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Abstract

In this article the effectiveness of some recently developed genetic algorithm based pattern classifiers has
been investigated in the domain of satellite imagery which usually have complex and overlapping class
boundaries. LANDSAT data, SPOT image and IRS image are considered as input. The superiority
of these classifiers over k-NN rule, Bayes maximum likelihood classifier and multilayer perceptron for
partitioning different landcover types is established. Results based on producer’s accuracy (percentage
recognition score), user’s accuracy and kappa values are provided. Incorporation of the concept of variable
length chromosomes and chromosome discrimination led to superior performance in terms of automatic
evolution of the number of hyperplanes for modeling the class boundaries, and the convergence time. This
non parametric classifier requires very little a priori information, unlike k-NN rule and MLP (where the
performance depends heavily on the value of k and the architecure respectively), and Bayes maximum

likelihood classifier (where assumptions regarding the class distribution functions needs to be made).
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I. INTRODUCTION

Genetic Algorithms (GAs) (Goldberg 1989, Davis 1991) are randomized search and optimization tech-
niques guided by the principles of evolution and natural genetics. They are efficient, adaptive and robust
search processes, producing near optimal solutions and have a large amount of implicit parallelism. GAs
deal with individuals called chromosomes (usually binary strings), which encode the parameters of the
problem space and represent potential solutions. An objective function of a string provides a mapping
from the chromosomal space to the solution space. A fitness function is also associated with each string
which indicates the degree of ‘goodness’ of the solution represented by it. A set of chromosomes con-
stitutes a population which is initially created randomly. Biologically inspired operators like selection,
crossover and mutation are applied on the population over a number of generations till a termination
criterion is achieved. The best string obtained at this point (or obtained so far) represents the solution of

the problem.

In pattern recognition, there are many tasks involved in the process of analyzing/identifying a pattern
which need appropriate parameter selection and efficient search in complex spaces in order to obtain
optimum solutions. Therefore, the application of GAs for solving certain problems of pattern recognition
(which need optimization of computation requirements, and robust, fast and close approximate solution)
appears to be appropriate and natural (Gelsema 1995, Pal and Wang 1996). Such an attempt for pattern
classification in IR" has recently been made in (Pal et al. 1998) to develop a GA-classifier, where the class
boundaries are approximated by a number of hyperplanes. The characteristics of GAs are exploited for
search and placement of a fixed number, H, of hyperplanes in the feature space, such that the number of
misclassified points is minimized. In order to determine the optimum value of H automatically, the concept
of variable length strings in GAs (VGAs) has been adopted. This enables the system to automatically
evolve the appropriate number of hyperplanes as a parameter of the problem (Bandyopadhyay et al. 1998a)
for modeling any kind of class boundaries nonparametrically. Unlike the conventional GAs, here the length
of a string is not fixed. Crossover and mutation operators are accordingly defined. The fitness function
rewards a string with smaller number of misclassified samples as well as smaller number of hyperplanes.
The classifier based on VGAs is referred to as the VGA-classifier. (It has been theoretically shown in
(Bandyopadhyay et al. 1998a) that for infinitely large number of iterations, the number of hyperplanes
provided by the VGA-classifier will be the minimum.) Its performance is comparable to, sometimes better
than, those of the Bayes maximum likelihood classifier, k-NN rule and multilayer perceptron (MLP) in

handling various intractable patterns classes.

In this article an extensive study of the said genetic classifiers for classification of pixels for partitioning
different landcover regions in satellite images is made. Note that satellite images usually have a large

number of classes with overlapping and non-linear class boundaries. Fig. 2 shows, as a typical example,
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the complexity in scatter plot of 932 points belonging to seven classes which are taken from the SPOT
image of a part of the city of Calcutta. Therefore, for appropriate modeling of such non-linear and
overlapping class boundaries, the utility of an efficient search technique like GAs is evident. Moreover, it
is desirable that the search technique does not need to assume any particular distribution of the data set

and/or class a priori probabilities.

The present analysis has two parts. In the first part, LANDSAT data is considered. This is characterized
by numerical feature vectors (two principal components constituting the feature space) for the classification
of Manda Granite, Romapahari Granite, Vegetation, Black Phillite and Alluvium. In the second part of
the investigation, we consider the problem of pixel classification from SPOT image of a part of the city
of Calcutta and IRS image of a part of the city of Bombay, for segmenting different image regions e.g.,
Water body, Concrete, Vegetation, Habitation. In a part of the investigation, the effect of chromosome
differentiation is also studied. An extensive comparison of the GA-classifier and VGA-classifier with those

based on k-NN rule, Bayes maximum likelihood ratio and MLP for these data sets is provided.

The article is organized as follows. Section 2 provides a brief outline of the GA-classifier and the VGA-
classifier. Section 3 and 4 provide the results of classification of LANDSAT data, and the IRS and SPOT
imagery respectively using these genetic classifiers. Finally the discussion and conclusions are presented

in Section 5.

II. DESCRIPTION OF THE GENETIC CLASSIFIERS

A. GA-classifier (Pal et al. 1998)

As already mentioned, the GA-classifier attempts to place H hyperplanes in the feature space appropri-
ately such that the number of misclassified training points is minimized. From elementary geometry, the

equation of a hyperplane in N dimensional space (X; — X — --- — Xy) is given by
Ty COSQn_; + By 1Sinay_; =d (1)

where By_1 = Tn_1COSQn_s + Bn_sSiNay_,

Bn_s =Tn_2€080N_3+ Bn_sSiNay_3

B, = x, cos o + B sin

The various parameters are as follows :
X; : the i th feature of the training points.

