


2 Preliminaries

In this Section the basic concepts and definitions employed
in this paper are first explained. This is followed by a
presentation of the technique to eliminate a CT. The
Section ends with the formulation of the unweighted
complex triangle elimination (CTE) problem and an
outline of the proof.

2.1 Basic concepts and definitions

An adjacency graph is a simple connected graph Gad(Vad,
Ead), where each node v2Vad represents a rectangular
module and an edge (vi , vj)2Ead between two nodes vi
and vj implies that there are interconnections between the
modules corresponding to vi and vj . When an adjacency
graph is finally converted to a floor-plan through rectan-
gular dualisation, each edge (vi , vj)2Ead will map to a
shared side of the two rectangular areas corresponding to vi
and vj . Two simple adjacency graphs and their rectangular
duals are shown in Fig. 1a and Fig. 1b.

A PTG is a plane embedding of a simple planar graph
where every face except the exterior is a triangle. For
example, the adjacency graph shown in Fig. 1a is not a
PTG, whereas the graph shown in Fig. 1b is. Fig. 2 shows
another PTG.

Given a PTG, a CT in it is defined to be a cycle of length
3 which is not a face, i.e. which encloses an area contain-
ing one or more vertices. For example, in Fig. 2, the cycle
abca is a CT because the node g is enclosed within it. A CT
is said to be isolated if it does not share any edge with any
other CT. There exists no rectangular dual of a CT because

three rectangles adjacent to each other cannot enclose
another rectangle (Fig. 3). The technique of eliminating a
CT is explained later.

A properly triangulated planar (PTP) graph is a simple
connected planar graph that satisfies the following proper-
ties.

P1: Every face, except the exterior, is a triangle.
P2: All internal vertices have degree greater than or

equal to 4.
P3: All cycles that are not faces have length greater

than 3.

For example, the adjacency graph shown in Fig. 1b is a
PTP graph whereas that shown in Fig. 2 is not, because the
cycle abca does not satisfy property P3 and the node g
does not satisfy property P2. A PTP can be mapped to its
rectangular dual in O(n) time [5], but a PTG may not be
converted to a rectangular dual because it may contain a
complex triangle. Therefore, a PTG must first be mapped
to a PTP by eliminating the complex triangles, after which
the rectangular dual may be obtained.

For a graph G(V, E), a set S�V is a node cover iff all
edges in E are incident to at least one vertex in S. For
example, in Fig. 4a, the set {d, e} or {d, c} is a node cover,
but {a, b, c} is not a node cover because none of the nodes
incident on edge (d, e) is present in {a, b, c}. Similarly, in
Fig. 4b, {a, c, f, m, i, j} is a node cover but {c, g, m, h, k} is
not because the edge (a, b) is not incident on any of the
nodes it contains.

Let G(V, E) be a graph of n vertices V¼ {v1 , v2 , . . . , vn}
and m edges E¼ {e1 , e2 , . . . , em}, without any isolated
vertex, such that there is a label attached to each edge. A
particular edge-label may be associated with more than one
edge. An edge-label cover is a set Eelc¼ {e1 , e2 , . . . , ep} of
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edge-labels such that each vertex of G is covered by at least
one ei2Eelc . For example, in Fig. 5a(ii), the set {bc, ac} is
an edge-label cover but {bc} is not. In Fig. 5b(ii) the set
{jk, ik, em, fh, gn} is an edge-label cover. Note that we

have not considered the isolated vertex 4, which, as we
shall see later, does not have an impact on our problem. If
any edge-label from this set is removed, the resulting set
will no longer cover the entire set of vertices.

A complex triangle X is said to contain another complex
triangle Y if the region bounded by the edges of Y is inside
the region bounded by the edges of X. If a complex triangle
X contains another complex triangle Y and there is no
complex triangle Z such that X contains Z and Z contains Y
then X is said to immediately contain Y, or Y is said to be
immediately contained by X. In Fig. 5a(i), the complex
triangle abc contains the complex triangle bcf but is not
contained by any other CT. There are four complex
triangles in the adjacency graph of Fig. 5a(i). The remain-
ing two CTs, ace and bcd, neither contain nor are contained
by any other CT.

Let G(V, E) be a PTG. Let us add a large CT containing
all CTs of G, to obtain G0. A complex triangle tree T(G) is
a tree where vertices correspond to the complex triangles
of G0. There is an edge (X, Y)2T if and only if Y
immediately contains X. G is said to have k-level contain-
ment if the length of the longest path in T from leaf to root
is kþ 1.

2.2 Elimination of complex triangles

There exists no rectangular dual of a CT because three
rectangles, adjacent to each other, cannot enclose another
rectangle (Fig. 3). The only way to convert a CT to a
rectangular dual is to select an edge and insert a vertex on
to it. This converts a CT into a complex 4-cycle that leads
to a rectangular region in the floor-plan which is not a
module of the original circuit but contains only routing
wires. The technique is illustrated in Fig. 6. The CT of
Fig. 6a is eliminated by introducing an extra node e on the
side bc and connecting the node d to e. The resulting graph
is shown in Fig. 6b. The extra node e maps to the region
marked e in Fig. 6c. The region e will contain only routing
wires connecting modules b and c.

Therefore, given a PTG Gad with an arbitrary level of
containment, all CTs in Gad can be eliminated by selecting
an outer edge from each CT, putting an extra vertex on that
edge and introducing the new edges connecting the new
vertex to other vertices as necessary. However, whether the
resulting adjacency graph (after elimination of all CTs) can
still be converted to a floor-plan is not obvious. In the
following lemma we prove that it is always possible to
obtain an adjacency graph G0ad from Gad in the above-
mentioned procedure that can readily be converted to a
rectangular floor-plan.

Lemma 1: Given a PTG Gad with arbitrary level of
containment of CTs, it is possible to obtain an adjacency
graph Gad

0 from Gad by selecting an outer edge from each
CT of Gad and putting an extra node on that edge, such that
there exists a rectangular dual of Gad

0 .
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Proof: It is known that a PTP graph can be mapped to a
rectangular dual in linear time [5]. