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Relevant and Significant Supervised Gene Clusters
for Microarray Cancer Classification

Pradipta Maji* and Chandra Das

Abstract—An important application of microarray data in func-
tional genomics is to classifv samples according to their gene ex-
pression profiles such as to classifyv cancer versus normal samples
or to classify different tvpes or subty pes of cancer. One of the major
tasks with gene expression data is to find co-regulated gene groups
whose collective ex pression is strongly associated with sample cat-
egories. In this regard, a gene clustering algorithm is proposed to
group genes from microarray data, It directly incorporates the in-
formation of sample categories in the grouping process for finding
groups of co-regulated genes with strong association to the sam ple
categories, vielding a supervised gene clustering algorithm. The
average expression of the genes from each cluster acts as its rep-
resentative. Some significant representatives are taken to form the
reduced feature set to build the classifiers for cancer classification.
The mutual information is used to compute both gene-gene redun-
dancy and gene-class relevance. The performance of the proposed
method, along with a comparison with existing methods, is studied
on six cancer microarray data sets using the predictive accuracy of
naive Baves classifier, K-nearest neighbor rule, and support vector
machine. An important finding is that the proposed algorithm is
shown to be effective Tor identifving biologically significant gene
clusters with excellent predictive capa hility.

Index Terms—C lassification, feature selection, gene clustering,
microarray analvsis, mutual information.

L. INTRODUCTHON

ECENT advancement of microarmay technology has
R made the experimental study of gene expression data
faster and more efficient. Microamray techniques such as DNA
and high density oligonucleotide chips are powerful biotech-
nologies as they are able to record the expression levels of
thousands of genes simultaneously. The vast amount of gene
expression data leads to statistical and analytical challenges
including the classification of the data set into correct classes.
Hence, one of the imporant applications of gene expression
data in functional genomics 15 to classify samples according to
their gene expression profiles such as to classify cancer versus

normal samples or to classify different types of cancer [ 1].
A microarray gene expression data set can be represented by
an expression table, where each row corresponds w one par-
ticular gene, each column to a sample, and each entry of the
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matrix is the measured expression level of a particular gene in
a sample, respectively [ 1], [2]. However, the major problem of
microarray gene expression data-based sample classification is
the huge number of genes compared o the limited number of
samples. Most classificaton algorithms suffer from such a high
dimensional input space. Furthermore, most of the genes in ar-
rays are irrelevant o sample classification. These genes may
also introduce noises and decrease prediction accuracy. In addi-
tion, a bomedical concern for researchers 1s to dentify the key
marker genes, which discaminate samples for class diagnosis.
Therefore, the gene selection is crucial Tor sample classifica-
tion in medical diagnostics as well as for understanding how
the genome as a whole works [3], [4]. As this is a feature se-
lection problem, clustering method can be used that partitions
the given gene set into subgroups, each of which should be as
homogeneous as possible [3]{7].

The conventional clustering methods such as hierarchical
clustering [8], k-means algorithm [9], and sell organizing map
[10] group a subset of genes that are interdependent with each
other. In other words, genes in a cluster are more correlated
with each other, whereas genes in different clusters are less
comrelated [7], [11]. The gene clustering is able to reduce search
dimension of a classification algodthm and constructs the
model using a tightly correlated subset of genes rather than
using the entire gene space. After clustering genes, a reduced
set of genes can be selected for further analysis. However, these
algorithms uwsually fail to reveal functional groups of genes
that are of special interest in sample classification as the genes
are clustered by similanty only, without using any information
about the sample categories [12].

To reveal groups of co-regulated genes with strong associ-
ation to the sample categories, different supervised gene clus-
tering algorithms have been proposed recently [12]-{15]. The
supervised gene clustering is defined as the grouping of genes,
controlled by the values of genes as well as the supervised in-
formation of sample categories [ 12], [15]. Previous work in this
field encompasses tree harvesting [ 13], a two step method which
consists first of generating numerous candidate groups by unsu-
pervised hierarchical clustering. Then, the average expression
profile of each cluster is considered as a potential input varable
for a response model and the few gene groups that contain the
most useful information for tissue discrimination are identified.
Only this second step makes the clustering supervised, as the se-
lection process relies on external information about tissue types.