(z1,%2,...,ZN) : a point on the hyperplane

DRAFT



INTERNATIONAL JOURNAL OF REMOTE SENSING, VOL. 22, NO. 13, PP. 2545-2569, 2001 5

any_, : the angle that the unit normal to the hyperplane makes with the X axis.
an_» : the angle that the projection of the normal in the (X; — X5 —--- — Xy_,) space makes with the

Xy_, axis.

ay : the angle that the projection of the normal in the (X; — X2) plane makes with the Xy axis.
ag : the angle that the projection of the normal in the (X;) plane makes with the X; axis = 0. Hence,
Bo sinag = 0.

d : the perpendicular distance of the hyperplane from the origin.
Thus the N tuple < ay,q2,...,anx_1,d > specifies a hyperplane in N dimensional space.

Each angle o, j = 1,2,..., N —1is allowed to vary in the range of 0 to 2. If by bits are used to represent

an angle, then the possible values of a; are

0,0 % 2,28 % 2,36 * 27, ..., (2% — 1)§ % 27

1

where § = 5. Consequently, if the b; bits contain a binary string having the decimal value v;, then the

angle is given by vy * § * 2.

Once the angles are fixed, the orientation of the hyperplane becomes fixed. Now only d must be specified
in order to specify the hyperplane. For this purpose the hyper rectangle enclosing the training points is
considered. Let (z"*™, z%%) be the minimum and maximum values of feature X; as obtained from the

k3

training points. Then the vertices of the enclosing hyper rectangle are given by

(z§hr sh2 ;vf\’,”")
where each ch;, i = 1,2,..., N can be either maz or min. (Note that there will be 2 vertices.) Let diag

be the length of the diagonal of this hyper rectangle given by

diag = \/(a:?“” — )2 4 (ge® — pin)2 4 | 4 (2T — gYin)2

A hyperplane is designated as the base hyperplane with respect to a given orientation (i.e., for some

OL1,O£2,...,OAN_1) if

i: it has the same orientation
ii : it passes through one of the vertices of the enclosing rectangle
iii : its perpendicular distance from the origin is minimum ( among the hyperplanes passing through

the other vertices). Let this distance be dy, -

If by bits are used to represent d, then a value of vy in these bits represents a hyperplane with the given

diag
2b2

orientation and for which d is given by din + * Vg
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Thus each chromosome is of a fixed length of [ = H((N — 1) x by + bs), where H denotes the number of

hyperplanes. These are initially generated randomly for a population of size Pop.

Using the parameters of the hyperplanes encoded in a chromosome, the region in which each training
pattern point lies is determined based on equation (1). A region is said to provide the demarcation for
class i, if among the points that lie in this region, majority belong to class 4. Other points that lie in this
region are considered to be misclassified. The misclassifications associated with all the regions (for these
H hyperplanes) are summed up to provide the total misclassification, miss, for the string. Its fitness is

defined as (n — miss), where n is the size of the training data.

After computing the fitness, the genetic operators of selection, crossover and mutation are applied (Gold-
berg 1989) to generate a new population of chromosomes. Elitism is incorporated in the process for
preserving the best candidate found so far. Fitness computation followed by genetic operations are ex-
ecuted for a fixed number of generations, at the end of which the best chromosome provides the set of

hyperplanes constituting the final decision boundary.

B. Determination of Optimal H : VGA-classifier (Bandyopadhyay et al. 1998a)

Since it is very difficult to estimate a proper value of H, the GA-classifier often suffered from the problem
of over fitting of the data set, resulting from a conservative estimate of H. This also led to the presence of
redundant hyperplanes in the final decision boundary. In order to overcome this limitation, the concept
of variable string lengths in GAs (Goldberg et al. 1989), encoding the parameters of a variable number
of hyperplanes, was incorporated in the GA-classifier; thereby providing the VGA-classifier.

In the VGA-classifier, the chromosomes are represented by strings of 1, 0 and # (don’t care), encoding the
parameters of variable number of hyperplanes. Let H,,,, represent the maximum number of hyperplanes

that may be required to model the decision boundary of a given data set. It is specified a priori.

Fitness Computation

For each string ¢ encoding H; hyperplanes, the number of misclassified points miss;, is found as in the
case for GA-classifier. If n is the size of the training data, then the fitness of the ith string, fit;, is defined
as

fit; = (n — miss;) — aH;

1
Horae

where a = and H; is the number of hyperplanes encoded in the string. A string with zero hyperplane

is defined to have zero fitness. Maximization of the fitness function ensures the minimization of, primarily,

the number of misclassified points and then the number of hyperplanes.

Genetic Operators
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Since the strings have variable length, the operators crossover and mutation were newly defined as follows.

Crossover : 'Two strings, ¢ and j, having lengths [; and [; respectively are selected from the mating pool.
Let I; < ;. Then string ¢ is padded with #s so as to make the two lengths equal. Conventional crossover
like single point crossover, two point crossover (Goldberg 1989) is now performed over these two strings
with probability p.. The following two cases may now arise :

1) All the hyperplanes in the offspring are complete. (A hyperplane in a string is called complete if all the
bits corresponding to it are either defined (i.e., Os and 1s) or #s. Otherwise it is incomplete.)

2) Some hyperplanes are incomplete.

In the second case let u = number of defined bits (either 0 or 1) and ¢ = total number of bits per hyperplane.
Then, for each incomplete hyperplane, all the #s are set to defined bits (either 0 or 1 randomly) with
probability ¥. Otherwise, all all the defined bits are set to # with a probability (1 - %). Thus each
hyperplane in the string becomes complete. Subsequently, the string is rearranged so that all the #s are

pushed to the end.

