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A Multiresolution Fuzzy Clustering of Images

Kalyani Mali, Sushmita Mitra and Tinku Acharya

Abstrace— A wavelet based multiresolution fuzzy clustering of
digital images is described. We have applied wavelet transforms
to decompose the images into different subbands in multiple
resolutions, thereby eliminating noise in each low frequency
subband. Then a partitive fuzzy clustering technique is proposed
to he applied in multiple resolutions of the transformed image,
in order to find coarser to finer clustering of the images in the
image database. The relevance of the proposed multiresolution
technique to clustering and retrieval of images in the compressed
domain is alko highlighted.

A combination of texture, shape, topology and fuzzy geomet-
ric features, that is invariant to orientation, scale and object
deformation, are extracted from the low frequency subbands of
the transformed image in coarser to finer resolutions. Partitive
fuzzy clustering is performed, to group these images according
to similarity at different levels of resolution. We use clustering
validity indices to determine the optimal number of image
categories. The images in each cluster are graded based on their
distances from the corresponding centroid. The use of wavelet
transform eliminates the need for any other preprocessing for
noise removal, to make it amenabhle for feature extraction. The
extracted features serve as the signature of the images, in terms
of their content. Their use in content based image retrieval is
also demonstrated.

Index Terms— Image mining, wavelets, soft computing, content
hased image retrieval, fuzzy clustering, image compression

1. INTRODUCTION

CLUSTER is a collection of data objects which are
Asimilu.r to one another within the same cluster but dis-
similar w0 the objects m other clusters. The problem i o
group N patterns into ¢ desired clusters with high intra-
cfasy sumilarity and low inter-class similanty by oplmizing an
objective function. In the c-means algorithm [1], each clusteris
represented by the center of gravity of the cluster. This need
not essentially comrespond 1o an object of the given pattern
sel. In the c-medods algonthm [2], on the other hand, each
cluster is represented by one of the representative objects in
the cluster located near the center. Clustermg validity indices,
like Davies-Bouldin and Dunn’s, may be used o determine

the optimal number of clusters.
Soft computing methodologies, involving fuzey sets, neural
networks, genetic algorithms, rough sets, waveles, and ther
hybndizations, have recently been used o solve data mining
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problems [3]. They stive to provide approximate solutions at
low cost, thereby speeding up the process. Fueey sets, which
constitute the oldest component of soft computing, are suitable
for handling the issues related to understandability of patlems,
mcomplete or noisy data, mixed media informaton, and hu-
man interaction, and can provide approximate solutions faster.
Incorporation of the fuzey membership concept, in furzy o
means and fueey comedoids clusienng, enables appropriate
modeling of real life overlapping data.

Clustering is ofien required at hierarchical levels of coarse-
ness, grouping spatial objects at different levels of accuracy.
This gives rise to the concept of multiresolution representation
of an image, as depicted in Fig. 1. Wavelets [4] are found
to be very useful in appropriately modeling such situations
because of the nonstationary property of the image signals
formed around the edges and correlation amongst the image
pixels. The role of wavelets in different aspects of data mining
is gaining significant importance, and it has become a very
powerful signal processing tool in different application areas
such as image processing, compression, image indexing and
retrieval, digital hibranes, image clustering and databases [5],
[6].

Most of the activities in mining image data have been in
the search and retdeval of images based on the analysis of
similarity of a query image or its feature(s) with the entries in
the image database. In Content Based Image Retrieval (CBIR)
systems, the images are searched and retrieved by extracting
suitable features based on the visual content of the images
[3], [7]. CBIR has increasingly become a growing area of
study towards the spccessful development of image mming
technigues [3].

In this article we describe a wavelet based muoltiresolution
fuzey clustering scheme, with potential for CBIR on real life
digital images. Wavelet transforms are applied 1o decompose
the images into different subbands in multiple resolutions,
thereby eliminating noise in each low frequency subband.
The clustering now needs to be done on low-frequency sub-
bands of the images of smaller sizes, from coarser o finer
resolutions. This also enables us to eliminate the need for
any other preprocessing of the mw images. A combination
of texture, shape, topology and fuzzy geometrc features are
extracted directly from this compressed image. Partitive fuzzy
clustering is pefformed at different levels of resolution and the
performance compared with that of the nonfuzzy version. We
use clustering vahdity indices o determine the optimal number
of image categories. The images in each cluster are graded
based on their distances from the corresponding centroid. The
features are next used for CBIR in the wavelet transformed
doman. The images retrieved, based on content, are always
found to lie in the same partition as the query image.