An nteresting supervised clusterng approach that directly
incorporates the response vadables in the grouping process is
the partial least squares procedure [14], which n a supervised



manner constructs weighted linear combinations of genes that
have maximal covariance with the outcome. However, it has the
drawback that the fitted components involve all, usually thou-
sands of genes, which makes them very difficult to mterpret.
Moreover, partial least squares for every component yields a
linear combination of gene expressions which completely lacks
the biological interpretation of having a cluster of genes acting
similary in the same pathway.

A direct approach to combine gene selection, clustering and
supervision in one single step is reported in [12]. The super-
vised gene clustering algorithm proposed in [12] 5 a combina-
tion of gene selection for cluster membership and formation of
a new predictor by possible sign flipping and averaging the gene
expressions within a cluster. The cluster membership is deter-
mined with a forward and backward searching technique that
optimizes the Wilcoxon test based predictive score and margin
critera defined in [12], which both involve the supervised re-
sponse variables from the data. However, as both predictive
score and margin eriteda depend on the actual gene expression
values, they are very much sensitive to noise or outlier of the
data set.

In this regard, a new supervised gene clustering algorithm
is proposed to find co-regulated clusters of genes whose col-
lective expression is strongly associated with the sample cate-
eories or class labels. The mutual information is used to mea-
sure both gene-gene similarity and gene-class relevance. The
proposed algorithm uses this measure to reduce the redundancy
among genes. It involves partitioning of the original gene set
into some distinet subsets or clusters so that the genes within
a cluster are highly co-regulated with strong association to the
sample categories while those in different clusters are as dis-
similar as possible. A single gene from each cluster having the
highest gene-class relevance value is first selected as the mi-
tial representative of that cluster. The representative of each
cluster is then modified by averaging the initial representative
with other genes of that cluster whose collective expression is
strongly associated with the sample categores. 1t is based on
sequentially improving the gene-class relevance value of the
cluster representative that measures the clusters” strength for
diseriminating the sample categories. In effect, the proposed al-
eorithm yields biologically significant gene clusters whose co-
herent average expression levels allow perfect diserimination
of sample categories. After generating all clusters and their rep-
resentatives, a few representatives are selected based on their
class discrimmnation power and are passed through the classifier
to classify samples. The performance of the proposed method,
along with a companson with exiting methods, 1s studied on six
cancer microarray data setsusing the predictive accuracy ol sup-
port vector machine (SVM), K-nearest neighbor (K-NN) rule,
and naive Bayes (NB) classifier. The results demonsirate that
the proposed method i1s more effective for microarmay cancer
classification.

1. FEATURE EXTRACTION FOR CANCER CLASSIFICATION
This section presents a gene clustering algorithm for identi-

fying relevant and significant supervised gene clusters from -
croaray gene expression data to classify cancer samples.
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A. Proposed Gene Clustering Method

The basic stochastic model of the proposed algorithm for mi-
croarray data equipped with categorical response is given by a
random pair

I:f ) with values B » [ (1
where £ £ B denotes a log-transfonmed gene expression pro-
file of a tissue sample standardized 1o zero mean and unit vari-
anceand = {1.--- i .- K} isthe associated response vari-
able, where K represents the number of classes.

Let G = {A7.--- AL, - X | represents the Tull gene set
of a given microarray data. To account for the fact that not all
me genes on the chip, but rather a few functional gene sub-
sets, detenmine nearly all of the outeome variation and thus
the type of a ussue, the whole gene set s partitioned nto &
number of functional groups orclusters C = {Cy, - - Ty} with
k<& . They form usually an meomplete partition of the gene
set: {UX Gl c {1, m}andC;NC; # B¢ # 4. Fi-
nally, a representative of each cluster is generated and among
them a few fomms the reduced feature set. Let A € ® denotes
a representative expression value of gene cluster C,. There are
many possibilities to determine such group values X, but asone
would like to shape clusters that contain similar genes, a simple
linear combination is an accurate choice:

Z e,

el

e e{-1.1}. (2)

= Ic,

Because of the use of log-transformed, mean-centered, and
standardized expression data, the contribution of a particular
gene A to the group value X is also allowed to be given by its
sign-flipped expression values — A", . This means that both under
and over expressions are treated symmetncally, and it prevents
the differential expression of genes with different polanty from
canceling out when they are tagged.