Mutation : In order to introduce greater flexibility in the method, the mutation operator is defined in
such a way that it can both increase and decrease the string length. For this, the strings are padded
with #s such that the resultant length becomes equal to l,,,,,. Now for each defined bit position, it is
determined whether conventional mutation (Goldberg 1989) can be applied or not with probability f,.
Otherwise, the position is set to # with probability p,,,. Each undefined position is set to a defined bit

(randomly chosen) according to another mutation probability fi,,-

Note that mutation may result in some incomplete hyperplanes, and these are handled in a manner, as done
for crossover operation. Also, mutation may yield strings having all #s indicating that no hyperplanes
are encoded in it. Consequently, this string will have fitness = 0 and will be automatically eliminated

during selection. The details are available in (Bandyopadhyay et al. 1998a).

III. CLASSIFICATION OF LANDSAT DATA
A. Data Set

The data set considered here is obtained by the multispectral scanner (MSS) used in LANDSAT-V for
recording remotely sensed images. The intensity of a pixel is resolved on the electromagnetic spectrum
into four bands, which are taken to be four features. The four bands are : Green band of wavelength
0.5-0.6 pum, Red band of wavelength 0.6-0.7 um, Near Infrared band of wavelength 0.7-0.8 pym, Infrared

band of wavelength 0.8-1.1 um. The area of the earth’s surface covered by each pixel is 79m x79m.
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Since the features are highly correlated, principal component analysis was done (Pal 1990, Pal 1993) to
reduce the four features to two principal features. Such a 2-dimensional feature space representing the
satellite imagery data of various rocks, vegetation and soil is shown in Fig. 3. It has 795 samples with five
classes, viz. Manda Granite, Romapahari Granite, Vegetation, Black Phillite and Alluvium (Pal 1993).
These are referred to as classes 1, 2, 3, 4 and 5 respectively. The details of the extraction procedure are

available in (Pal 1990, Pal 1993).

B. Implementation Parameters

For the GA-classifier, population size is kept equal to 20. The values of by (bits for representing an angle)
and bs (bits for representing perpendicular distance) are 8 and 16 respectively. 10% of the data set is used

for training while the remaining 90% is used for testing.

Roulette wheel selection is adopted to implement the proportional selection strategy, Single point crossover
is applied with a fixed crossover probability (u.) value of 0.8. The mutation operation is performed on
a bit by bit basis for a varying mutation probability value () in the range [0.015,0.333]. The range
is divided into eight equispaced values. In the initial stages of the algorithm, u,, is set to a high value,
which is first decreased in steps to the minimum value and then increased again in the later stages of
the algorithm. This ensures that in the initial stage, when the algorithm has very little knowledge about
the search domain, it performs a random search through the feature space. The randomness is gradually
decreased with the passing of generations so that now the algorithm performs a detailed search in the
vicinity of promising solutions obtained so far. In spite of this, the algorithm may still get stuck at a
local optimum. This problem is overcome by increasing the mutation probability to a high value, thereby
making the search more random once again. The variation of u,, with generations is shown in Fig. 4. 100
iterations are executed with each value of u,, for a total of 1500 iterations. The algorithm is terminated
if the population contains at least one string with no misclassified points. Otherwise, the algorithm is

executed for 1500 generations.

For the VGA-classifier, initial population is created in such a way that the first and the second strings
encode the parameters of H,,,, and 1 hyperplanes respectively to ensure sufficient diversity in the pop-
ulation. For the remaining strings, the number of hyperplanes is generated randomly in the range [1,
H,42], and the corresponding bits are initialized randomly to 1s and 0s. Note that the search space
for VGA-classifier is larger (since it considers any value of H in the range [1,Hpqz]) compared to the
GA-classifier (which considers only a preassigned value of H). The former is therefore given more time to
come up with an appropriate solution by increasing the number of generations for each value of y,, from

100 to 200; thereby allowing it to execute for a maximum of 3000 generations. The other implementation

DRAFT



INTERNATIONAL JOURNAL OF REMOTE SENSING, VOL. 22, NO. 13, PP. 2545-2569, 2001 9

parameters are kept the same as for GA-classifier.

C. Results

In order to compare the performance of the genetic classifiers with some other well known ones, we have
considered the k-NN classifier, Bayes maximum likelihood classifier and MLP. For the convenience of
the readers, a brief description of these classifiers is provided in the Appendix. For k-NN classifier, the
different values of k considered are 1, 3, 5 and y/n where n is the size of training data. (It is known that
as the number of training patterns n goes to infinity, if the values of k and k/n can be made to approach
infinity and 0 respectively, then the k-NN classifier approaches the optimal Bayes classifier (Cover and
Hart 1967, Fukunaga 1972). One such value of k for which the limiting conditions are satisfied is \/n.)
Bayes maximum likelihood classifier is executed assuming normal distribution of the data set with unequal
dispersion matrices and class a priori probabilities equal to 7* where n; is the number of points in class
i. For MLP, the learning rate and momentum factor are fixed at 0.8 and 0.2 respectively. Maximum of
3000 iterations are executed. Two typical architectures viz., Arch 1 = 2:5:5 (input : hidden : output)
and Arch 2 = 2:10:10:5 (input : hiddeny : hiddens : output) are considered. Online weight updation is

performed.

