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Abstract. Approximation of an image by the attractor evolved througiations of a set of con-
tractive maps is usually known as fractal image compressidre set of maps is called iterated
function system (IFS). Several algorithms, with differemdtivations, have been suggested towards
the solution of this problem. But, so far, the theory of IF$higrobabilities, in the context of image
compression, has not been explored much. In the presetieaste have proposed a new technique
of fractal image compression using the theory of IFS and gindities. In our proposed algorithm,
we have used a multiscaling division of the given image up poesietermined level or up to that
level at which no further division is required. At each lewbke maps and the corresponding proba-
bilities are computed using the gray value information eored in that image level and in the image
level higher to that level. A fine tuning of the algorithm iglgb be done. But, the most interesting
part of the proposed technique is its extreme fastness igeéreacoding. It can be looked upon as
one of the solutions to the problem of huge computationalfoo®btaining fractal code of images.

Keywords: Iterated function System (IFS), Collage theorem, meadderkov operator, image
compression.
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1. Introduction

A set of contractive maps on a space is called iterated fomaystem (IFS) on the same space. The
most interesting property of IFS is that it produces a fixethippavhen the maps are used recursively
starting with any arbitrary set. The fixed point is called #igactor of the IFS. The theory of image
coding using IFS was first proposed by Barnsley [2]. He matietal life images by the attractor
evolved through iterations of an IFS. With the help of itetafunction system, along with the Collage
theorem, Barnsley laid the foundation stone of fractal iemagmpression. However, in most of his
published research papers, implementation part of thenthafolFS to real life images has not been
very clear as the demonstrations are mostly restrictedtarpiimages. Seemingly, a photocopying
machine has been designed by means of which coefficients jpf ar@ computed [3]. The concept of
photocopying machine has also been extended to the casayf&gale images [3]. In this case, the
machine is computing not only the coefficients of maps bui #ie probability values associated with
each map. The reason behind using the IFS with probabilgidsat a Markov operator associated with
the probability measure whose support is the support ofitl@gmage can be defined. It has also been
shown that the Markov operator is a contractive map on theesphall probability measures. Barnsley
also presented the Collage theorem for measure [3] for wthiglMarkov operator possesses an invariant
measure in probability space. From this Collage theorerastideen found that an IFS with probabilities
can produce an invariant measure such that the support ofdigant measure is the unigue fixed point
of the IFS concerned.

The first ever published algorithm of fractal image compmssvas suggested by Jacquin [12].
This scheme is based on partitioned or local IFS [13]. A varadf algorithms have been explored
[8, 6, 16, 7, 14] there after. Most of these schemes are glastdted to the technique described by
Jacquin. Unfortunately, the theory of IFS with probalilj in the context of image compression, has
not been explored much. Though the theoretical results as¢irgy in the literature for a long time
[3, 11, 5], there are very few attempts to implement the thearcomputer for images. It may be due to
the fact that some of the mathematical terms need to be pyaparlained and interpreted in the context
of computer programme on a digital images apart from conisigall other implementation details.

An algorithm, which is not in the line of PIFS based fractahige compression has been suggested
here. We have used a multiscaling division of the given imagfeeach level the coefficients of maps
and the corresponding probabilities are computed usingridnevalue information. This is an attempt to
implement the theory of IFS with probabilities for digitahages. There are very few references [9, 10]
in the literature on fractal image compression, besidesvthi& done by Barnsley [3], on this particular
aspect. The present algorithm is appeared to be extrenwlfofeencoding a given image. A comparison
of the proposed method with a GA based fractal method [14}asiged. It is found that the present
scheme is at least 300 times faster than that of the GA basel maethodology. Note that, previously
it has been found that GA based fractal scheme is faster llgacohventional fractal scheme which uses
exhaustive search.

