288C_reference/orf_dna/orf_coding_all.fasta.gz.

Hence, our computational method will never be able to pick

a pseudogene or dubious ORF as a candidate for function

prediction. It is also evident from the experimental results that

WPBS can be used for efficient gene function prediction.
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