Table 1 shows a comparative performance in terms of percentage recognition scores of the different classi-
fiers for LANDSAT data. (A comparison in terms of additional measures is also provided in Section 3.5.)
The entries in Table 1 for the GA based classifiers and MLP are the values averaged over five different
runs of the algorithms starting from five different initial configurations. As expected, class 3 ( Vegetation)
is amenable to a consistently good recognition score since this class has almost no overlap with the other
classes (those of various types of rocks) and lies at one extreme end of the feature space. Recognition of
class 2 (Romapahari granite) is seen to be poor for most of the classifiers since this is totally overlapped
with other classes, especially, with classes 4 (Black Phillite) and 5 (Alluvium). These findings are also
corroborated in Table 2, which shows the confusion matrix over the test data set for one particular run
of the VGA-classifier. Column UC denotes the points that the VGA-classifier could not classify into any
one of the classes (which may happen if the corresponding points lie in a region from where no training
points came). The confusion matrix shows that a large number of points from class 2 are misclassified
as points of class 4 and then 5. Class 5 also got confused with class 2 for a significant number of points.

Interestingly, most of the points belonging to Black Phillite (class 4) are recognized correctly.

As seen from Table 1, the VG A-classifier provides the best recognition score. Interestingly, the different
versions of the genetic classifiers yield better recognition scores as compared to those of Bayes maximum

likelihood ratio and MLP based classifiers. The performance of the k-NN classifier for k=y/n is found
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TABLE 1

COMPARATIVE RECOGNITION SCORES (%) DURING TESTING FOR LANDSAT data FOR perc = 10

Class overall
1 2 3 4 )
GA- H =4 |97.62 | 40.74 | 100.00 | 98.45 | 45.26 | 82.98
classifier | H =6 | 76.98 | 45.37 | 98.45 | 94.32 | 81.05 | 83.26
VGA- Hpor | 86.50 | 44.44 | 98.45 | 89.69 | 78.94 | 83.35
classifier | =10

Bayes 82.54 | 75.92 | 96.91 | 60.82 | 71.58 | 78.10
k-NN k=1 87.30 | 44.44 | 100.00 | 72.68 | 61.05 | 76.84
classifier | k=3 87.68 | 36.96 | 100.00 | 84.05 | 72.68 | 79.89
k=5 89.68 | 20.07 | 100.00 | 92.26 | 78.94 | 81.86
k=y/n | 88.09 | 31.48 | 100.00 | 90.72 | 85.26 | 83.12
MLP Arch 1 | 65.07 | 70.37 | 57.21 | 90.20 | 33.68 | 66.38
Arch 2 | 42.85 | 72.22 | 76.20 | 79.89 | 36.31 | 61.50

to be comparable to or marginally poorer than those of the GA based classifiers. The results of the
k-NN classifier are found to depend on the proper choice of k, being best for k=y/n. Similarly, the
performance of MLP is found to depend heavily on the architecture chosen. Its poor scores for this data
set may be due to an inappropriate choice of the architecture. Moreover, some pruning techniques and
sophisticated learning algorithms may be applied for improving the performance of MLP. Bayes maximum
likelihood classifier is also found to yield poor recognition score. It appears that the assumption of normal
distribution is not proper for this data set. The VGA-classifier, on the other hand, is found to be able
to automatically reduce the number of surfaces to 5 (thereby eliminating the need to fix a proper value
of H as in GA-classifier) while providing the best recognition score for this data set. Moreover, it does
not assume or use any underlying property of the data. This indicates that the VGA-classifier, which is
nonparametric in nature, is able to appropriately model any type of class boundary automatically and

also provide good generalization capability.

D. Incorporation of Chromosome Differentiation

In a part of the experiment, we investigated the effect of chromosome discrimination, thereby providing a
methodology called GACD (Bandyopadhyay et al. 1998b), on the performance of the said GA-classifier.
In GACD, the chromosomes are divided into two categories, namely M and F, based on the value contained

in the two class bits prepended to the chromosome. The initial population is created in such a way that the
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TABLE 2
CONFUSION MATRIX FOR LANDSAT DATA OBTAINED DURING TESTING OF VGA-classifier (ONE RUN) FOR Hypqr = 10. (UC

DENOTES POINTS THAT ARE UNCLASSIFIED.)

Recognized as
1 2 3 4 5 UC
118 0 3 0 5
0 52 2 38 16
0 0 194 0 0
0 0 3 18 0
13 39 3 0 40

Actual

Tt ok W N =
O O O O O

M population is the farthest, in terms of Hamming distances, from the F population. Crossover is allowed
only between two chromosomes belonging to the aforesaid two classes. The class bits of the offspring are
determined by mainly the M parent. These bits are excluded while performing the mutation operation. A
schema analysis (Bandyopadhyay et al. 1998b) shows that in many situations the lower bound of above

average schemata sampled by GACD is greater than that of conventional GAs.

The parameters for GA CD-classifier are kept the same as those of GA-classifier. Fig. 5 shows the variation
of the best recognition score during training of the two classifiers for H = 4. It is evident that except in the
very early stages, the GACD-classifier is able to provide better recognition scores than the GA-classifier in
a given number of iterations. This indicates a faster rate of convergence of the former, which conforms to
the earlier findings in (Bandyopadhyay et al. 1998b). Table 3 shows the recognition scores during training
of the two classifiers, and the test score of the GACD-classifier (the test scores for the GA-classifier are
already mentioned in Table 1). It is found that for H = 4 the GACD-classifier outperforms the GA-
classifier while for H = 6, the opposite is true. However for both values of H, the training performance
of GACD-classifier is better than that of the GA-classifier. This indicates that better recognition scores
during training (which may take place when a large value of H quickly and closely fits the training data)

may not necessarily result in better generalization capability.

E. Comparison in Terms of User’s Accuracy and Kappa Measure

In the previous section we have provided the comparative results in terms of percent of correct classification

obtained from the confusion matrix. The percentage correct classification is defined as

e 4 100, (2)

g
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TABLE 3

RECOGNITION SCORES (%) DURING TRAINING AND TESTING OF GACD-classifier FOR LANDSAT DATA.