The algorithm described here utilizes the probabilistiatien exists in between pixel values of a
given image. Contribution of a particular pixel, in termdrtensity (gray level value), towards the total
intensity of the image is computed under a multiscalingifhamt If ‘p’ is the proportion of the total
intensity carried by a pixel then one can express the irtieidithat pixel (say §') asg = p x G,
where G’ is the sum of all pixel values. In this algorithmp’‘is computed as a product of a set of
probability values which were obtained from the image infation (pixel values) after braking the image
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in multiscaling order. In the reconstruction process edgél palue is again regenerated using ‘and

the stored set of probability values. Note th@at is also stored within the code. The scheme performs
very fast as no search is performed for finding appropriatealo blocks and maps for a set of range
blocks. This sort of searching is very common in case of Pl&®b8 image compression. In the present
case, the range blocks are the image partitions at a patisubdivision and the domain blocks for
these range blocks are the image partitions at immediatechigvel subdivision. The same kind of
partitioning is also utilized by Dudbridge [4]. As far as wederstand, the present algorithm is only
similar with the algorithm suggested by Dudbridge [4] inea$ selection of domain blocks and range
blocks under multiscaling partitioning. The proceduredomputation of codes is not exactly the same
as that of the method suggested by Dudbridge. Note that nputation such as ‘least square’ is adopted
in our method.

There is a lot of scope for improving the present algorithmanals the efficiency in the sense of
compression ratio as well as quality of the decoded imags.olbvious that a fine tuning of the scheme
is needed. Work, in this regard, is in progress. Our mainaje in this article, is to investigate the art
of finding a probabilistic approach for approximating theegi image. The high speed of execution of
the method appeared to be the main advantage.

The mathematical foundation of IFS with probabilities idlimed in Section 2. The methodology of
the proposed probabilistic algorithm is described in $&c8. Section 4 presents implementation and
the results. Discussion and conclusions are provided itidBes.

2. Mathematical Foundation

The detailed mathematical description is given in [2, 3].mBaelevant definitions and theorems are
stated here. Proofs of the theorems have not been statebthssal are already given in [2]. Starting

with the definition of complete metric space, IFS has beemddfin the space of probability measures.
Invariant measure of IFS in terms of Collage theorem haslkasn described in the same space.

The most important result which is being used here, is theréme of invariant measure of IFS
with probabilities defined on a probability space. Otherrdiéfins and theorems are stated for better
understanding of the theorem of interest. To define the IRB priobabilities in the probability space,
we need to define, the probability space and the IFS in thaespegain we need to define the probability
measure and the contractive mapping theorem on this spateslstart with complete metric space.

Definition 1: Let (X, d) be a complete metric space. Thef{X) denotes the space of all nonempty
compact subsets &f. &

Definition 2: Let The mapv : X — X is called a contractive map with contractivity factemwith
0<s<lif
d(w(z), w(y)) < sd(z,y) Yo,y € X.M®

Lemma 1: Letw be a contractive map on the complete metric spa@€ed). Thenw mapsH(X) into
itself where
w(B) = {w(x) : x € B}, VB € H(X).

w is a contractive map oftH (X)), h) with contractivity factors. Here‘Wiscalled Hausdor f fmetric. #
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Lemma 2: Let (X, d) be a complete metric space. lat; : i = 1,2,--- ,n} be contractive map on
(H(X), h). Letthe contractivity factor fow; be denoted by; for eachi. DefinelV : H(X) — H(X) by

W(B) = Lnj wi(B), VB € H(X).
i=1

ThenW is a contractive map with contractivity facter= max{s; : i = 1,2,--- ,n}. &

Definition 3: An iterated function system (IFS) consists of a completeiengpace (X, d) together
with a finite set of contractive maps; : X — X, with respective contractivity factors;, for i =
1,2,--- ,n. The notation for this IFS i§ X;wy,ws, - ,w,} and its contractivity factor is where
s =max{si,s2, "+ ,Sp}. MW

The preceding results are useful in proving the followingotiem of the existence of a fixed point of
IFS.

Theorem 1 (IFS Theorem): Let { X; wq,ws, -+ , wy,} be an IFS with contractivity factos. Then the
transformationW : H(X) — H(X) defined by

W(B) = | | wi(B), VB € H(X),

-

1

is a contractive map on the complete metric spgeéX ), h) with contractivity factors; i.e.
h(W(B),W(C)) < s.h(B,C), VB,C € H(X).
AlsoW ¥ (B) is defined as
WN¥B)=wWY"YB)); VB € H(X)and VN > 2,
where
WY(B) = W(B); VB € H(X).
It has a unique fixed point, calleattractor, A € H(X), which obeys

A=Ww(A) = wilA),
i=1

and is given by
A= lim WY(B) VBe H(X). &

N—oo

Besides the contractive maps, there may exist a condensatp. The theorem of IFS is also valid
when the condensation map is included in the IFS along wifctntractive maps.

Definition 4: Let (X, d) be a complete metric space and Bt € H(X). Define a transformation
wo : H(X) — H(X) bywy(B) = C; VB € H(X). Thenuy is called a condensation transformation
andC' is called the associated condensation sé.
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The condensation map is also a contractive map with uniqed fdoint. Next we are going to state
the Collage theorem of IFS.

Theorem 2 (Collage theorem):Let (X, d) be a complete metric space. LBtc H(X) and lete > 0 be
given. Choose an IF§X; wy, wo, - -+, w, } With contractivity factors such that

h(T,

n
1=

wi(T)) <,
1
whereh is the Hausdorff metric. Then

€
1—35’

hT, A) <

whereA is the attractor of IFS. &

Now we shall define IFS defined on the space of all probabiligasures. In particular, the Markov
operator, which is a contractive map on the space of all fnitibameasures, is defined below. For this
purpose, one needs to first define a metric on the space obalhpility measures.

Definition 5: An iterated function system with probabilities consistaoflFS { X; wq, ws, -+ ,wn}
together with an ordered set of numbdys, po, - - - , px }, such that

pt+p+---+py=1and p; >0 Vi.

The probabilityp; is associated with the transformatian. &.

Definition 6: Let 0 = {(z,y) € R* : a <z <b,c <y <d},
wherea < bandc < d are real constants. Also I6? denote the set of all probability measuresidn
The Hutchinson metridy onP is defined by

dy(p,v) = sup{/ fdu —/ fdv : f:O-1R? is acontinuous function
O O
and obeys|f(z) — f(y)| < d(z,y) Yz,y €0}, Vu,veP. &

Theorem 3: Let P denote the set of all probability measuresidrand letdy denote the Hutchinson
metric. ThenP, dy) is a complete metric spaced

Definition 7: Let {J; wq, wa, - -+ ,wa;p1,p2, - -+ , pn} be an IFS with probabilities. The Markov opera-
tor associated with the IFS is the functidd : P — P defined by

M(V):PlVOwl_l-FPQVO?UQ_l+---+pnuow;1; Yv e P.

ie. M(v) = sz"/ cw;t. M
=1
The preceding definitions and results are needed to proveltbeiing theorem.

Theorem 4 (Hutchinson’s Theorem): Let M : P — P be the Markov operator associated with an
IFS with probabilities, where each transformation has cadtivity factor0 < s < 1. ThenM is a
contractive map, with contractivity factar, with respect to the Hutchinson metf; i.e.,

dg(M(v), M(p)) < s dg(v, p); Vv, p e P.
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In particular, there is a unique measurec P such thatM p = u. Also, if MY (v) = M(MYN~1(v))
forv € P,N > 2, then
lim MY (v) =pu, YveP.

N—oo
where the convergence is with respect to the Hutchinsonicr@tr?. &

The Collage theorem for measures is stated below. The timestates that any given probability
measure is approximated by the fixed point (unique invarizedsure) of an IFS with probabilities.

