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ON THE ADMISSIBILITY OF POLYNOMIAL ESTIMATORS
IN THE ONE-PARAMETER EXPONENTIAL FAMILY
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SUMMARY. Karlin (1958), Ping (1964), Gupta (1966), Zidek (1970), and Ghosh and

Meeden (1977) dealt with the problem of finding litions for issibility of linear
in the P § ial family. ln thu paper it has been shown that follnw
ing Karlin's argument one can also find i for admissibility of pol,
i for estimating linear binati of the raw moments.

1. INTRODUCTION
Consider a random variable X whose distribution admits a density
function p(z, w) = f(w)ez® with respect to some o-finite measure x on the
real line. Here ‘w' represents a typical point in the parameter space
Q={w: [exdu(x) < oo} It is well known that Q is an interval (w, w),
which may be finite or infinite.

Karlin (1958) investigated the conditions for admissibility of estimators
of the form X for estimating the moean Ey(X) = — f'(w)/f(w), under squared-
error loss.  Sufficient conditions for admissibility of aX+b for the same
problem were later obtained by Ping (1964) using the Rao-Cramér inequality
and by Gupta (1966) following Karlin's argument. Zidek (1970) gave suffi-
cient conditions for the admissibility of X when the parametric function is
any arbitrary piece-wise ti function y(w). Recently, Ghosh and
Meeden (1977) used Karlin's arguments to derive sufficient conditions for the
admissibility of aX+b, for estimating the same parametric functions as
Zidek's.

The motivation for the present investigation stems from the following
question : what can be said about the admissibility or otherwise (under
squared-error loss) of estimates which are not necessarily linear ? This
question is in general very hard to be dealt with for an arbitrary y(w). In
what follows, we have practically restricted lves to p tric functi
of the form ym(w) = CpEip(X™)4...+C,Ey(X) and estimators of the form
Om(X) = amX™+-...+-a,X+a,, and have established, following Karlin's
technique, sufficiont diti for the admissibility of dm(X) for estimating
¥m(w). 1t is domonstrated that the joint tail—behaviour of a certain prior
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and of a linear tion of the raw of X determines the admissi-
bility of 6p(X). The technique adopted is general, as we shall observe later,
but the actual algebra gets involved and clumsy so much so that we have
actually stated in the main theorem sufficient conditions for m = 2, although
exactly similar conditions have been obtained also for m = 3 and 4.

2. HEURISTICS : HOW DOES THE PRIOR LOOK LIKE %

hw) = BuX) = —f'(w)| Alw),
then it turns out that
Ey(X?) = R¥(w)-+R' (w),

Ey(X3) = k3 (w)+3h(w) ' (w)--1"(w).

Yiw) = el (w)+c kw4 h(w)
be the parametric function to be estimated and
8X) = agt+a, X +a,X*
its estimate. Note that y(w) is slightly move general than y,(w). We assume

that the prior is absolutely continuous with respect to the Lebesgue measure
on Q and denote the Radon-Nikodym derivative by m(w).

If 8(X) were to he gencralized Bayes with respect to m(w) for estimating
¥(w), then one has

8(x) = [ y(w)ez®p(w) m(w)dw| [ em0f(w) m(w)dw,
for every x, where the integrals are over Q = (w, w).
Let

polw) = m(w)p(w), for we Q.

Henco,
8tx) [ e¥pyw) dw = [ y(w)eaw pyw) dw

= (a2 +az+ay) [ e pyw)dw = [ y(w)e® py(w) dw. we (1)
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Now forw<ae<b<w,

[}
I exp(zw) po(w) dw = [e*p(b)—e=2pq(a)]

—x f ez p(w) dw e (2.2)
e
T o) duo = [epy(b)—ex@ pifa)]
—x[e2t py(b)—e2® po(a)]
b
a2 [ e7® pyw) dw. o (23)
a

Heonce, if the quantities [¢20 py(w)—e22 pyw)] and [ex0py(w)—e22 pyfw)] are
zero, then from (2.1) one gets

ay J e2 py(w) dw—ay | ¢ pyw) dw-+ay [ e pyfw) dw

= [ yw)erpa) dw. (24)
Honce, by the uniqueness property of the Laplace transforms, we have
aypq(w) —aypp(w) = (y(w)—ao) pofw), ¥ w € (W, w). (2.5)

It is clear from (2.5) that a solution to it for an arbitrary y(w) is difficult
to find out, unless we confine ourselves to linear estimators, as in Ghosh and
Meeden (1977). In view of the specific form of 7(w) under consideration,
we suggest the following form of py(w), namely,

polw) = exp {dyw+d, [ h(w) dw}

where h(w) is any differentiable function and dy, d, # 0 are constants to be
suitably chosen. Then one has

Pow) = {di+doh(w)} pow),
Po(w) = [{dy+doh(w)}2+doh ()] pofaw)- o (2.6)
Hence, from (2.5) and (2.6), wo get

(03420, d k|- 0 B2+ aydoh' —ay(dy +doh) +ag = cgfid+ehtogh. .. (27)
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Clearly, the following are sufficient for (2.7) to hold for every w :

ayd§—c, =0, 2aydydy—ady—c, =0,
(2.8)

ayf}—aydy +a, = 0, gy —0o = 0.
Henceforth, we shall refer to the above system of equations (2.8) as the

‘Consistency conditions’.