H Recognition scores (%)
During training of During testing of
GA-classifier | GACD-classifier | GACD-classifier
4 | 84.61 87.17 84.52
6 | 88.46 89.74 78.80

where n; is equal to the number of points in class ¢, of which n; points have been correctly classified
(present in the diagonal element (i,i) of the confusion matrix). Note that n; /n; is also called the

Producer’s accuracy (Schriever and Congalton, 1995).

In this section, we provide two more statistical measures, namely user’s accuracy and kappa (Congalton et
al, 1983, Rosenfield and Fitzpatrick-Lins, 1986). If n; points (of all the n points) are found to be classified

into class %, then the user’s accuracy (U) is defined as
U=mn;/n,;, (3)

where n;, is as defined earlier. Note that the user’s accuracy gives a measure of the confidence that a
classifier attributes to a region as belonging to a class. In other words, it denotes the level of purity

associated with a region.

The coefficient of agreement called “kappa”’ measures the relationship of beyond chance agreement to
expected disagreement. It uses all the cells in the confusion matrix, not just the diagonal elements. The
estimate of kappa (K) is the proportion of agreement after chance agreement is removed from consideration.

The estimate of kappa for class 7 (K;) is defined as

nxn;, — N *N,
K;, = e R (4)
N*kn; —N; *xN,;
The numerator and denominator of the overall kappa are obtained by summing the respective numerators

and denominators of K; separately over all classes 3.

Table 4 shows the above measures for different classifiers. Here we considered H = 6 for GA-classifier, H
= 4 for GACD-classifier, k= /n for k-NN rule, and Arch 2 for MLP which were found to provide best
scores (in the respective categories) in Table 1. The other parameters for the classifiers were kept the
same as in Sections 3.3 and 3.2. As earlier, the GACD-classifier for H = 4 provides the largest kappa
value. This is followed by those for GA-classifier (H = 6), VGA-classifier, k-NN rule, Bayes and MLP.

It is found from Table 4 that the user’s accuracy value is usually high for Class 3 indicating that the region
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TABLE 4
USERS ACCURACY (U) AND KAPPA VALUES (K) IN % CORRESPONDING TO THE DIFFERENT CLASSIFIERS FOR LANDSAT data

WHEN perc = 10

Class Measure | GA- VGA- GACD Bayes k-NN | MLP
classifier | classifier | classifier | classifier | rule
1 U 95.04 94.30 93.54 96.33 87.76 | 100.0
K 93.98 93.09 92.17 95.54 85.16 | 100.0
2 U 100.0 56.04 97.14 42.56 54.16 | 37.62
K 100.0 48.24 96.63 32.38 46.03 | 26.56
3 U 94.63 94.63 94.17 99.46 94.63 | 94.17
K 92.64 92.64 92.01 99.27 92.64 | 92.01
4 U 82.32 84.14 81.44 82.06 86.05 | 85.71
K 75.77 78.25 78.67 75.41 80.88 | 80.41
5 U 59.85 63.38 66.14 67.71 62.31 | 13.63
K 53.72 57.78 60.97 62.78 56.56 | 0.44
Overall | K 80.20 78.55 82.21 72.38 77.20 | 66.89

identified as belonging to this class has high purity. This is expected since it lies at one extreme end of
the feature space (Fig. 3). On the contrary, the user’s accuracy is, in general, low for class 5 indicating
that the corresponding region is relatively impure. This is also expected since, as seen from Fig. 3, this

class is totally dispersed among the other classes.

IV. PIXEL CLASSIFICATION OF SPOT and IRS IMAGES

In this section, some results on classifying the pixels in IRS and SPOT images of a part of the city of
Calcutta and Bombay using genetic classifiers are provided. The performance is compared to those of

Bayes maximum likelihood classifier and k-NN classifiers for k=1, 3 and /n.

A. Data Sets

A1 SPOT Image of a Part of Calcutta

The French satellites SPOT (Systems Probataire d’Observation de la Terre) (Richards 1993), launched in
1986 and 1990, carry two imaging devices that consist of a linear array of charge coupled device (CCD)
detectors. Two imaging modes are possible, the multispectral and panchromatic modes. The image
considered in this experiment has three bands in the multispectral mode (Fig. 6 shows the image in the

third band). These bands are :
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Band 1 - green band of wavelength 0.50 - 0.59 pym
Band 2 - red band of wavelength 0.61 - 0.68 pm
Band 3 - near infra red band of wavelength 0.79 - 0.89 pm.

The training data set comprises 932 points belonging to seven classes, with three features corresponding to
the above mentioned three bands. The seven classes are turbid water (TW), pond water (PW), concrete

(Concr.), vegetation (Veg), habitation (Hab), open space (OS) and roads (including bridges) (B/R).

Some important landcovers are seen to be present in the image. Most of these can be identified, from a

knowledge about the area, more easily in Band 3 of the input image (Fig. 6). These are the following :

The prominent black stretch across the figure is the river Hooghly. Portions of a bridge (referred to as the
second bridge), which was under construction when the picture was taken, protrude into the Hooghly near
its bend around the center of the image. There are two distinct black, elongated patches below the river,
on the left side of the image. These are water bodies, the one to the left being Garden Reach lake and
the one to the right being Khidirpore dockyard. Just to the right of these water bodies, there is a very
thin line, starting from the right bank of the river, and going to the bottom edge of the picture. This is
a canal called the Talis nala. Above the Talis nala, on the right side of the picture, there is a triangular
patch, the race course. On the top, right hand side of the image, there is a thin line, stretching from the
top edge, and ending on the middle, left edge. This is the Beleghata canal with a road by its side. There
are several roads on the right side of the image, near the middle and top portions. These are not very
obvious from the images. A bridge cuts the river near the top of the image. This is called the Rabindra

Setu.