The rest of the paper is organized as follows. Section 11
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introduces concepts from wavelet transform. This is followed,
in Section 1L by a brief description of the different features
extracled, involving texwral, shape, topology, anf fuzzy geo-
metde properties. The clustering methodologies and validity
indices are presented in Section 1V, The acual implementation
of clustering and CBIR on digital images are provided in
Section V. The relevance of the proposed multiresolution tech-
nique o clustering and retrieval of images in the compressed
domain is highlighted in Section VI Fnally, Section VII
concludes the article.

1. WAVELET TRANSFORM

Wavelel transform is a signal processing technigque that
decomposes a signal or image into different frequency sub-
bands at number of levels and multiple resolutions. In every
level of decompositon, the high-frequency subband captures
the discontinuities in the signals — for example, the edge
information in an image. The low-frequency subband is a sub-
sampled version of the original image, with similar statistical
and spatial properties as the orginal signal. As a result, the
low-frequency subband can be further decomposed into higher
levels of resolution, and it helps in representing spatial ob-
jects in different coarser levels of accuracy in multiresolution
subbands. The wavelet transform is typically represented as a
pair of high-pass and low-pass filters, with many wavelet basis
functions being available in literature [4].

Wavelets are functions generated from one single function
called the mother wavelet by dilations (scalings) and transla-
tions (shifts) in time (frequency ) domain. If the mother wavelet
is denoted by 12(#), the other wavelets 1**(¢) for a > 0 and
a real number b can be represented as

il - i b f—b
P E) = ﬁﬂ_.,( = )._ (1)

where a and b represent the parameters for dilations and
translations in the time domain. The parameter o causes
contraction in time domain when a < 1 and expansion when
a>=1.

In this articke we focus on the Haar and Daubechies wavelet
functions [8]. Haar wavelets use the unit-height, unit-width
scaling function

; 1
Bb(t) = { 0

The Haar wavelet function is expressed as

D<¢t=<1,
otherwise.

(2)

1 0=t <05,
-1 056=<t=1, (3)
] oltherwise.

B(t) =

In case of Daubechies wavelels, we have

B(t)=0, if +<0 or t=3
Therefore, B(0) = ®(3) = 0, B(1) = 22 and $(2) =
1—+/3 %

. The scaling function & satisfies the recurrence relation

B(t) = ho®(2¢) + hy B(2E — 1) + ho®( 2t — 2) + ha®(2t — 3),
(4)

Alter 1 bevel of decom positim
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Fig. 1. Three level multimsolution wavelet decomposition of an image.

. 1 Bty & —n
for 0 < + < 3, where by = l—";"—s, hy = i—"'i"*’—i, ha = 5—4"—1,
1—./3 . . .
and hy = —p=. The associated wavelet function is denoted

as

Wit) = —hg®{2— 1)+ By B(28) — ha® {26+ 1) + haB(26 +2),
(3)
where —1 << f < 2

In Fig. 1, we show an example of hierarchical wavelet
decomposition of an image into ten subbands after three levels
of decomposition [3]. After the first level of decomposition, the
original image is decomposed into four subbands LL1, HL1,
LH1, and HH1. The LL1 subband is the low-frequency
subband which can be considered as a 2:1 subsampled (hor-
izontally and vertically) version of the orginal image I, and
its statistical characteristic is similar w the original image as
shown by the shaded regions in Fig. 1. Here L1, LH1, and
HH are called the high-frequency subbands, where L1
and LH1 correspond to the horizontal and vertical high fre-
quencies, respectively. I H 1 constitutes the high frequencies
that are not in either horizontal or vertical orientations. Each
of these spatially orented (horizontal, vertical, or diagonal)
subbands mosdy contain information of local discontinuities
in the image.