The proposed clustering algorithm relies on mainly two
factors, namely, determining the relevance of each gene and
egrowing the cluster around each relevant gene incrementally
by adding one gene afier the other. One of the important prop-
ety of the proposed clustering approach is that the cluster is
augmented by the genes those satisly following two conditions,
namely, suit best nto the current cluster in terms of simlarity
measure; and improve the differential expression of the current
cluster most, according o the relevance of the cluster represen-
tative or prototype. The growth of a cluster 1s repeated until
the cluster stabilizes, and then the proposed algonthm starts 1o
generate a new cluster.

Let By (D) represents the relevance of gene X; = G with re-
spect 1o the class label 1. The relevance uses information about
the class labels and is thus a eriterion for supervised clustering.
The proposed algorithm starts with a single gene A, of G that
has the highest relevance value with respect to the class labels.
The cluster C; is then formed by selecting the set of genes {4 }
{rom the whole set G considenng the gene X as the initial rep-
resentative of cluster C;, where each gene A £ C; must satisfy
following two conditions:
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1} the simlarity between the initial cluster representative X
and gene A, (A, A;) = &, where the threshold & s
termed as the radios of cluster ©;; and

2) merging of gene A with the current cluster representative
increases the relevance value.

The representative of cluster ©; is refined incrementally. By
searching among the genes of G, the current cluster representa-
tive is merged and averaged with one single gene whose simi-
larity value with mitial representative A is greater than & and
that increases the relevance value of the augmented cluster rep-
resentative ;. The merging process is repeated until the rele-
vance value can no longer be improved. lnstead of considering
all genes of G, the augmented gene X; is computed by consid-
ering a subset of genes whose similarity values with initial rep-
resentative A, is greater than 5. The set of genes C; satislying
above two conditions represents the cluster associated with the
gene ;.

The generation of cluster reduces the redundancy among
genes of the set G as well as increases the relevance with
respect to class labels. After generating the augmented cluster
representative A; from the cluster ©;, the process 15 repeated
to find more clusters and augmented cluster representatives
by discarding the gene &, and all other genes &) £ €, from
the set G whose similarity values with &, (X, X;) = 4.
Afier generating all & clusters and their representatives, the
best o cluster representatives are selected according o their
class relevance value and are passed through classifiers o
generate classification rule. The main steps of the proposed
gene clustering algorithm are reported in Fig. L

The main advantage of the proposed algorithm over conven-
tional methods is that it generates clusters based on gene ex-
pression values as well as supervised information of sample cat-
egones. In effect, it can find functional groups of genes that
are of most important in sample classification. Unlike the su-
pervised gene clustenng algorithm of [12], the proposed algo-
rthm considers only a subset of genes, instead of whole gene
set, to form a cluster whose similarity values are greater than a
eiven threshold. Also, the proposed method generates overap-
ping supervised gene clusters for sample classification, unlike
the method of Maji [15], based on the fact that many genes may
participate in multiple different processes as the biological pro-
cesses are not independent of each other. In effect, it 1s able 1o
extract features that contain sound biological mformation and
are also very powerful class discriminator.

In this work, mutual information is used to measure the gene-
class relevance and gene-gene similanty. In principle, mutual
information is used to quantify the information shared by two
objects. I two independent objects do not share much informa-
tion, mutual information value between them 1s small. While
two highly correlated objects will demonstrate a high mutual
information value [ 16]. The objects can be the class label and
genes. The necessity for a gene to be an independent and infor-
mative can be determined by the shared information between
the gene and rest as well as that between the gene and class
label. If a gene has expression values randomly distributed in
different classes, 1ts mutual mformation with these classes 1s
zero. 1T a gene is strongly differentially expressed for different
classes, it should have large mutual information. Hence, mutual
information can be used as the measures of both gene-class
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Fig. 1. Main steps of proposed gene clustering algorithm.

relevance and gene-gene similarity or redundancy [4], [135],
[17]. [18].