A.2 IRS Image of Bombay

This image was obtained from Indian Remote Sensing Satellite (IRS-1A). This is a circular sun-
synchronous satellite, rotating around the earth at the rate of 14 orbits per day, at an altitude of 904 km
and a repetition cycle of 22 days (NRSA 1986). This satellite is equipped with two different sensors LISS-T
and LISS-II. LISS-T has a resolution of 72.5mx72.5m while LISS-II has a resolution of 36.25mx36.25m.
Data used for this work was obtained from LISS-1I sensor which has a focal length of 324.4m and ra-
diometric resolution of 128. The whole spectrum range has been decomposed into four spectral bands

namely,

blue band of wavelength 0.45 - 0.52 pm,
green band of wavelength 0.52 - 0.59 um,
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red band of wavelength 0.62 - 0.68 ym and
near infra red band of wavelength 0.77 - 0.86 pm.

We have considered here the green, red and near infra red bands only, subsequently referred to as Band 1,
Band 2 and Band 3 respectively, since these bands were found to be more sensitive than the blue band to
discriminate various land cover types. Fig. 7 shows the IRS image of a part of Bombay in the third band.
The elongated city area is surrounded by the Arabian sea. There is a concrete structure (on the right
side top corner) connecting Bombay to New Bombay. On the southern part of the city, there are several
islands, including the well known Elephanta islands. The dockyard is situated on the south eastern part
of Bombay, which can be seen as a set of three finger like structure. On the upper part of the image,

towards left, there is a distinct criscrossed structure. This is the Santa Cruz airport.

The training data set comprises 198 points belonging to six classes, with three features corresponding
to the above mentioned three bands. The six classes are labeled turbid water 1 (TW1), turbid water 2
(TW2), concrete (Concr.), habitation (Hab), vegetation (Veg) and open space (OS). Note that the sea
water is decomposed into two classes TW1 and TW2 for better classification since they have somewhat
different reflectance properties (as can be seen in Fig 8). However, in the output decision while assigning
class labels, these two categories are merged into one class, namely turbid water (TW) i.e., any pixel being

classified either as TW1 or TW2 is labeled as TW.

B. Issue of Large Value of H

In view of the complexity of the data sets, high values of H like 15 and 20 for the GA based classifiers
were considered. Since the maximum number of regions provided by H hyperplanes is equal to 27, the
aforesaid high values of H make the number of regions (= 2) also very large. This leads to a practical
limitation of the method. However, an important point that needs to be taken into consideration is that
the possible number of regions can never be larger than the number of points n in the training data set.
Also, n << 2 for large H. Thus we need to consider atmost n regions while tackling this problem. In

fact, the number of regions for this problem was found to be considerably less than n as well.

C. Implementation Parameters

The performances of the GA based classifiers are compared to those of the Bayes maximum likelihood
classifier and k-NN rule (for three values of k) for these images. The parameters are kept the same as
described in Section 3.2. Different values of H considered for the GA-classifier are 10, 15 and 20. The
value of H,,, for VGA-classifier is taken to be 15. The values of k, for k-NN classifier, are 1, 3 and /n.
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D. Results for SPOT image of Calcutta

The comparative results corresponding to the SPOT image of Calcutta are demonstrated by zooming only
the race course (a triangular shaped structure), which clearly helps to discriminate between the output
classified images obtained from the different classifiers. Figs. 9(a) to 9(c) present the results of the GA-
classifier for H = 10, 15 and 20. Fig. 9(d) shows the result of the VGA-classifier corresponding to Hy, 4z
= 15. Figs. 9(e) to 9(g) present the same based on k-NN rule corresponding to k = 1, 3 and /n, while
Fig. 9(h) provides the results for the Bayes maximum likelihood classifier. For the convenience of the
readers, the full classified images, showing the other regions as well, corresponding to the VGA-classifier

and Bayes maximum likelihood classifier are also shown in Figs. 10 and 11.

kNN-rule with k=1 (Fig. 9(e)), performs the poorest among all the classifiers. It fails to retain the shape
of the race course. It was also found to be unable to classify roads on the right side of the river; being
able to identify some scattered road pixels (white dots) instead. The performance of k-NN rule is found
to improve with the value of k, being best for k = y/n, where the extracted features are found to be much

more prominent.

Although all the classifiers are able to locate the race course, only the VGA-classifier and the GA-classifier
for H = 10 and 15 are able to identify a triangular lighter outline within it properly. This is an open space,
corresponding to the tracks in the race course. The overall performance of the GA-classifier is found to
improve from H = 10 to 15 but is poorer for H = 20. One reason for the degradation in performance
for H = 20 is that the classifier is able to surround the training data points very closely with the help
of these twenty hyperplanes. This leads to overfitting of the data set during training and hence reduced

generalization capability during testing.

Bayes maximum likelihood classifier was found to overestimate some road classes. For example, the thick
road structures obtained along both the banks of Hooghly (see Fig. 11) are an overestimation. The VGA-
classifier, which succeeds in reducing the number of hyperplanes from 15 to 9, is found to confuse between
the classes PW and Concr, and B/R (see Fig. 10). This is because of a large overlap between the classes
Concr and B/R on one hand (in fact, the latter class has been extracted from the former) and PW and
B/R on the other hand. These are evident from Figs. 12 and 13 respectively. The fact that a large number
of points actually belonging to the class B/R is wrongly classified to either PW or Concr is also evident
from Table 5 which shows the confusion matrix on the training data set obtained by the Bayes maximum

likelihood classifier.
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TABLE 5
CONFUSION MATRIX FOR TRAINING DATA OF SPOT IMAGE OF CALCUTTA OBTAINED USING BAYES MAXIMUM LIKELIHOOD

CLASSIFIER.