Since the low-frequency subband LI1 has similar spatial
and statistical characteristics as the original image, it can be
further decomposed into four subbands LL2, HL2 LH2,
and H H2. Continuing the same method for decomposition
in LL2, the odginal image is decomposed into 10 subbands
L3, HELS, LIS, HHS, HE2, LH2, HH2, HEL, LH, and
HH1 after three levels of pyramidal multiresolution subband
decomposition, as shown in Fig. 1. The same procedure can
continue to further decompose LL3 into higher levels.
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The low-pass filter, inherent in the wtansfomm, helps to
remove the noise. 1L is possible o identify clusters at different
levels of accuracy (i.e., fine or coarse) by using multiresolution
partitioning. This implies that there are less clusters al a
coarser resolution.

III. FEATURE EXTRACTION

In this section we describe the input features used for
clustering the digital image. These include texture, fuzey ge-
ometry, moment invariants and Euler vector. They are useful in
characterizing images, and can be used as a signature of image
content. Hence these features have promising application in
CEIR.

A, Texture

Texture is one of the imporant features used in identifying
objects or regions of interest in an image [9]. It is often de-
scribed as a set of statistical measures of the spatial distribution
of gray levels in an image. This scheme has been found o
provide a powerful input feature representation for various
recognition problems.

The textural features are computed from a set of angular
nearest neighbor gray-tone spatially dependent matrices. The
contextual texture information is specified by the mawix of
relative frequencies P(i. j) with which two neighboring res-
olution cells, having gray levels 7 and § and separated by a
distance 4, occur in the image.

The unnormalized frequencies are defined by the elements
P(i,4,8:8) of a set of cooccurrence matrices, where # is (07,
457, 90" and 135 for horzontal, right-diagonal, vertical, and
lefi-diagonal neighbor pairs, respectively. For nearest neighbor
pairs, we have 4 = 1. Then the number of neighboring
resolution cell pairs R is given by

AN (N — 1) for 8 = 0"
R={ INN,—1) for § = 90° (6)
2{N, — 1)(N, — 1) otherwise.
Here N, and N, refer to the number of pixels along the

horizontal and vertical directions of the digital image.
The angular second moment (A) gives a measure of the
homogeneity of the texture and is defined as

e o

1 =1

A=

i

N,

Note that 7, from egn. (6), is used as the nommalizing constant.
The parameter N, indicates the maximum gray-tone value
present in the image.

The measure I 1s the inverse difference moment, and also
provides an indication of the amount of homogeneity in the
texture. It 1s expressed as

N.—1

o= Z 1+'H'

=il

P(i, j)
Z = : (%)

[i—jl|=mn
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Entropy E is a measure of varability in the image, and is
zero for a constant image. 11 is defined as

P{ﬂ JII

i=1 j=1

Contrast ' is a difference moment of the matrix P, measuring
the amount of local variation present in the image. It is
expressed as

Ngp Ny P ._:I
Comtrast = Z ZU _ J:IE (H;J :

i=1 3=1

(107

Note that the notation # was omitted in egos. (7)-10) o avoid
clutter. Each measure is calculated four times, comesponding
to each of the four directional cooccurrence malrices.

B. Shape

Shape can roughly be defined as the description of an
object minus its position, odentation and size. Therefore, shape
features should be invariant w fransfation, mtation, and scale,
when the arrangement of the objects in the image are not
known in advance.

Let Iz, y) denote an image in the two-dimensional spatial
domain. Geometric Moment [ 10] of order p+ g is denoted as

Mip g = Z Z;r:f’y‘ff{.r:. yl,
a )

forp, q=10,1,2,....

(11)

The central moments are expressed as

oo = 33 (z -2y — ) (2,y),  (12)
r ¥
where z,. = %, Y = %, and (x., y.) i called the center

of the region or object. Hence the Central Moments can be
computed as

Hoo = g

g = 0

By = 0

Hao = Thagy — L0000
Hoz = gz — Nl
Hia = WTipg — YTy -

The novmalized central moments, denoted by o, . are defined
3% Tpg = Tﬁ—i where ~ = f’+”+ for p+qg=223,.
of the seven rﬁau_formnrwn u:mnm:f moments, used erL, are
expressed as follows.