3. THE MAIN RESULT

Theorem : Let X have a densily given by p(x, w) = f(w)e*¥, with respect
to some o-finite measure u on the real line. Lel the natural parameler space be
denoted by

Q= {w: [ ex¥dulx) < oo} = (w, ).
Consider any differentiable function h(w) on Q. Let

Y00) = egl¥a0) +e;hlw) g ().
Let
polt) = expldsao-+dy § hw) du,

where [ h(w)dw is a primitive of h(w), and dy, d, # 0 are real numbers. Let
m(w) = f-Nw)py(w), for weQ.
Let
&X) = a,X*+a,X+a,,
where ay, a,, a, are real numbers.

Suppose ay, ay, ay, dy, d, subject the consislency conditions (2.8) are such that

(i) Y w)fYw)dw = 0,  for w<b <,

T—E

¢
(i) [ l(w) fNw)dw =0, forw<c<w,
w

where f(w) is as in (3.1). Then &(X) is an admissible estimator of y(w) under
squared-error loss function,



ADMISSIBILITY OF POLYNOMIAL ESTIMATORS 133

Proof : Suppose &(X) is not admissible. Then there exists another
estimator 4'(z) such that

Eyf8(X)—y10)? < Euld(X)—ylw)f* ¥ w,

with strict inequality for at least one ‘w’. In terms of integrals (3.1) can be
written as

1 (8'(2)—y(w))* e2B(w) du(z) < 1 (8(2)—y(w) %eBx)dpu(z), W we ... 13.1)

&= (8(2)— ()2 plwNdplz) < 2 [ (8()—8'(2))(8(z)—(yw) e flw)dpu(z),
YweQ. . (32)
Hence, for (a, b)) C (w, ),

T 11 (@)= 8 emopruo)duta)intudo

a

<2 T L1 ()8 (@) (8(a) — yiae)) e29Btaw) dpta)two) do
a

b
= 2 [ [3()— ') { £ (01)—(w)) epyw) dw } dutz). . (33)
on changing the order of integration.
The inner integral is

b b
I (8@)—y(w)) ex¥pyw)dw = (ax*+a,x-+ay) [ epyw)dw
a a

)
— [ (coh®(w) +c,h(w) +coh' (w)e¥pyw)dw. .. (3.4)

Now using (2.2), (2.3), (2.6) and the consistency conditions (2.8), straightforward
computations yield
1]
[ (3(@)—y(whexplaw)pywidw
a
= exp(@b)py(b)[et;x+cts+agh(b)]
—oxp(xa)py(a)a, o, +azh(a)] ... (3.6)

where @, = a;, ay = ay—aydy, ag = —ayd,.



134 ANIRBAN DAS GUPTA AND BIMAL KUMAR SINHA
Setting
T(w) = [ (8(x)—0&"(2))? exp(zw)A(w) dple),

we have from (3.3), after some standard manipulations (Kariin, 1958)
) - e e
| Tw)n(w)dw < K[V TE)(b)Va®)f0) 4V T(e)mla) va(a)fa) .. (36)

where K is a constant and
f(w) = By, X +ato+ash(w))?. . (37
Proceeding now as in Karlin (1958), the proof of the theorem is completed.

Remark 1: To justify our claim given in the introduction that the
technique of proof works for any general m > 1, it is enough to note that
it is indeed possible to carry out the same matching procedure as in (2.8) for
every m > 1. The reason for this is that, for an arbitrary m > 1, the funda-
mental equation analogous to (2.5) would involve in the LHS quantities
Plpe for j=1,2,...,m. A careful analsyis now shows that p@/p, can
be expressed as the j-th raw moment of a certain distribution whose first j
cumulants are dy+dyk;, dk,, ... ,dyks Tespectively, where kq's are the cumulants
of X. This justifies our claim since y(w) is again a linear combination of
the raw moments of X. However, although this matching proceduro can
be theoretically carried out, by using the well-known relations between
moments and cumulants, determining the consistency conditions for an
arbitrary m an analogy with (2.8) is algebriacally difficult. In particular,
if m =3,

Valw) = coh’ (w)+c,o(w) -+ cah2w) + cxh3(w) + chi(w)k' (w) +-csh'(w),
and
0y(X) = a3 X°+a,X*+a, X +a,,
the consistency conditions reduce to
agdi+cy = 0,
—3aydd5+ad§—c, = 0,
—3agdidy+2a,d,dy—a,dy—c, = 0,
—ayB}+ayd—ad+a, = 0,
—3aydydy+-aydy—cy = 0,
3ad3+c, = 0,
aydyt+c5 = 0. . (8.8)
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An application of the case m = 3 is provided later by using the above equations
(vide Example 1(b)).