Recognized as

TW PW Concr Veg Hab OS B/R
™ 125 0 0 0 0 0 0
PW 0 149 11 0 0 0 4
Coner | 0 0 152 0 2 8 10
Actual Veg 0 0 1 223 22 4 0
Hab 0 0 12 12 51 0 1
0S 0 0 5 6 0 82 0
B/R 0 10 15 0 0 0 27

E. Results for IRS Image of Bombay

As in Section 4.4, the comaprative results corresponding to the IRS image of Bombay are demonstrated
by zooming only the dockyard (the finger like structures), which clearly helps to discriminate between
the output classified images obtained from the different classifiers. Figs. 14(a), 14(b) and 14(c) present
the dockyard in the output classified images of Bombay using the GA-classifier corresponding to H =
10, 15 and 20. Fig. 14(d) provides the same for the VGA-classifier for Hpyqe = 15. Figs. 14(e) to 14(g)
demonstrate the dockyard in the output images of the k-NN classifier corresponding to k = 1, 3 and /n.
Fig. 14(h) presents the same for the Bayes maximum likelihood classifier. For the convenience of the
readers, the full classified images, showing the other regions as well, corresponding to VGA-classifier and

Bayes maximum likelihood classifier are also provided in Figs. 15 and 16.

From Figs. 14(a), 14(b) and 14(c) it is found that, as in the case of Calcutta image, the performance of
the GA-classifier is better for H = 15 than with H = 10, but poorer for H = 20. Overfitting of the
data set and the subsequent reduction in the generalization capability is once again responsible for the
degradation of performance from H = 15 to H = 20. Output images for both H = 10 and 20 were found
to have a large number of unclassified points (6327 and 3578 respectively) as compared to H = 15 (which
has 1242 unclassified points). The VGA-classifier (Fig. 14(d)) is found to extract the dockyard nicely
while reducing automatically the number of hyperplanes to 11. Only a small number of points (=266)
remained unclassified in the image. The Bayes maximum likelihood classifier was found to identify an
unusually large portion of the image as belonging to the concrete class. This is evident from Fig. 14(h),
as also from Fig. 16, where the shape of the dockyard is found to be lost. Because of this reason, the

bridge connecting Bombay to New Bombay came out correctly as a more or less continuous structure for
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the Bayes classifier (see Fig. 16). This was in contrast to all other classifiers where it came out usually as
a discontinuous concrete structure (see Fig. 15 as an illustration). For k-NN classifiers, the performance
was again found to improve gradually with the value of k. While for k=1, the shape of the dockyard is

not clear, it becomes better for k=3 and /n.

V. DiscussiON AND CONCLUSIONS

In this article, a comparison is made between some GA based classifiers, Bayes maximum likelihood clas-
sifier, k-NN rule and MLP, for classifying different landcover types. For LANDSAT data, the performance
is measured quantitatively (e.g., percent recognition scores, user’s accuracy, and kappa values), whereas it
is the quality of the segmented image output which was considered for analyzing the same on the SPOT

and IRS images.

For LANDSAT data, the concept of variable string lengths is found to be useful for evolving a proper
value of H. Overall, the genetic classifiers performed better (in terms of recognition scores and kappa
values) than the Bayes, k-NN rule (k=1, 3 and 5) and MLP; thereby strengthening the earlier findings in
(Pal et al. 1998, Bandyopadhyay et al. 1998a). In the case of k-NN rule with k=4/n, the performance
was found to be comparable to those of the genetic classifiers, except for the case of GACD-classifier for
H=4, whose performance was significantly superior. As expected, the user’s accuracy is seen to be high
for class 3 (which has least overlap with the other classes), and low for class 5 (being totally overlapped

with all classes).

Most of the classifiers are found more or less to identify some characteristic regions in the different images
properly. The quality of the segmented image provided by k-NN classifier improves with the value of k.
The Bayes maximum likelihood classifier is able to identify most of the regions in the image correctly,
although it overestimates some concrete (in the Bombay image) and road structures (in the SPOT image
of Calcutta). The VGA-classifier is found to be able to automatically evolve a proper value of H, while
providing reasonably good region partitioning. In other words, this nonparametric classifier, unlike k-NN
where k needs to be supplied, does not need the number of hyperplanes to be specified to model any
kind of class boundaries. Moreover, unlike Bayes maximum likelihood classifier where some assumption
regarding the class distribution functions needs to be made, no underlying distribution of the data set is
assumed for the VG A-classifier. However, it may be noted that the VGA-classifier is generally found to
take significant amount of time for its proper training. For example, the time taken by the VGA-classifier
when it was trained for 3000 iterations for the SPOT image of Calcutta on DEC-Alpha machine was
515.76 seconds. The problem is compounded by the fact that no appropriate criterion for terminating

GAs is available in the literature. The time for testing taken by the k-NN classifier is also found to be
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significantly large especially for k=+/n. For example for the said image, the testing time for k-NN rule
for k=+/n was 659.90 seconds. One may note that the time required for testing for the other classifiers
is usually low. For example, these are 3.54 seconds and 2.06 seconds corresponding to the VGA-classifier

and Bayes maximum likelihood classifier respectively for the Calcutta image.

