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SUMMARY. In this paper wo obtain most general hermitian and nnd solutions X to
each of the following matrix equations. (We consider two cases (i) B is hermitian and (i) B
isn.n.d)

() BXBXB = BXB

(2) XBXBX = XBX

We thus determine (a) the class of all norma! distributions Ny(0,¢) of ¥ under which a
given quadratic from Y’AY is distributed as & chi-square. We also determine the class of all
quadratio forms Y’BY which are distributed independently of Y’AY and also tho class of all
Y'BY di-tributed as a chi-square indopendently of ¥°BY when ¥ ~ Np(0, 5).

1. INTRODUOTION

Let ¥ ~ N0, Z), where Z is a nonnegative definite (n.n.d.) matrix.
It is well known (sce Rao, 1972 and Khatri 1963) that ¥'AY, where 4 is
a real symmetric matrix, has a chi-square distribution if and only if

ZAZAZ = 24AZ . (L)
Futther, Y'Y and Y'BY are indopondently distributed if and only if
ZAZBZI=0.
The matrix equation
BXBXB = BXB o (L2)
was considered by Mitra (1968) and
XBXBX = XBX . (L3)
by Mitra and Bhimasankaram (1970), where thoy obtained tho most genoral
solutions for an arbitrary complox matrix B. Mitra (1968) also obtained the
most general hermitian solution to (1.2) when B is herimitan, whereby one

obtains the class of all quadratic forms ¥’AY which is distributed as &
chi-square for a givon distribution Ny(0, Z) of ¥.

In this paper wo dotcrmino the class of all normal distributions Np(0, E)
of ¥ undcr which a given quadratic form ¥'AY is distributed as a chi-square.
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Moreover, we find the class of all quadratic forms ¥’BY which are distzibuted
independently of ¥’AY and also the class of all ¥’BY distsibuted as a ohi-
squaro indepondently of ¥’ AY, when ¥ ~ Ny(0, E).

In Section 2, we prove sonie preliminary results some of which are needed
in the later sections and which are also of independent i t. In Secti
3 and 4 wo obtain the most general hermitian and n.n.d. solutions to (1.2)
and (1.3) respectively, when B is hermitisn or n.n.d. In Section 5 we consider
the problem of independence of two quadratic forms.

Wo consider matrices over the field of complex numbers and follow the
same notations as in Rao and Mitra ((1971). Further for a matrix 4, 4;,
A4y and A; denoto respectively symmetric, hermitian and n.n.d g-inverses of
A, and A, A7, denote reflexive hermitian and reflexive n.n.d g-inverses of
A. Wi wo consider the statistical aspects we deal with matrices over
thoreal field. Throughout the paper orthogonal projecti porat; are
used with reference to unitary innor product.

The inspiration for the present paper came from Khatri and Mitra (1976).

2. PRELIMINARY RESULTS

We state the following woll-known lemma (sco Rao and Mitra, 1971,
page 17) which we need in the soquel.

Lemma 2.1: Let A and B be matrices of same order. Then A°A = B'B
if and only if A = UB where U is a unitary matriz.

We prove

Lemma 2.2: Let A and B be matrices of orders nyxm and ny X m respec-
tively. Then A*A = B*B if and only if A = UB where U is a semiunitary
malriz such that

H(B) C AU

Proof : If my 2 n, the proof is trivial. Let n, < ny. If part is trivial
beeause pu(B) C w(U*)== U'UB = B (sinco U is semiunitary, U* = U+).
To prove the only if part, first observe that in view of Lemma 2.1, there
oxists a semiunitary matrix U such that A = UB and UU® = I. Now,

A°A — B'B —= B'U* UB = B'B.
—3BYI-U'U) B=0=(I-UU) B=0.
= y(B) C u(U"),

43 "

since J—U*U is an orthogonal proj P
This completes the proof.
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A, 0 O
Lot B p(o 4 0])P
0 0 0

where P is nonsingular, A, of order r,Xr, and A, of order ryXr, are
diagonal with positive diagonal elements be & hermitian matrix of order

L
n. Let D be any matrix partioned as D = (P*)! (M) where the number
N

of rows in L, M and N are r,, r, and n—r,—7, vespectively. ... (2.1)
Theorem 2.1: Consider the set up in (2.1). Given B, D'BD is nnd if
and only if
N is arbitrary,
M is an abilrary matriv of rank < ry, and
L=A2UQ where
0*Q = M*A,M--K'K,
K being arbitrary subject lo the condition, B(Q) < 1y and
U is an arbitrary semiunitary malric such that p(@) C U
Proof - Observe that D*BD — L*A L—M*A,M. Now, D'BD is n.nd
& [*'AL-M*AM = K°K for some K
& L*A\L - M*'A,M-+K'K for some K.
‘If part’. 1f M, N, K, U and L are chosen as in the hypothesis, clearly
L'AL = Q*°Q — M"A,M+K'K and hence D*BD = K'K.
Only if part. D*BD is nan.d
= L'A,L-M"A,M is n.nd.
Wiite L'AL — M*A,M{K°K.
Notice that
R(M) — ROM*AM) < RIL*AL) < 1.
Let Q be a matrix such that

0'Q - M'AM+ KK
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Thus L*A,L = Q*Q. Now by Lemma 2.2 it follows that L =A7"*UQ
where U is & semiunitary matrix such that (@) C s(U*).

Remark : If r, > ry, then M can be chosen arbitravily. The rank
condition on @ is the most general sinco X*C*CX = EE is consistent if
and only if R(E) < R(C).

Theorem 2.2 : Consider B as in (2.1). The most general solulion lo

X*BX =0 is
Y
X - ()| apeuvarry
z

where Z is arbitrary, Y is an arbitrary matrix of rank <r, and U is an
arbitrary semiunitary matrix such that

WAL Y) C ().
Proof follows from Lomma 2.2 along the lines of Theorem 2.1.
Theorem 2.3 : Let B be a hermitian matrix of order nxn.
(8) The most general hermitian solution to XBX = Xis
X = D(D*BD); D*
where D is an arbitrary malric wilh 0 yows.
(b) The most general non.d solution to XBX = X is
X - D(D*BD); D*
where D is any matriz with n rows chosen as in Theorem 2.1.
Proof follows along the same lines as Thoorem 3a of Mitra (1968).

Remark : 1f in the sbove theorom B is naud. then a general nan.d
solution to XBX = X is

X = D(D*BD);, D*

where D is arbitrary.
A34-18
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3. TrE EQuaTioN BXBXB = BXB
We consider the cases where B is hermitian and B is n.n.d. For each,
we consider hermitian and n.n.d solutions of BXBXB - BXB. Thus four
casos arise.
Theorem 3.1 (Mitra, 1968) : Let B be a hermitian matriz. The most
general hermitian solution to (1.2) is
X = D(D*BD);, D'+ E—B-*BEBB-
where E is an arbitrary hermitian malric and D is arbitrary.
Remark : A general hermitian solution to BXBXB — BXB when B
is n.nd is of the same form as in Theorem 3.1 since every n.nd matrix is

hermitian.  However, with no loss in generality, we may write

X = D(D'BD); D*-E—B-*BEBB-. o (30)
This determines the class of all quadratic forms ¥’'XY which are central
chi-squares when ¥~ N, (0, B).

Corollary 3.1.1: Let K he any given matrix. The class of all hermitian
matrices X such that KXK* is an orthogonal projection operator is given by X
asin (3.1) where B = K*K.

Proof follows onee it is noticed that for B = K*K
BXBXB - BXB & KXK* is hermitisn and idempotent.

Thoorom 3.2: Let B be a hermitian matrix. The most general n.n.d
solution to (1.2) is X = L*L where

L - UFQ* +&I—Q*Q")

where B = Q°AQ, A being nonsingular,

F is any malriv such thal F*F = D(D*AD); D*

D being an arbitrary matrix such that D*AD is n.nd,

U is an arbitrary semiunilary matriv such that p(F) C p(U*) and

Z is abilrary.

Proof: When B = Q*AQ where A is nonsingular and X = L*L,
BXBXB - BXB & QL'LQ"AQLLQ* = QL'LQ*
& QL’LQ* = D(D*AD); D* = L'L
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where D*AD is n.n.d, by Thoorom 2.3
e LQ* = UF
where y (F) C x(U*) by Lemma 2.2
& L=UFQ"-+ZI1-0°0™)
whero Z is arbitrary.

Corollary 3.2.1: X as specified in Theorem 3.2 is the most general n.n.d
solution to BXBX = BX (or cquivalently XBXB = XB) where B is

hermitian.

Proof follows from Theorem 3.2 onco it is observed that BXBXB = BXB
&= BXBX - BX when X is n.n.d and B is hermitian.

As before, the most general n.n.d solution X to (1.2) where B is nnd
can be obtainod from Theorem 3.2. Howover, we give below an  alternative

simple form for the same.

Theorem 3.3 : Let B be a non.d matriv. The most general nond solution
to (1.2) is

X = C-PC-*+(I-C-C)UI-C-C)°

where

P is an arbilrary orthogonal projection operator

C is any matrix such that C°C = B is a rank factorization of B

C- is an arbitrary g-inverse of C, and

U is an arbitrary n.n.d malriz.

Proof : Lot C be a matrix such that B = C*C is a rank factorisation
of B. Now, BXBXB — BXB & CX(* is hermitian and idempotent.
&= CXC* = P where P is an arbitrary orthogonal projection operator.

By Lemma 2.1 of Khatri and Mitra (1976) tho most goneral solution X is
given by

X = C- PC-*+(I-C- C)U(I-C-C)*
where

C- is an arbitrary g-inverse of C, and

U is an arbitrary n.n.d matrix.
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4, Tre gQuatioN XBXBX = XBX
Theorem 4.1: Let B be a hermitian malrix. The most general hermitian

solution to (1.3) is given by

X =D(D'BD);, D*+2
where D is arbitrary and

Z = PAP*

where B is an arbitrary real diagonal matrix and

P - (I-D(D*BD); D°'B)Y

where ¥ is an arbitrary solution of
Y*(B—BD(D*BD);D'B)Y =0

Proof : It is easy to observe along the lincs of Lomma 4.3 of Mitra and
Bhimasankaram (1970) that the most general hermitian solution to (1.3) is
given by

X=W+Z
where W is a general hermitian solution to WBW =W and Z is & genoral
hermitian solution to
WBZ =0
and
ZBZ = 0.
Now from Theorem 2.3(a) tho genoral solution W to WBW = W is given by
W = D(D*BD); D*

where D is arbitrary.

Let ¥ be a goneral solution of

Y*(B—-BD(D'BD);, D'B)Y = 0.
Write
D(D'BD); D* = W.

Now observe that, B—BWB = (I-WB)* B(I—-WB). Hence YV is the
general solution to ¥* (I—-WB)* BI-WB)Y =0 Thus P = (I-WB)Y is
the gencral solution to WBP =0 and P*BP = 0. Hence for any real
disgonal matrix A, WBPAP* =0, PAP*BPAP* =0 and PAP* is
hermitian.
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Conversely, lot Z be a hermitian solution to WBZ =0 and ZBZ = 0.
Write Z = PAP* where A is nonsingular diagonal. Clearly WBP = 0 and
P*BP — 0. Hence P = (I—-WB)Y whero Y sutisfies Y*(I—WB)"B(I-WB)
Y = 0, which is the same as Y*(B —-BWB)Y = 0.

Remark : The goneral solution to ¥*(B—BWB)Y = 0 is obtained using
Theorem 2.2

Theorem 4.2 :  Consider the same sel up as in (2.1). The most general
n.n.d solution to (1.3) is given by

X =Dp*
where
N is arbitrary,

M is an arbitrary matrix of rank < ry, and

L=A;2UQ
where

0'0 = M'AM+K'K,

K being an arbitrary semiunitary matriz such that RQO)Kr, and U is a
semiunilary matriz such that (@) C u(U®).

Proof : Write X = DD*.

Tirst observe that XBXBX = XBX & D'BD is an orthogonal
projection operator

&= D*BD = K°K where KK* = I or where K is & semiunitary matrix.