. Two

1 =

(2.0 + 10.2)
Mo =

(20— mo2)? + it 4.

It is to be noted, however, that the shape feawres need
accurate segmentation of images to detect the object or region
boundaries.
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C. Topology

A digital image can be represented by one or more Lopo-
logical properties [8]. which typically represent the geometric
shape of an image. These are also invardant o streiching,
deformation, rotation, scaling or translation.

One topological property of a digital image is known as
Euler number. Although typically computed in a binary image,
it can be extended to characterize gray-lone images by defining
a vector of Euler numbers of the binary planes of the gray-
tone image. This has been called the Ewler Vector [11]. The
Enler number is defined as the difference between number
of connected components and number of holes in a binary
image. Hence if an image has ' connected components and
H number of holes, the Ewler number E of the image can be
defined as

E=C-H. (13)

Intensity value of each pixel in an 8-bit gray-lone image
can be represented by an 8-bit binary Euler vector b, i =
0,1,--- 7, that is, (b, by, b, by, by, ba, by, by), where b,
{0, 1}, The ith bit plane is formed with b;'s from all the pixels
in the gray-tone image. We retain the first two most significant
bit planes corresponding to (bs by ), because they contain most
of the information of the image.

D, Fuzzy geometry

A fuzzy subset of a set § s a mapping p from S into [0, 1]
For any = € 5, gl z) is known as the degree of membership of
2 in g Let p(T) denote a fuzey representation of an N, = N,
eray level image [, ie, 8 mapping p from I € {1, ..., N}
into [(), 1] representing a fuzzy subset of I, where N, is the
maximum gray value. For convenience, we shall use poonly 1o
denote (1) in this section. The compactness (Comp) [12] of
a fuzzy set g having area alp) and perimeter plp) is defined
as _
)
P
Physically, compactness means the fraction of maximum area
(that can be encircled by the perimeter) acwally occupied by
the fuzzy regionfconcept represented by p. Here the area is
defined as a(p) = 3 p. the summation being considered over
a region outside which p = 0. The perimeter of an image is
expressed as p(p) = 32, , (i) — ()], where (i) and p(j)
are the membership values of two adjacent pixels.

Complp) = (14}

IV. CLUSTERING
In this section we describe the partitive algorithms used
for clustering [3], viz., the c-means, c-medoids (PAM), fuzey
c=means (FCM) and fuzzy e-medoids. Two clustering validity
indices, employed to determine the optimal number of clusters,
are also mentioned.

A, c-means algorithm

The algorithm proceeds by paditioning N objects into ¢
nonemply subsets. Dunng each partibon, the centmoids or
means of the clusters are computed. The main steps of the
c-means algorithm [1] are as follows:

o Assign initial means my (also called centroids).

« Assign each data object (pattern point) X to the cluster
[7; Tor the closest mean.

« Compute new mean for each cluster using

_ Lxieu Xt

e |

I

(15)

where |ey| is the number of objects in cluster [V;.
« lierate until eriterion function converges, i.e., there are no
MO New assignments.

B. Partitioning Around Medoids (PAM)

The algorithm wses the most centrally located object noa
cluster, the medoid, instead of the mean. Note that a medoid,
unlike a mean, is essentially an existing data object from the
cluster. 1t is closest w the corresponding mean. The basic steps
are outlined as follows:

« Arbitrarily choose ¢ objects as the initial medoids or seed

points.

« Assign each emaming data object (pattern) to the cluster
for the closest medoid.

« Replace each of the medoids by one of all the non-
medoids (causing the greatest reduction in square error),
as long as the quality of clustering improves.

« lierate until the eriterdon function converges.

For large W and r, the e-medoids [2] algordthm is computa-
tonally more costly than the conventional c-means.

C. Fuzzy c-means (FCM)

This is a fuzzification of the c-means algorithm. It paritions
a set of N patterns {X;} into ¢ clusters by minimizing the
objective function

N e
T =35 (i)™ 1% — %,

k=1 i=1

(16}

where 1 < m' < oo 1s the fuzzifier. my; 1s the dith cluster
center, jp € [0, 1] is the membership of the kth pattern to it,
and ||.|| is the distance norm, such that

Ny e’

i Yo hik)™ Xi
= N v
2 e (i)™

1
T3
. i m o1
51 (32)

Wi, with dyg. = || Xy —m;| |2, subject to ¥ i1 ik = L, ¥k, and
0= Zi.\=1 fir < N, Wi The algorthm proceeds as follows.