In microarray gene expression data sets, the class labels of
samples are represented by discrete symbols, while the expres-
sion values of genes are continuous. Hence, to measure both
gene-class relevance of a gene with respect to class labels and
gene-gene redundancy between two genes using mutual infor-
mation, the continuous expression values of a gene are usually
divided o several discrete partitions. The a prior or marginal
probabiliies and their joint probabilities are then calculated to
compute both gene-class relevance and gene-gene redundancy
using the definitions for discrete cases. In this paper, the dis-
cretization method reported in [4], [17] 1s employed to discretize
continuous expression values.
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B Compuiational Complexity

The computation of the relevance of i genes is carried out in
step 2 of the proposed algorithm, which has ((ren) time com-
plexity as the tme required to compute the relevance of each
zeneis i n being the number of samples. The cluster generation
step, that 15 step 3, 18 executed k tmes to generate £ clusters and
corresponding augmented cluster representatives. There are two
loops in the cluster generation step; each of them is executed m
times. Each iteration of the first loop, that 1s step 3(b), takes only
a constant amount of time. Hence, the complexity of this siep is
O ). On the other hand, three major tasks, namely, computa-
tion of similarity between two genes, that of two augmented rep-
resentatives, and their relevance values, are performed within
the second loop, that 1s step 3(e), which have overall O(n) time
complexity. Other tasks take only a constant amount of time.
Hence, the complexity to generate & clusters using step 3 is
O k(m + mn)), that is, O kwin ). Finally, step 4 performs the
selecion of o augmented cluster representatives according Lo
their relevance values from the & augmented representatives,
which has a computational complexity of O kd). Hence, the
overall ime complexity of the proposed supervised gene clus-
tering algorithm is O [wene + bwen + bed), that is, O & ren 4.
However, as &, d.n < m, the proposed clustering algorithm
has an overall () time complexity.

11, EXPERIMENTAL RESULTS AND DISCUSSION

The performance of the proposed mutual mfomation based
supervised gene clustering (MSG) algonthm is extensively
compared with that of some existing supervised and un-
supervised gene clustering and gene selection algorithms,
namely, attobute clustering algorithm (ACA) [7], supervised
zene clustering algonthm (SGCA) [12], and minimum re-
dundancy-maximum relevance {(mRMR) framework [17]. To
analyze the performance of different algorthms, the expen-
mentation 15 done on SiX cancer MICIDArTay Zene expression
data sets. The major metric for evaluating the performance of
different algorithms is the classification accuracy of the NB
classifier [6], K-NN rule [6], and 8VM [19].

To compute the classification accuracy, both leave-one-out
cross-validation (LOOCY) and bootstrap approach are per-
formed on each gene expression data set. For each training set,
a set of gene clusters and their augmented representatives are
first generated, and then one of the classifiers is trained with
the augmented representatives. After the training, the features
{or the test sample are first constructed using the mformation of
genes those were used Lo generate augmented representatives
for the training set and then the class label of the est sample
is predicted using the classifier. In all experiments, maximum
fifty clusters (& = 50) and their corresponding representatives
are generaled. Among them three best representatives [ = 3]
are selected for analysis.

A Gene Expression Daia Sets

In this paper, publicly available following six cancer data are
used since binary classification s a typical and fundamental
issue in diagnostic and prognostic prediction of cancer.

1) Breast Cancer - The breast cancer data set conlains ex-
pression levels of 7129 genes in 49 breast mmor samples [20].
The samples are classified according to their estrogen receplor
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(ER) status: 25 samples are ER positive while the other 24 sam-
ples are ER negative.

2} Lewkemia: It is an affymetrix high-density oligonu-
cleotide array that contains 7070 genes and 72 samples from
two classes of leukemia [1]: 47 acute lymphoblastic leukemia
and 25 acute myeloid leukemia.

3) Colon Cancer: The colon cancer data sel contains expres-
sion levels of 2000 genes and 62 samples from two classes [21]:
40 tumor and 22 nomal colon ussues.

4) Lung Cancer: This data set contains 181 tissue samples:
among them 31 are malignant pleural mesothelioma and rest
150 adenocarcinoma of the lung [22]. Each sample is described
by the expression levels of 12533 genes.