Implementation of the GA based classifiers for classifying the images necessitated a large value of H. This
led to the problem of having to consider 2, a considerably large value, for the number of regions. This
problem has been solved by noting that in practice, the number of regions can never exceed the number

of training points n.
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Appendix
k-NN rule (Tou and Gonzalez, 1974) :

The k-NN rule assigns a pattern x of unknown classification to class C; if the majority of the k nearest

neighbors of x belongs to class C;. x; is called the nearest neighbor of x if
D(x;,x) = mlin{D(xl,x)}, 1=1,2,...,n (5)

where n denotes the total number of points, and D is any distance measure defined over the pattern space.

The details on the k-NN rule along with the probability of error is available in (Fukunaga, 1972).
Bayes Mazimum Likelihood Classifier (Tou and Gonzalez, 1974) :

Let P; denote the a priori probability and p;(x) denote the class conditional density corresponding to
the class C;. Assuming normal (Gaussian) distribution of patterns, with mean vector u; and covariance

matrix ), the Gaussian density p;(x) may be written as

2
i=1,2,...k,

1 1
pi(x) = Wexp[ =5 =) 20 (k= i), (6)

where k denotes the total number of classes. Then, Bayes maximum likelihood classifier assigns an

unknown pattern x to class Cj if

Dz(x) >:DJ(X)7 ]:17277k7 .7'27/7 (7)
where D;(x) is defined as
1 -
Di(x) = InP=3In|E;| —5(x— )5, (x— ) (8)
i=1,2,...k

Multilayer Perceptron (MLP) (Dayhoff, 1990):

A Multilayer Perceptron (MLP) consists of several layers of simple neurons with full connectivity existing
between neurons of adjacent layers. The number of nodes in the input and output layers correspond to
the number of features and classes respectively. Fig. 1 shows an example of a three layer MLP which

consists of an input layer (layer 0), one hidden layer (layers 1) and an output layer (layer 2).

The neurons in the input layer serve the purpose of fanning out the input values to the neurons of layer

1. Let

w®

ji =12 (9)
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represent the connection weight on the link from the ith neuron in layer I — 1 to the jth neuron in layer

l. Let 05-” represent the threshold of the jth neuron in layer [. The total input, :cgl), received by the jth

neuron in layer [ is given by
) =3 wi + 6, (10)

(1-1)

where y; is the output of the ith neuron in layer [ — 1. For the input layer

y" = (11)
where x; is the ith component of the input vector. For the other layers
v =f@)  1=12 (12)
Several functional forms like threshold logic, hard limiter, sigmoid can be used for f(.) .

Backpropagation (BP) is a commonly used learning algorithm, where the least mean square error of the
network output is computed, and this is propagated in a top down manner (i.e., from the output side) in
order to update the weights. The error is computed as the difference between the actual and the desired
output when a known input pattern is presented to the network. A gradient descent method along the
error surface is used in BP. After training, the MLP decides the class of an unknown input to the one for

which the corresponding output is the maximum.
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layer 2

X1 XZ XN

Fig. 1. Multilayer perceptron

Band 2 Band 3

24

Fig. 2. Scatter plot for the training data set of SPOT image of Calcutta. The seven symbols represent seven different

classes.
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Fig. 4. Variation of mutation probability value with the number of generations
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Fig. 5. Variation of best recognition scores of GACD-classifier and GA-classifier with the number of generations for

LANDSAT data with H =4
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Fig. 6. SPOT image of Calcutta in the near infra red band (Band 3). The image is histogram stretched.
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Fig. 7. IRS image of Bombay in the near infra red band (Band 3). The image is histogram stretched.
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Fig. 8. Scatter plot for classes TW1 and TW2 of the training data set for /RS image of Bombay.
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Fig. 9. Classified SPOT image of Calcutta (zooming the race course only) using (a) GA-classifier, H =10, (b) GA-classifier,
H = 15, (c) GA-classifier, H =20, (d) VGA-classifier, Hmaz =15, final value of H=9, (e) k-NN rule, k = 1, (f) k-NN
rule, k = 3 (g) k-NN rule, k = y/n (h) Bayes maximum likelihood classifier
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T P Concr Uncls Weg Hak oz BiR

Fig. 10. Classified SPOT image of Calcutta using VGA-classifier, Hpyqz =15, final value of H=9.
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T Py Concr Ve Hak 05 B/R

Fig. 11. Classified SPOT image of Calcutta using Bayes maximum likelihood classifier
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Fig. 12. Scatter plot for classes Concr and B/R of the training data set for SPOT image of Calcutta.
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Fig. 13. Scatter plot for classes PW and B/R of the training data set for SPOT image of Calcutta.

DRAFT

34



INTERNATIONAL JOURNAL OF REMOTE SENSING, VOL. 22, NO. 13, PP. 2545-2569, 2001 35

DRAFT



INTERNATIONAL JOURNAL OF REMOTE SENSING, VOL. 22, NO. 13, PP. 2545-2569, 2001 36

Fig. 14. Classified IRS image of Bombay (zooming the dockyard only) using (a) GA-classifier, H =10, (b) GA-classifier,
H = 15, (¢) GA-classifier, H =20, (d) VGA-classifier, Hmaz =15, final value of H=9, (e) k-NN rule, k = 1, (f) k-NN
rule, k = 3 (g) k-NN rule, k = /n (h) Bayes maximum likelihood classifier
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Concr Uncls Hak Weg o5

Fig. 15. Classified /RS image of Bombay using VGA-classifier, Hmae =15, final value of H=9.
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Concr Hak Weg 05

Fig. 16. Classified /RS image of Bombay using Bayes maximum likelihood classifier

DRAFT