Theorem 5: Let {UJ; wy, wa, - -+, wy; p1,p2, -+ ,Pn} be an IFS with probabilities. Leai be the associ-
ated invariant measure. Then the supporj:a$ the attractor of the IFSL; wq, wa, - -+ ,w,}. @

Theorem 6 (Collage Theorem for Measure)Let {U;wq,ws, - ,wy;p1,p2, - ,pn} be an IFS with
probabilities. Letu be the associated invariant measure. ket (0, 1) be the contractivity factor for the
IFS. LetM : P — P be the associated Markov operator. LLe€ P. Then

dp (v, M(v))
(1)

Note that the theory of IFS with probabilities can be extehtteinclude acondensation measure
Once IFS with probabilities or the Markov operator asseclavith v is at hand, one can approximate
the measure by the invariant measure starting from any measure on the same space. In the context
of image compression, the process of computing the Markaratpr is called the encoding process.
Likewise the process of finding the invariant measurbence the attractor of the concerned IFS, starting
from any initial measure, is called the process of decoding.

To implement the aforesaid theory on real life images thélera is to find a way of defining prob-
ability measure corresponding to an image. It is extreméficdlt to define the probability measure of
the image. However an algorithm called gray scale photdagpgigorithm, seemingly, was suggested
by Barnsley [3] as a part of his patented work. We don't knoe dietails of the patented work. A de-
scription of the algorithm is given in [3]. But the implemation part is not clear from this description.
The methodology of the present algorithm is motivated by tl@scription. We are presenting here only
the salient features of the algorithm suggested by Barii3ley

The gray scale photocopying algorithm is a procedure forpging the invariant measuye, the
unique solution ofQ(x) = p, © € P. Consider a gray scale photograph supporte@onf light is
passed through the photograph, it reflects a certain amdulightt Dark regions reflect relatively less
light, while bright regions reflect relatively large. A fuian v is introduced which describes the amount
of light reflected from different regions of the photografiitne photograph is now representediby P,
whereP is the set of all normalized Borel measured-anThe photocopying machine consists of some
lenses and filters. The emitted light, from different paftthe given image, is controlled by system of
lenses which apply the affine transformatians ¢ = 1,2,--- ,n. Each lens system has its own filter
pi, 1 = 1,2,--- ,n. A filter attenuates the light that passes through it by aofaptoportional to the
numberp;. The output of the machine is taken on a photographic plate.résulting image i§(v).

The basic idea of the machine is adjusting the affine mgpand the probabilitiep; one by one
starting from all set at zero. For example, first of all, thensformationw; and the probabilityp; are
adjusted to make the output image as good an approximatiposzible to a part of the target measure
v. The adjustment of); andp; are such th@blyowl‘l(B) < v(B) for every Borel subseB of L. Thus

di (v, p) < . »
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Figure 1. Multiscaling type division of an image

(v — piv owy ') is a Borel measure. Next the affine transformatignand probabilityp, are adjusted
in such a way thap;v o wfl + pov o wgl is as good an approximation as possible of a larger part of
Again the adjustment is such that- (p;v 0wy + parowy ) is a Borel measure. New transformations
and probabilities are added successively to the IFS withalsitities to improve the approximation of
by Q(v). At all stages the contractivity of the Markov operator isim@ined to bes by insisting that
each affine map has a contractivity factor less thawhere0 < s < 1. Once the output image looks
sufficiently like the input image, the transformations amel ¢orresponding probabilities are recorded.
In the next section we have described our proposed algarithm