4., FURTHER REMARKS AND EXAMPLES

Tationshi

Remark 2 : If k', k, h? have an explicit linear r p, the istency
conditions (2.8) can be reformed from (2.7) by blocking together their co-
officients and matching these modified coefficients with the corresponding
coefficients in the LHS. In the process, the number of independent equations
reduces and extensive control is achieved over coefficients in the estimate,

as shown in the examples.

Remark 3: When h(w) = w, y(w) in general (for an arbitrary m) is a
polynomial in the natural parameter w. Theref ding to the tk
certain poly ial ostimators in X are admissible for such functi Y(w).
However, in all the standard one-parameter exponential set-ups, () in this
case becomes a proper prior if the “divergence ditions” of the th
have to hold, thus making the estimators trivially admissible. Specialized
to the normal distribution in which case y(w) becomes the expectation of a
polynomial in X, our theorem yields only proper Bayes admissible estimators
for m > 1.

Remark 4: Our theorem does not provide any quadratic admissible
estimate for a completely arbitrary y(w). In this sense our theorem is not
strictly a generalization of the result due to Ghosh and Meeden (1977), which
however follows trivially from our theorem by putting a, = 0 in &(X), and
¢g=1¢,=0, ¢, = 1in y(w). Note that we need not demand the differentia-
bility of h(w). Since f(w) turns out to be a constant, our conditions are exactly
the same as theirs.

Example 4 provides an application of our theorem when A(w) is not the
mean.

Remark 5: It is also possiblo to prove the theorem by generalizing
the Cramér-Rao type inoqualities (Blyth, 1974) for Bhattacharya bounds,
as done in Roy and Mallik (1966).

Remark 6: In contrast to the traditional way of forming admissible
estimators for a given parametric function, the sufficient conditions of our
theorem can also be used to generate a class of parametric functions for which
a given polynomial in X is admissible. Each such y(w) is obtained by choosing
the ¢,’s which satisfy the consistency conditions (2.8) and the divergence
conditions of the theorem.
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Example 1 : Let X ~ Poisson (e¥), —o0 < w < 0.

(a) Consider y(w) = b,e?0be®, by, b, real numbers. If we propose a
quadratic estimator, the consistency conditions reduce to

ayff—by =0
2aydydy—ady+asdy—by, = 0 )
ayd}—ady+ag = 0.
Here,
polaw) = . N o

Also, f(w) is the mean of a quadratic in X; say,

f(w) = ae*%4-bewt-c,
where a, b, ¢ are some constants.
Now,
e"’)""(l“l)'w 1

7 w)fNw) = T as w— —0

-0 as w— o,
ifdy =0, 1+d, < 0.

It is interesting to note f(w) does not play any role in the divergence of
[ 7 (w)f(w)dw. The same phenomenon occurs for any f(w) which is a
polynomial in e®, Moreover, if dy = 0, then 7(w) — 1 as w — o0 so that 7 is
improper.

Since d, = 0, (A) boils down to
aydi—b, =0
aydy—a,dy—by = 0

a=0

b o a —a b b
=;uz_d§, also ay = ay Fa
Hence,
b by
oX)= 2 (X:X)—r X
X) = g (X225

is an admissible estimator of

Y(w) = bye*™+-bye®, for any dy < —1.
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In particular, if y(w) = e = E,{X(X—1)}, then a(X2+X) is admissible for
any 0 <a < 1. In contrast to this, Ghosh and Meeden suggested the linear
estimator X as an admissible estimator of e,

(b) Let
y(w) = BufX(X—1)(X—2)} = .
If we let

h(w) = Ey(X) = e®,
then

R(w) = h"(w) = h(w), Ywe(—2, o).
Identifying ylw) as yy(w) (vide Remark 1) gives
Cptcyg=10
e Fegt-co =0
cg= L.
The consistency conditions (3.8) (vide Remark 1) reduce to
ag=0
axd =1
Baydi—aydi = 0
aydy+agdy—ayd, = 0,

when wo invoke the divergence condition d; = 0. Thus
" 9, l d I
ay = 3ag, a; = 2a,, a!=—ﬁ<l as dy < —1.
2

Hence, &(X) = a(X3+3X%+2X) is admissible for y(w)= e, for any
0 <a< 1. Again, the ostimator suggested by Ghosh and Meedon in this
case was X.