3) Breast Cancer {1 Inthis data set, relapse or non relapse
of metastases in patients afler mitial diagnosis for mierval of
at least 5 years has been classified m breast cancer patients
[23]. Total 97 samples are given: 46 patients developed distance
metastases within 5 years, labeled as relapse, while 31 remained
healthy, labeled as non-relapse. The data set consists of 24 188
SRS,

) Prostate Cancer: Inthis data set, 136 samples are grouped
into two classes: 77 prostate tumor and 39 prostate normal sam-
ples [24]. Each sample contains 12 600 genes.

8. Class Prediction Methods

Following three classifiers are used to evaluate the perfor-
mance of the proposed clustering algorithm.

[} SFM: The SVM [19] 15 a margin classifier that draws an
optimal hypermplane in the feature vector space; this defines a
boundary that maximizes the margin between data samples in
different classes, therefore leading to good generalization prop-
erties. A key factor in the SVM is to use kernels 1o construct
nonlinear decision boundary. In the present work, linear ker-
nels are used. The source code of the SVM is downloaded from
htp:/fwewew csie.ntedu twd~cjlin/libsvm.

2) K-NN Rule: The K-NN rule [6] 15 used for evaluating the
effectiveness of the reduced feature set for classification. liclas-
sifies samples based on closest training samples in the feature
space. A sample is classified by a majority vote of its K-neigh-
bors, with the sample being assigned to the class most common
amongst its K-nearest neighbors. The value of K, chosen for the
K-NN rule, 15 the square root of number of samples in training
sel.

3) NB Classifier: The NB classifier [6] is one of the oldest
classifiers. [t is obtained by using the Bayes rule and assuming
features or variables are independent of each other given its
class. For the jth sample x; with wm gene expression levels
[Ei. - &g o Eay ) Tor the v genes, the posterior proba-
bility that @:; belongs to class « is

m

plelas) o [] pl&ijle)

=1

(3)

where p(&;;|r) are conditional tables or conditional density es-
timated from training examples.

C. Optimum Value of Threshold

The threshold & plays an important role to form the gene
cluster. [t controls the degree of similarity among the genes of
a cluster. In effect, it has a direct influence on the performance
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TABLE 1
COMPARATIVE PERFORMANCE ANALYSIS OF DIFFERENT METHODS Using LOOCY 0N S CAnCER MICROARRAY DATA SETS
I Mfforent | Infforont Algorithms F o =1 Algorithms /o = 2 Algorithms /a4 =3 Fall |
Data Sets | Measures || M3G | SGCA | ACA | mRMR MAG | SGEA | ACA | mBME | MSG [ SGOA | ACA mBEMR || Gene
SV i 11K B1.0 85,7 140 [ITH] 8110 BT 10 [TV R Y3y G1E
Hreast | - 1410 101 Rl BGR 1Y) 10 LR LU 10 1410 837 G55 Tis
MG 140 L G Bl.i 9.8 100 104 Bl.o 5.9 10 1400 B3.7 5] 10
WM 141y N Ris 903 100 4.4 B8.2 944 100 4.4 882 4.4 .6
Levkemia | K-NM 140 4.4 524 93.1 Tt 94.4 524 94 il H95.8 1.2 G5E Tod
ME 140 4 55,2 9.4 Téack 44.4 BE.2 . 160 4.4 8.2 1041 [
REU 1406 6 Tih XA i 8 758 2.6 Big 3 74 T4 TiE B2
Colan K-MM 140 20 T4 H3m 3.0 774 LR 39 ¥ 774 B3 b 742
ME 110} LER: fi4.5 3.4 954 774 ThR el 5 4 0,5 A3 .5
Rt 140 w7 B2.8 978 Tt 907 §2.9 6.7 il 1400 He.4d H. e
Lung K-MM || osn | ownT | K2 974 100 e S I 96,7 gns | o967 | &R 0T GRER]
ME [FL4] BT h5.2 PR 100 .1 ROLY RS 160 6.1 20 GRA REN|
WM 910 | w24 | 713 71.3 919 | ¥z4 | 743 2.4 97k | sGL | TA3 W2 g9
Prosuane - .1 #2.4 T3 &4 983 Rl LRk 80 100 LRI & R4 T4l
MG 7.1 5T 5.7 4.8 978 TE.T 35.1 aL.2 G98.5 7R3 52.9 3.4 S0t
WM 1410 70.4 3.6 7l.1 100 R4 RXK 7.1 0.4 Ba? 8.7 Ti R0
BGreast 11 F-NM 140 #0.4 REN (ED 10 815 357 T22 Rl 587 4.4 Tl (XA
MEB 1410 56.7 5.6 T3 Tiac (AR 0.5 A4 160 TEA alis .4 374
. ZI R S R S RN The optimum values of & obtained using (5) are 0.15, 0.13,
0.02, 0.17, 0.19, and 0.01 for Breast [, Leukemia, Colon,
- ,-'\\ | Prostate, Lung, and Breast 11 data sets, respectively. On the
' o other hand, the threshold /7 is used to decide whether a gene
o il of the current cluster would be considered for next cluster
S '!i generation step or not. From extensive experimentation, the
= i 3 value of 7 15 set to 90% of the maximum similanty of mital
i ! cluster representative for each cluster of all the data sets.
i 1
fo0d- 1 : :
H | D Comparative Performance Analysis
S
Table | compares the performance of the proposed MSG al-
Dzs 1 gorithm with the best performance of some existing algorithms,
namely, ACA [7], SGCA [12], and mRMR [17]. The results
I . e | are presented based on the classification accuracy of the SWM,
0.201 0.0 a1 1 K-NN rule, and NB classifier obtained using the LOOCY on six