Now the proof follows in the same lines as in Theorem 2.1.

Remark : Let Y have a p variate normal distribution with null mean
voctor. Theorem 4.2 dotermines the class of all dispersion matrices X, and
hence the distributions of ¥ such that Y'BY has a central chi-square
distribution.

The most general hermitian solution to (1.3) when B is n.n.d was obtained
by Mitra (1968). Only one needs to observe the equivalence of (1.3) and BXBX
— BX in this case. For comploteness wo quote below Mitra's theorem.

Theorem 4.3 (Mitra): If B is n.nd, the general hermitian solution to
BXBX — BX (or cquivalenlly XBXBX = XBX) is given by X= c*
(CBC*)- CBC*(CBC*)~*C+FDF* wlere C and F are arbitrary except that
BF = 0 and D is an arbitrary diagonal matriz with real elements.
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Let B be a nn.d matrix. Let X ben.nd. XBXBX = XBX & XBXB
— XB&= BXBXB - BXB. Hence the general nn.d solution to
XBXBX = XBX where B is n.nd is given by Theorom 3.3.

Notice that when B and X are nn.d, XBXBX = XBX & KBK*
1 tor where K is any matrix such that

is an orth projoecti P
X = K°K. Thus we determine the class of all K such that KBEK® is an
orthogonul projection operator. Mitra and Bhi karam (1970) obtained
an expression for the sumo (seo their Lomma 3.3). Wo deduce below yot
another alternative expression which is simpler than the above.

Theorem 4.4 : The most general form of K such that KBK* is an
orthogonal projection operator where B — CC* is any nnd malric is

K = QUC-+Z(I-CC")
where Q and U are arbilrary semiunitary malrices such that
R(Q) < R(B),

Q%) C mU)
and
Z is arbilrary.

Proof : KBK® is an orthogonal projection operator & KCC*K* -
QQ* where Q°Q =1 and R(Q) < R(B). Now the proof follows from

Lemma 2.2,

5. INDEPENDENCE OF QUADRATIC FORMS IN NORMAL VABIABLES

Let ¥ ~ Np(0, Z). It is well known (see Rao and Mitra, 1971) that V'AY
and ¥Y'BY arc independently distributed il and only if ZAZBE = 0. In
this section we detcrmine the class of all B such that given A and Z, Y'BY
is (i) independently distributed of ¥’AY and (i) distributed as central y*
independently of Y'AY.

Theorem 5.1 : Let ¥ ~ Ny(0,E). Let A be a given real symmelric

matriz. Then the class of all real symmelric malrices B such that Y'BY is
independently distributed of Y'AY is given by

B = (C+2Z) (Y+Z)(C+E)”
+U—(C+E)- (C+E)UC+E)C+E)’
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where
C =ZAZAZ
U is an arbitrary real symmetric matrir, and

Y and Z are arbitrary real symmelric solutions of the equations

Y(C+Z)Z =0
CC+Z)Z =0.
Proof : ZAZBE - 0& ZAZAZBZ - 0.

A general solution to B of the second equation above is given by Theorem
2.4 of Khatri and Mitra (1976).

Theorem 5.2 1 Consider the sel up as in Theorem 5.1. The class of all

B such that Y'BY is distributed as contral y* independently of ¥'AY is
B = D(D'ED); D' +E- £~ ZEEEZ~'
where

E is an arbitrary real symmeltric matrix, and

D is an arbitrary solution of ZAED = 0.

Proof : Y'BY has a central y*

& B — DID'ED); D' +E—E- ZEZZ~
where

D is arbitrary and E is an arbitrary real symmetric matrix (by (3.1)).

In view of the above,
ZAZBZ =0
&= ZAZD(D'ED); =0
& ZAZD = 0.

Since this paper was written, it has come to our attention that Baksalary,
Hanke and Kala (1980) have obtained exprossions for the general solutions in
Theorem 2.3(b) (with no restrictions on B) and Theorem 4.2.  Their forms are
different from those given in this paper. Moreover, they have obtained
general n.n.d E whih satisfices EAZBE = 0, given A and B, thus determining

the class of all distributions undcr which two given quadratic forms are
independent.
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