3. Proposed Probabilistic Approach for Image Encoding

In the present work we have used a multiscaling division efgiven image as described in figure 1. At
each level of partitioning, the image or subimage is diviohtd four quadrants. Each quadrant is called
the child of its parent image or subimage. The Markov operst@omputed and the approximation
of the image by means of the invariant measure of the Markaratpr is carried out at each level of
partitioning. The process of partitioning the image, or shbimage as the case is, and computing the
Markov operator are performed up to a predetermined levepdp a level at which no further division
is required. No further division is required at any leveligades that the successful approximation of
the given image through the obtained Markov operator. Topramthe Markov operator, it is essential
to find the maps and their corresponding probabilities. Ahdavel, probabilities are computed by the
ratio of sum of gray values of a child subimage to the sum of gedues of its parent subimage. This
conforms the sum of four probabilities, at each level, to biéyu The ratio of the gray level value of
a pixel to the sum of all gray level values of the entire imaggidates the proportion of information
carried by that pixel. Actually, contractive maps alonghittie probabilities try to approximate the ratio
of each gray level value to the sum of all gray level values.isthe proposed algorithm, it is essential
to store the information regarding the sum of gray level @alltAlso the corresponding contractive maps
are nothing but the maps from a parent subimage to its chbarages [Figure 1]. The size of a parent
subimage is double that of its child subimages. Hence, the frean parent subimage to its child is a
contractive map.
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We have already mentioned that the division of a parent sadpninto its children depends on the
performance of the approximation of the subimage by the Bladperators. Now if the complexity of
the pixel values of the parent subimage is higher, thenduuivision of the subimage is quite likely. On
the other hand the image region where the complexity of thel palues is low, no further division is
required. In this case, if there is division, then we arerigsh the sense of compression ratio. In order
to avoid this problem we have introduced a simple classifinacheme. The scheme classifies the child
subimages into two groups according to the variability @& flixel values. If the variability is love.,
if the variance of the pixel values in the subimage is belowkedfivalue, called threshold, we call the
subimage as smooth type. Otherwise we call it a rough typeh gixel value in a smooth type subimage
is replaced by the mean of all pixel values. The procedurebedimoked upon as a condensation map.
Note that under a condensation map, an image region is igothihthe copy of itself. Rough type
subimages are approximated by the computed Markov opsraktence, for each subimage we are to
store either a probability value or the mean of the pixel @alalong with the information regarding the
block type.

It may be noted that there will exist a level at which no furtidévision of the image blocks is
required. When the size of a child image block becomes1l|i.e., the child image block is a pixel], it
can't be further subdivided. It may also be observed thauih a case, there will be a contractive map
from the parent image block to the child image block such ttimaterror in estimating the pixel value of
the child image block is zero.

The description of the encoding algorithm, the computatibbit rates and the decoding process are
described in the following subsections.

3.1. Description of the Encoding Algorithm

Step 1: Compute the sum of gray level values of the given image.

Step 2: Partition the image) into its four quadrants. Each quadrant is called child mzigje
(Ig, k=1,2,3,4) of I.

Step 3: Compute

4

. __sum of pixel values in;,, .

) Pt = “Sum of pixel values in > k=1
k=1

i) Mean(ly)=m (say), k =1,2,3,4.
i) Variance(l)=vy (say), k = 1,2, 3, 4.

Step 4: If Variance(l,) < Th, [This a prefixed value]

then approximatd,, by replacing each pixel value d@f, by mj,
else computd} = py.w(l), k=1,2,3,4. (A)

Herew(I) is obtained by considering non overlapping windows of ize 2 covering the entire
image () and taking sum of four pixels within a window. thus, the sifev (/) becomes equal to that
of I, k=1,23,4.

Step 5: Computel! by appending} , k = 1,2,3,4. (B)
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Repeat the process (A) and (B) umtil = I¥+1, wherelll = pp.w(IV~1) is the approximation
of I;, . Note that/"V is an approximation of by Theorem 6 [see Section 2]

Step 6: Check the difference betwedh andI}.
If the difference is small (approximation is satisfactory)
then STOP,
else replacd by I,i, k =1,2,3,4 and repeat steps 1, 2, 3, 4 and 5 until the siz&.6 equal
to a prefixed value.

A schematic diagram of the encoding process is presenteigjime-2.