Tareshold & Valus

Fig. 2. Vanation of v index for different values of threshold & for Breast 11
of the proposed supervised gene clustering algorithm. If 4 in-
creases, the number of genes in a cluster decreases, but the sim-
ilarity among them increases. On the other hand, the similarity
among the genes of a cluster decreases with the decrease in the
value of &, To find out the optimum value of &, the v index is
introduced next that is defined as follows:

r:l
v =[] R (D)
=1
where Iy () represents the relevance value ol augmented rep-
resentative X; with respect o the class label D and d is the
number of selected representatives.

For s cancer microarray data sets, the value of 4 1s varied
from 0.001 to 1.0 and the comresponding ~ index is computed.
Fig. 2 represents the variation of the  index with respect to dif-
ferent values of threshold & on Breast 11 data set. From the resulis
reported in Fig. 2, 1t 18 seen that as the threshold & increases, the
7 index mnereases and attains its maximum value at a particular
value of #. After that the - index decreases with the increase in
the value of #. Hence, the optimum value of & for each data set
is obtained using the following relation:

Dy <1 )

(5)

"h-..-pl:ilumu = Aalg |rl|:"'lx{"}']'_

cancer microarray data sets. From the results reported in Tablel,
it is seen that the proposed algorithm generates a set of clusters
having highest classification accuracy of the SVM, K-NN, and
NB classifier for all the data sets.

The classification accuracy reporied in Table | obained using
the LOOCY is neardy unbiased. However, it is highly variable in
the sense that it yields a subset of genes, from the large number
of available genes, that has at mostonly a few genes in common
with the subset selected during the original training of the clas-
sifier [25]. Hence, the so-called 632+ bootstrap approach [26]
15 used to reduce the variability of the LOOCY, which is defined
as follows:

B6324+ =1 —w)F +wB i)
where F denotes the proportion of the original raining samples
misclassified, termed as apparent error rate, and 77 1s the boot-
strap error, defined as follows:

n M

n=33.

j=1 k=1

Nl
TinQinfn Y L

k=1

{7

where n is the number of original samples and M is the number
of bootstrap samples. If the sample & s not contained in the f:th
bootstrap sample, then J;, = 1, otherwise 0. Similady, il & is
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TABLE Il
COMPARATIVE PERFORMANCE ANALYSIS OF DIFFERENT METHODS USING BOOTSTRAP APPROACH ON 51X CANCER MICROARRAY DATA SETS
[HiTerent | [hilTerent Algorithms 7 d = 1 Algorithms £ — 2 Algrithms /o — 3 Full
Data Sets | Measwres || MSG [ SGCA ACA | mBMR | MG | SGCA | ACA mREMR || MSG | SGCA | ACA | mRMR | Ciene
A w3 ¥i.3 LA H16 97.3 973 K16 K16 R3O R RT.1 HiLs Hil
Hroast | K-MMN a3 PER LA AT 973 239 537 K37 .7 94.5 RT.1 HiLs 0.3
MH R4 0 B0 Rl 5.1 917 LR a91.2 4 A8.0 Bl G | 52T
b A | w8 A HT AL LN e 91.1 Lnh 924 W7 3.7 L gl || v
| cukemia K-MMN 4.1 .4 s Hi4 9u.7 91,3 K1 91,7 K18 D240 LR Y10 3.3
MH 0.1 0.3 RS N 5.5 1.8 LR 935 .5 917 gl S8 3.3
EWh 932 T 7.2 #0.1 4.2 T3 711 B2 * T 751 T4 LR
Colon K-MM 1.4 7106 4.4 B11.1 s T3 k1.5 LY . Th2 817 #Lh 15E
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Fig. 3. Eisen plots of the best clusters obtained using proposed algorithm: {a) Breast [ & = 0013; (b) Colon: 4 = 0.02; {c) Lung: & = 019,