(17}

T

and

Hik = (18}

13 Pick the imitial means my, @« = 1,..., . Choose values
for fuzzifier " and threshold e Set the iteration counter
=,

2) Repeai Sweps 3-4, by incrementing ¢, until g, (1) —
it =1 = €.

3) Compute pg by eqn. (18) for ¢ clusters and N data
objects.

43 Update means my; by eqn. (17).
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Mote that for e € [0, 1] the objective function of egn. (16)
boils down o the bhard c-means case, whereby a winner-
take-alf strategy is applied in place of membership values in
eqn. (17).

D, Fuzzy c-medoids

This is a fuzzification of the c-medoids algorithm and is
outlined as follows:

1) Pick the intial medoids m;, 1 = 1.... .00

2) Repeal Steps 3-4 until convergence.

3) Compute gy fori=1,. . .cand k=1,..., N,

43 Compute new medowds

m; = X,,
whene

N
q = arg miu\_ Z{p,#j'"rlix_, —XilP
1<jSN

e—1

(19

refers to that j for which the minimum value of the
expression is oblained.
Mote that this boils down to the hard e-medowds (PAM) with
e =1, if i =g, and to p,,. =0 otherwise.

E Clustering Validity Index

The clustering algorithms desenbed above are partitive, re-
quiring prespecification of the number of clusters. The results
are obviously dependent on the choice of £ There exist validity
indices o evalvate the goodness of clusienng, comesponding
to a given value of o In this aticle we compute the optimal
number of clusters o in terms of the Davies-Bouldin and Dunn
cluster validity indices [13].

The Davies-Bouldin index is a function of the matio of the
sum of within-cluster distance o between-cluster separation.
The optimal clustering, for ¢ = ¢y, minimizes

1 Z [ S(UR) + S(UL)
- T - e ¥
¢ & Ik (U, 1)

for 1 < k.l < ¢ In this process, the within-cluster dis-
tance S{U/) is minimized and the between-cluster separation
d( U, U ) is maximized. The distance can be chosen as the
traditional Euclidean metric for numeric features.

Dunn’s index is also designed to identify sets of clusters
that are compact and well separated. Here we maximize

. da(Uk,Th)
VR Vmax, S.(0) [

for 1 <j.k.l<e

(200

213

V. IMPLEMENTATION AND RESULTS

Multiresolution clustering and content based retrieval were
performed on 44 images, consisting of 27 flowers, 7 acroplanes
and 10 cars. Dimension of the images range {rom 128 =
128 1o 256 = 256, We pedormed three levels of wavelet
decomposition of the image, and we considered the LL1, LL2
and LL3 subbands of Fig. 1 for clustering. The 21 extracted
features, employed for clustering and retdeval, were (i) four

texture-based [eqns. (7)-(10)], each along the four directions,
(i) two shape-based [eqn. (13)], (i) first two Euler veclor
components for topology-based, and (iv) one fuzzy geomeltric
feature [eqn. (14)]. Davies-Bouldin (DB) and Dunn’s validity
indices helped determine the optimal number of clusters. All
distances were computed, wsing Eouchidean norm [with or
without fuzzy membership, and wm" = 1.2 in egn. (16)], in
the 21-features space.

A. Clustering

The basic steps of the algorithm are as follows.

1y Apply wavelet wansform on the images using egns. (2)-
(5).

2) Extract features in each level of decomposition (ie.,
odginal, LL1, LL2, LL3) using eqns. (6)-(14).

3) Pedorm multiresolution clustering by c-means, PAM,
furzy c-means, fuzey c-medoids algorithms, using
eqns. (15)-(19).

4) Apply clustering validity indices to determine optimal
parttioning.