3.2. Computation of Bit Rate

The complete description of an image in terms of its codeh wéspect to its storage or transmission
requirements, is to be evaluated to get the compressiam aabit rate. The important overhead costs
which are to be considered for the proposed encoding methad omage are : (i) the description of
the image patrtition, (ii) the nature of the blocke,, class information of blocks and (iii) the quantized
values of the numerical parameters.

First of all, the sum of the gray level values or the averagy ¢gvel value of the given image is to
be stored. If the given image is a 8 bit/pixel image then 8 a&its required to store this average gray
level value. Next a complete description of the image partiheeds to be stored. Note that we have
used here a multiscaling type division. At any stage, a biseakither partitioned into its child blocks
or remains unaltered. The partitioning of a block into itddtilocks depends on the performance of
the estimator of the parent block. In particular, for a patdack, there may exist either one or two or
three or all four children blocks. Therefore, there aretesir possible coding configurations for a block
at any stage and 4 bits are required for storing this infaonat The image is partitioned in a quad-
tree fashion. Whenever a image block is partitioned in tokttdocks, one needs to decide whether to
partition a sub-block further or not. There could be 16 gdasestonfigurations available for this. If one
needs to partition only one sub-block the information abwhich sub-block to be partitioned needs to
be stored. So there are 4 such cases. Similarly, if one negastition 2 sub-blocks out of 4, then there
will be 6 possibilities to indicate which two sub-blocks vagd further partitioning. Again if one needs
to partition 3 sub-blocks out of 4, then there are 3 postiddlifor the same. Lastly, there is only one
possibility if one needs to partition all 4 sub-blocks. Sibi@gether there are 16 possibilities available
for each image block at level of partitioning. We call thessgibilities as 16 configurations. Figure 3
shows the sixteen possible configurations of a block at aagestEach block is again, either smooth type
or rough type. Thus for storing block information, we needtimre one more bit for each block. Now,
we are left with two most important numerical parameters,iiean gray level value of a smooth type
block and probability corresponding to a block. the meanesland the probabilities are quantized and
stored in the codes.

3.3. Image Reconstruction from the Code

Image reconstruction is a process of decoding the obtaiodd. cHere the decoding process is almost
similar to the encoding process. The process starts withkaimaay image with at least one pixel having
nonzero pixel value. This starting image plays the role otimahy image. In the decoding process no
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Figure 3. Possible configurations of a subimage

probabilities or contractive maps are computed. The staithage is partitioned following the partition
rule stored in the codes. Using the block information, thamgray level values or the stored probabili-
ties and the maps are applied to the blocks of the startingentmget the stabilized value for each pixel
of the starting image. These stabilized values are not tleel fpoints of the target image. The desired
image |.e, the close approximation of the target image] is obtainethhitiplying each stabilized value
of the starting image by the ratio of sum of the gray level galof the original image, stored in the
codes, to that of the starting image.

In the decoding, the number of iterations to get to the Stagall value of a pixel of the starting
image is fixed, depending on the image size. Also, unlike #eoding of a PIFS code [12, 14, 15],
no intermediate reconstruction of the image is possibldigidecoding scheme. Note that, the starting
image should be such that, there exist at least one pixelneitizero pixel value. Otherwise, whatever
may be the subdivision of the image, we will always obtainithage with every pixel value being zero.

A schematic diagram of the decoding process is presenteigjime-4.

4. Implementation and Results

The probabilistic approach for fractal image compressthscussed in Section 3 is tested with a wide
range of gray scale images. We are presenting here thesrebtitined for some 256 256, 8 bits/pixel
images. First of all, let us discuss the results obtainedriplémenting the algorithm on the benchmark
image “Lena” (256x 256, 8bits/pixel). The original image of “Lena” is shown ilgkre 5. The image
is subdivided into four128 x 128 subimages, each of which is encoded separately. Pantifoof
each subimage has been carried out up to the level of substdgeze 2x 2. The performance of
the encoding methodology is also examined by considerirgirttage partitioning up to the level of
subimages of size 4 4.