misclassified, €J,, = 1, otherwise (0. The weight parameter w is

given by
0632

I
8- Ek
= m = anil = Z;a;fl i)

—h
(8)

where p; is the proportion of the samples from the ith class,
i; 18 the proportion of them assigned to the ith class, and +
is the no-information error rate. Table 11 reports the classifica-
tion accuracy of different algorithms using the relation (1 —
6324 » 100 based on the 6324 bootstrap approach con-
sidering M = 50 From the results reported in Table 11, it is
also seen that the proposed algonthm generates a set of clusters
having lowest bootstrap error of the SWVM, K-NN rule, and NB
classifier for all the data sets.

The better performance of the proposed algorithm is achieved
due to the fact that it uses mutual information for computing
both gene-class relevance and gene-gene similarity to generate
co-regulated gene clusters with strong association to the class
labels. As mutual information depends only on the probability
distribution ofa gene rather than on its actual values, it is insen-
sitive 1o noise or outlier of the data set. Moreover, the cluster
representatives of the proposed algonthm are modified based
on the information of class labels. InefTect, it can identify func-
tional groups of genes present in microarray dala more accu-
rately than existing algorithms. The coherent average expres-

sion levels of these functionally similar gene clusters allow per-
fect discrimination of class labels. Futhermore, Fig. 3 presents
the Eisen plots [27] of best clusters for three cancer data sets
generated by the proposed algorithm. All the results reported
here establish the fact that the proposed algorithm can e fliciently
identify groups of co-regulated genes with strong association Lo
the sample categories.

The classification accuracy of the SVM, K-NN, and NB for
full gene set is also reported in Tables | and [1. The results
reported in these tables indicate that if all genes are consid-
ered for sample classification, the samples from different classes
may not be well separated with respect 1o these three classifiers.
However, when a gene selection or clustering algorithm selects
a set of genes from full gene set considering the relevance or
redundancy criteria, the genes those have high relevance with
respect 1o the class labels are only selected. In effect, the sam-
ples from different classes with reduced gene set become well
separated, which leads o higher classification accuracy. On the
other hand, the presence of irrelevant and redundant genes in
reduced gene set may degrade the quality of soluton. From the
results reported in Table L it is seen that the classification accu-
racy of three classifiers obtaned using the proposed algorithm
and that of the K-NN rule and NB classifier obtained using the
mREME method, ACA, and SGCA 15 always higher than that
achieved by the full gene set for all microarray data sets. On the
other hand, out of 6 data sets, the mRMR method and SGCA
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TABLE M1
SIGNIFICANT SHARED GO TERMS FOR GENES IN BEST CLUSTERS

Cntidogry Alpurithm Inlurmativm Dreusl Cuanger T Lasukemia Caolon Cancer
Term Clellular process | Mulbcellular onmamsmel process Cellular process
Tropuosed P-Yolue 6.570-078 l.0ak-07 1. 19C-&0
FDDR Rate (.0 MREART (.06,
Bialemieal False Positives {1101 [ER11¥] .00
[Processes | Tecm * * Blood vessel muouphogenesis
REACA P-%alng i s 2, 22E-02
FDOR Rue . ¥ 000
Falsc I'ositives % g (.30
Term Binding Binding Pratein binding
Preposed P-Yalue 1.70E-10% 1 UEE-DG 2A2E-TH
FIDE Rate (1005 HREAE (.006%
Molecular False Positives .01 (.00 (400
Funetions Term % Serucmral eonstituent of muscle .
SGEA P-%alue - |03 #
FDOR Rate b B )
False Positives ¥ [IX 15 3
Term Intraceliular par Cytoplasmic part Intracellular part
Proposed P-Velue SR1E-053 2aaE-A07 232E-77
FDR Rale (.00, 0.00% 0,005
Collular False Positives 410K (3410 (.0
Cormnponents Term * * Cyloplasm
SGCA P-%alue 2 4 4.460E-02
FIME Rate & x RN
False Posilives ¥ ¥ (.06