Table 1 demonstrates the optimal clustering, as determined
by different clustering validity indices, using the Haar and
Daubechies wavelet decomposition. Fig. 2 depicts represen-
tative images from two clusters generated by the fuzey o
medoids algorithm in the LL2 subband, with Daubechies func-
tion. Partitioning into two clusters was found 1o be optimal by
both the Davies-Bouldin and Dunn’s validity indices for both
fuzey algorithms, as observed from Table 1. This demonstrales
the utility of fuzzy membership in appropriately modeling real
life overlapping or ambiguous data.

The first two and last two rows, in Fig. 2, comespond o
images from the two clusters respectively. The first element
of ow 1 and row 3 represent the two cluster means. The
remaining elements are sorted in increasing order of their
distance from the respective means. It is found that the
first cluster consists of different types of flowers, while the
second cluster is made up of various means of transport (Le.,
acroplanes and cars). There were 30 and 14 ¢lements in the
two clusters, with three misclassifications.

It 15 w0 be noted that the system was able o distinguish
between categories “flowers™ and “means of transport”™ in the
L L2 subspace of Fig. 2, irrespective of the odentation, scale
and deformation of the object, as well as the intensity of the
background. This 15 mainly due to the wavelet decomposition
and the subsequent extraction of good features.

Clustering was found to demonstrate best results when
applied in the LL2 subbands whose dimension is one-fourth
of the original image. The effect of multiresolution, from the
coarser original image 1w the finer resolution LL1 through
LL2, is paticularly evident in case of fuzzy clustering. How-
ever, the LL3 subband was too small (dimension ranging from
16 x 16 10 32 x 32) o contain useful information, thereby
resulting in degraded clustering performance. However, with
images with higher dimension the LL3 subband will contain
meaningful information for finer clustering results.
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TABLE 1
OPTIMAL NUMBER OF CLUSTERS FOR DIFFERENT SUBBANDS IN WAVELET DECOMPOSITION

Wivelet Subhand Omginal LL1 LLZ | LL3
function | Clustering DB [ Dunn | DB | Dunn | DB | Dunn | DB | Dunn
) C-ITens 4 | & 2 2 + M ST B 5 %
Haar PAM 3 4 2 2 3 2 2 2
FCM 4 4 3 3 2 2 2 3
Fuz c-medaids 4 -4 3 3 2 2 3 2
- IS 4 4 2 3 2 2 2 2
Daubechies | PAM 3 4 2 2 2 2 2 2
FCM 4 4 3 3 2 2 2 3
| Fuz c-medoids 4 -4 ] 3 2 2 7 2

Fig. 3. Images omderad by distance from centroid with furzy c-medoids clustering in original space for four clusters
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Fig. 4.

As we observe from the table, both the wavelet functions
generated 4, 3 and 2 optimal clusters for the two fuezy
clustering algonthms using two vahdity indices. This 15 a
promising outcomde, with the source images being subsampled
to four times reduction in size. Iis implication o analyzing,
manipulating, querying and mining of large image datasets is
very obvious. By vsing this multresolution wavelet decompo-
sition technique, we could automatically reduce the effect of
noise at different levels subbands of the images.

Clustering the original image generated four partitions using
fuzey clustering. Results are depicted in Fig. 3 for fuzzy o
medoids algorithm. Two of these clusters contained only one
(row 3) and three (row 4) objects, partly signifying noise. Upon
subband decomposition using Daubechies function, the effect
of such noise could be minimized, thereby leading o three
partitions in the LL1 band. This is demonswated for fuezy
c-medods clustering in Fig. 4, generating one cluster (row 3)
containing only one outhier. Finally, two meamnglul partitions
were oblained in the LL2 subspace, as evidenced from Fig. 2.

B. Retrieval

Here a sample image is presented Lo the system for content
based retdeval of the closest match. Wavelet transform is
applied, followed by feature extraction. Results are provided
in the LL2 subband.

Fig. 5 demonstrates sample CBIR results, from the LL2
subband of the wavelet decomposition, using Daubechies
function. The first column refers o the query image. The
rest of the columns, along each row, depict the content-based
retrieved images graded according to increasing distance from
the corresponding query mmage. It 1s observed, by comparing
with Fig. 2, that each query image successfully meirieves
images from is own partition.