For encoding the “Lena” image, the results of partitionipga2 x 2 subimages and 4 4 subimages
are reported here. Also, the encoding using partitioningoup x 2 subimages has been performed for
different threshold values. Note that, successful apprakion of an image block at any stage will be
judged by the selected threshold value. Actually, the tolesis set to evaluate the error criterion (here,
the error criterion is RMSE). All the test results and sonatistics of both the cases are given in Table 1.
The test result is showing how compression ratio increagasdecrease in the PSNR value for encoding
up to 2x 2 subimages. The time taken for encoding is also computeubto the relative fastness of the
proposed fractal image compression scheme using IFS wathapilities. The programming language
used here is “c” and all the programs have been executed o8 B2 Silicon graphics Workstation.
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Figure 5. Original images of Lena, Girl, LFA, and Seagull (fpb

Table 1. Testresults f@56 x 256, 8 bit/pixel “Lena” image using different threshold values

Lowest level | Compression| PSNR | bits/pixel | Time elapsed
subimage size Ratio (in db) (bpp) (in Sec.)
4x4 20.1 22.43 0.40 8.34
2 %2 3.20 30.49 2.50 23.39
2 %2 5.08 28.23 1.58 16.40
2% 2 8.81 27.11 0.90 10.93

13

The corresponding figures for the “Lena” image are shownguifé 6. In Figure 6, the top left image
shows the decoded image of "Lena” where the encoding isethaut up to the subimage of size<44.
The rest of the images are showing the decoded “Lena’foerdifft threshold values when the encoding
is processed up to the subimages of size2 The decoding process is carried out with a starting image
which is “White” image having all the gray level values fixd®2&5.
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Figure 6. Decoded Lena (clockwise from top left corner):0(30 bpp, where subimage sizedis 4; (ii) 0.90
bpp, subimage size & x 2; (iii) 1.58 bpp, where subimage sizedsx 2; (iv) 2.50 bpp, where subimage size is

2x2

The algorithm is also tested for the “Girl” image, a “low flgiaircraft (LFA)” image and a “Seagull”
image. All these images are 8 bit/ pixel images of sizé x 256. The original images are shown in
Figure 5. Experimental results of these images are showabte. Images in Figure 7 are the decoded
images of “LFA", “Girl” and “Seagull” respectively. For athe cases the starting image is considered
as the “White” image having all the gray level values 255. éNibiat, images can also be reconstructed

starting from any other image.

Table 2. Test results for sevegdl6 x 256, 8 bit/pixel images

Image | Compression| PSNR | bits/pixel | Time elapsed

Ratio (in db) (bpp) (in Sec.)
Girl 10.41 27.75 0.76 9.68
LFA 4.46 24.23 1.79 15.46

Seagull 7.20 26.12 111 12.56
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Figure 7. (Left to right): (i) decoded LFA, 1.79 bpp, wherdsnage size iQ x 2, (ii) decoded Girl, 0.76 bpp,
where subimage size &x 2, and (iii) decoded Seagull, 1.11 bpp, where subimage sizeig

The proposed probabilistic approach for fractal image aesgion method is also compared, in
terms of the computational time, with the GA based fractadgs compression technique proposed by
Mitra et al. [14]. The basic feature of GA based fractal imagenpression scheme is same as that
of the scheme proposed by Jacquin [12] and is usually knowpaggioned iterated function system
(PIFS) based compression. A GA based compression techtrigago reduce the computational time
for the implementation of the PIFS based compression tgqaknilt has been found that almost 20 times
reduction in the search space is achieved for the GA basegression technique in comparison to the
usual PIFS based image compression technique. In the ustbRsed image compression technique,
an image is tiled with “range blocks”, and for each range klaenapping on a larger “domain block”
is found such that the transformed domain approximate thgerdlock. The search for an appropriate
domain block and transformation for each range block is@@dwut by exhaustive search mechanism. In
GA based technique, the search is performed using GAs. Natgethe present probabilistic approach is
introduced with no search mechanism. The test results &f faatbabilistic approach encoding and the
GA based encoding techniques are presented in Table 3.