Example 2 : Let

wo

X~Bin(n, —Ii_H—w), —00 < w < .

ne¥

T4ew

h(w) = By(X) =

B34-2
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Then

I'(w) = vary(X) = h(w)—hz(Tw), —o<w< ™ .. (A)

Let

W), nhw) | OW(w)

yiw) = varg(X) = M) = — st S0+ o0

because of (A), where 0 < & < 1.
In this case

Ay = o) Hw)nm«,n
flw), as in Example 1, is the mean of a certain quadratic in X say,

oW

Jo0) = a (1) +0 1) +o
for some constants a, b, c.
Hence,
(1 4 groy )

) ) = e S T

e T e

=0 as w—rm,

if we let
dy =0, 14+d, < 0.

Also, m(w)—> 1 as w— —oo, implying 7 is improper. The consistency
conditions are

1 8
e e N
a,d,:—nia, ay =0

Hence,



Also,

Thus
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e _ —nfn+d) _ nd
P and, a, = »T = aTs

My =

2

., no
T nto X X

8X) = PR

= a 2!
= (WX 0K

is admissibie for var(X) for every 0 <& < 1.

Incidentally, no linear estimator of var,(X) satisfies the sufficient condi-
tion of Ghosh and Meeden (1977).

Example 3 :

P(X =x)
In other words,

Then

_ < r+a—1

Lot X have tho negative binomial distribution given by

)p'qz, x=0,1,2, ...,r>1 known, 0 <p <1l
xX

X ~ NB(e®), —0 <w < 0.

rew
) = Byl X) = ——s
1—é
ad
hw) = vary(X) = ’“i,.w)é s

It turns out that

Hence,

2(
I iw) = IL(wH-h Tw) .

yiw) = vary(X) = Rw).

yiw) = ch¥w)+eh(w)+coh(w)

= ( c,—c—r') 12w) (o, +clh'(w),
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where
c,
c,—T' =0, 6+ =1 .. (A)
Here,
A= ed‘"_(l_eW)_"”'").
Hence,

)y —dyw
7Y w)fNw) = W'?(ige_"’)__ii;

re¥
@ +b

e e
It turns out from (3.4) and (3.6) that

b=ad #0, c=a¥l—dj) #0.
If we let d, = 0, and r(14dy)+2 < 0, then,

1
a-Yw)fNw) > — as w—> —0

d
— 00 as w— 0.
Also, m(w) — 1 as w —» o0, whence  is improper.

By (A), the consistency conditions reduce to

a,di+ a,ng =0, aydy—aydy = 1, 4y =0.
Hence,
L. WY
= T, "‘(rd “)
et e T Sy
= ;l;=a, =T i

i 2 . r
Since dy < —1—-, it turns out that @, < g
Also,

1 1 r
4=ty = Gy S D)
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Hence, 8(X) = a,X2+a,X is admissible for var,(X) for every

0<a, 0<a <

T r
< T’ T

Example 4 : In the preceding examples, d, was taken as zero and h(w)
was always taken as Ey(X). Here is an example where neither d, is 0 nor
h(w) is the mean of the distribution.

Let

s ew
X~Bm(n, W)' —0<w< 0.

Let y(w) = e® (which is the square of the ratio %in the usual Binomial
(n, p) set-up). Thus with
hlw) = €9, w) = e+ +oe”,
where ¢, =1, ¢,4¢y = 0.
We let
dy = —1 and dy <0.
Then,

m(w) = A (wlpyw) = (’li,,z,w')'n 2 o0 a8 w o —00,

implying 7 is improper.
Also,
Jw) = Bufa,X —aydyew)? (if wo lot a,—ayd, = ay+ay = 0)

ne2v

2p (X wy2 . g2 ne? 2nd, B +d{e2“7]
= a3By(X —dye®)* = a} [W)—E—+U—+W_ 2 [ 1ew

af 2020 A
= (I«};le‘“)z [dZ et —(2nd,—2d})ed0 +(n—d,)’e +nev). o (A)
Hence,

e“’-P_d"w

- X _ 1
7Y w)f~Y(w) = a [ — 2 n— )+ (n—dPe™+ ne®]

—» 00 a8 w—» 00

1
- —5 88w —%0,
nag
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Thus the sufficient conditions of our theorem hold. The coefficients a,, a, a,
are obtained by using the consistency conditions and (A) as

Hence, §(X) = a(X*—X) is admissible for y(w) = ¢ for every a > 0.
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