It is w be noted that the patition “flowers” consists of
two vaneties of flowers, as illostrated in the first two rows

Images ordered by distance from centroid with fuzey c-medoids clustering in compressed LL1 domain, wsing Daubechies wavelets for three clusters

of Fig. 5. The rewrieved images lie in the same subcategory as
the query image. The patition “means of ransporl” consisls
of two subcategories, viz, cars and aeroplanes. Although there
15 some mismatch in retrieval (between subcategories) in the
last case, yel the resultant image 15 abways within the comect
partition (means of transport) as observed from the last two
rows of the figure. This is perhaps due to the kess number of
images, available from this category, during system design.

On the whole, the results serve o highlight the utility of
the extracted features, in the multiresolution wavelet subband
domain, for CBIR and demonstrate the clustering performance
from coarser to finer scales.

VI. UTILITY OF MULTIRESOLUTION CLUSTERING
TECHNIQUE IN COMPRESSED DOMAIN

Discrete wavelel ransform has been effectively used as an
image compression wol. A fundamental shift in the image
compression approach came after the Discrete Wavelet Trans-
form (DWT) became popular [14], [15], [16], [17]. [18]. The
new image compression standard JPEG2000 [19] is based on
the discrete wavelet transform and has several advantages over
the traditional DCT based image compression standard such
as the baseline JPEG. The images are first decomposed into
a number of subbands at different levels of multiresolution
decomposition. Each subband is then divided into number of
smaller size codeblocks (usually of size 32 x 32) and the
codeblocks are independenty encoded vsing entropy encoding
scheme. Dunng the entropy encoding scheme, the codeblocks
are first processed by a bit-plane coder (BPC) [20] and the
output of the BPC is encoded by a binary arithmetic coding
scheme (MOQ-coder) in order o generate the compressed
image. In JPEG2000 image compression standard, the discrete
wavelel transform is the computationally most intensive par
of the compression system.
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Becawse of the large data storage requirements, the im-
ages are practically stored in compressed form in the im-
age databases. The proposed multiresolution fuzzy clustering
scheme 15 very much suitable o metrieve and cluster the
tmages in compressed domain. In this process, the compressed
codes of the images are nol completely decompressed 1o
generate the onginal mmage. Instead the compressed image 15
decoded o generate the wavelet subbands only. The proposed
multiresolution fuzzy clustering scheme can then be applied to
these decoded wavelet subbands. As a result, we do not need
to apply the discrete wavelet transform while clustering and
retneving the images.

VII. CONCLUSIONS

With the advent of multimedia data mining [3], the need for
intelligent storage, search, processing and retdeval of informa-
tion from large, heterogeneous databases through the applica-
tion of user-friendly interfaces is assuming utmost importance.
This promises wide-ranging applications in fields from photo-
Joumalism through medical technology o bometnes. Due 1o
the increasing involvement of pictorial information, the need
for image compression and subsequent clustering becomes ev-
ident. This is followed by querying of online image databases
for CBIR applications. Subsequently these clusters of images
may be classified, or associations may be mined between them.

We have described a multiresolution fuzey clustering of
compressed images, with potential for CBIR applications.
Wavelet ransforms are employed 1o compress the image,
and eliminate noise. This allows us o avoid the need for
any other preprocessing of the raw image. The signature of
the compressed images, in terms of their visual content, is
extracted as features involving lexture, shape, topology and
fuzey geometry. The featres are invariant 1o odentation, scale
and deformation of object, as well as the background intensity.
Partitive clustering, using validity indices, helps vs determine

CBIR for sample images, from both pattitions, in LL2 subband using Davhechies function

the optimal number of clusters. It is observed that fuzey
clustiering provides overall better pedormance, by demon-
strating multiresolution partitioning at hierarchical levels of
COATSENESS.

Use of these features for CBIR, in the compressed domain,
is also demonstrated. The retrieved images are always found
to lie in the same patition as that of the comesponding
query image. Since the processing is done on subsampled
(compressed) images of smaller size, this strategy now opens
up interesting propositions for large scale image mining. The
relevance of the proposed mulliresolution technigue poses
tremendous possibilities in clustering and retrieval of images
in the compressed domam.
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