Table 3. Results obtained by using probabilistic approahthe GA based technique for fractal image com-
pression

probabilistic approach GA based technique
Image | Compression| PSNR | Time elapsed| Compression| PSNR | Time elapsed
Ratio (in db) (in Sec.) Ratio (in db) (in Sec.)
Lena 8.81 27.11 10.93 10.50 30.22 3141.47
Girl 10.41 27.75 9.68 11.37 30.74 2608.18
LFA 4.46 24.23 15.46 5.51 26.86 5838.17
Seagull 7.20 26.12 12.56 7.40 27.27 4240.02
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It is very clear from the Table 3 that the proposed probdhilepproach for fractal image compres-
sion is very fast compared to the GA based fractal image cessjpn technique. On the other hand, the
compression ratio and the quality of the decoded image mgaef PSNR of the proposed method is not
so impressive as compared to that of GA based technique. Al@uking effects, due to quantization,
are visible in the decoded image of the present algorithmt iBBuespect of computational time, the
proposed method is probably one of the fastest, if not thHesas

5. Conclusions and Discussion

The proposed probabilistic approach for image compressiamlirect outcome of the theory of IFS with

probabilities. The algorithm is very fast in the sense of patational time. But at the same time, the
technique is very much dependent on the partitioning schesed. As we are using multiscaling type
division to find the contractive maps and corresponding aibdlies, it is assumed that, under a suitable
transformation, there exists at least some similarity betwimage regions along this direction. But real
life images need not necessarily possess similarity like o overcome this problem one has to divide
the image up to subimages which are considerably small. thatehe algorithm will be a lossless one
if one goes up to the pixel level division for every pixel. Birt that case, it would not be useful for

compression as there will be hardly any compression.

The proposed method is also applicable in case of condengataps included in the set of maps. A
particular type of condensation map is used in the preseet ¢dote that, due to this type of condensation
map, each pixel value of an image region is replaced by theageeof all pixel values of that region.

The present scheme is an attempt to find an image compresstamque using IFS and probabilities.
Some blocking effects are observed, though those are ngtsesious, in the final decoded image. It
is true that some modifications have to be incorporated tcenttadk algorithm more efficient to achieve
a high compression ratio as well as quality decoded imagee iffformation regarding multiscaling
partition is taking a huge storage space causing redugtitimei compression ratio. One way to increase
compression could be to bypass this information. Towardsthution of this problem one can possibly
make the multiscaling image subdivision mandatary up toceapecified level. In particular, for the first
few subdivision, one may consider all four subimages irtstdfayoing for option of selecting a few out
of four depending on the image estimation obtained at thadigision. This may reduce the burden of
storing 4 bits for each subimage at each level. Another wanpatasing compression could be done
by adopting a lossless compressiag, arithmetic or run length, scheme and applying it to the code
obtained by the probabilistic approach.

The huge reduction in the computational time makes the ptesgorithm more attractive. The
probabilistic approach technique for fractal image coragian is at least 300 times faster than the GA
based fractal image compression technique. The relatatadas of the proposed algorithm appeared
to be its main feature. The method is found to be practicatlyoaline process. The fastness of the
algorithm can be utilized to real time coding, for which @aable compression may be delivered very
rapidly. A U.S patent [1] on this work has already been olatdin

The present method of compressing an image is based on thkdaehat proportion of pixel values
is present in a small block of image compare to the total piaéle present in the entire image. It turns
out to be a self similar in nature. More precisely, it is pamtd self similar in nature. It is working
well as no natural image shows exact self similar charatiesi However, K. Culik Il et al.[17, 18, 19]
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established a relation between Iterated Function Syst#f®y and automata theory where self similar
images could be generated using rational expression. Mades opened up a new concept for image
analysis. In the present discussion we have not tried tasksthe same.
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