perform better than full gene set in 3 cases with respect to the
SVM. Similar results can also be found in case of Table 11.

E Biological Significance Analysis

To interpret the biological significance of the generated clus-
ters, the Gene Ontology (GO) Tenm Finder s used [28]. 1t finds
the most significantly enriched GO terms associated with the
genes belonging to a cluster. The GO project aims to build ree
structures, controlled vocabularies, also called ontologies, that
describe gene products in terms of their associated biological
processes (BP), molecular functions (MF) or cellular compo-
nents (CC). The GO Term Finder determines whether any GO
term annotates a specified list of genes at a frequency greater
than that would be expected by chance, calculating the associ-
ated p-value by using the hypergeometric distribution and the
Bonferroni multiple-hypothesis correction [28]. The closer the
p-value is to zer, the more significant the particular GO tenm as-
sociated with the group of genes is, that is, the less likely the ob-
served annotation of the particular GO tenm to a group of genes
occurs by chance. On the other hand, the false discovery rate
(FDR) is a muluple-hypothesis testing error measure indicating
the expected proportion of false positives among the set of sig-
nificant resulis.

Hence, the GO Tenm Finder 15 used to determine the statistical
significance of the association of a particular GO tenn with the
genes of best cluster produced by the proposed algonthm. The
GO Term Finder is used to compute the p-value, FDR (%4), and
false posiuves for all the GO tenms from the BP, MF, and CC
ontology and the most significant term, that is, the one with the
lowest p-value, is chosen to represent the set of genes of best
cluster. Table 111 presents the significant shared GO terms, along
with the p-values, FDR(%), and false posiuves for the BE, MF,
and CC on different data sets. The results corresponding to the
best clusters of the existing SGCA [12] are also provided on
same data sets for the sake of comparison. The **™ in Table 111
represents that no significant shared tenm is found considering
p-value cutofl as 0.05. From the results reported in [15] and

Table 111, it 1s seen that the best cluster generated by the pro-
posed algorithm can be assigned to the GO BPs, MFs, and CCs
with high reliability in terms of p-value, FDR, and false posi-
tives. That 1s, the proposed algorthm descnbes accurately the
known classification, the one given by the GO, and thus reli-
able for extracting new biological insights. The annotated genes
of best cluster produced by the proposed algorithm for three
ontologies, determined by the Go Term Finder, are reported at
wanw. isical ac.in/~pmaji/results/inb himl.

IV, CONCLUSION

This paper presents a supervised gene clustering algorithm
for cancer classification using microarray experiments. The pro-
posed algorithm is potentially useful in the context of medical
diagnostes as it identifies groups of interacting genes that have
high explanatory power for given tssue types, and which in tum
can accurately predict the class labels of new samples. More-
over, the generated clusters reveal insights into biological pro-
cesses that may be valuable for functional genomics. In brefl,
the proposed algorithm tres to cluster genes in such a way that
the discrimination of different tissue types becomes as simple
as possible. Comparing to existing supervised gene clustering
approaches, only the proposed method generates overlapping
gene clusters and is also applicable w multiclass classification
problem.

The performance of the proposed method is evaluated by the
predictive accuracy of the NB classifier, K-NN mle, and SVM.
Forall data sets, significantly better results are found by the pro-
posed method compared to other methods. The results obtained
on real data sets demonstrate that the proposed method can bring
a remarkable improvement on gene clustering problem. All the
results reported in this paper demonstrate the feasibility and ef-
fectiveness of the proposed method. The proposed method is
capable of identifying discriminative genes that may contribute
to revealing undedying class strucres, providing a useful tool
for the exploratory analysis of biological data.
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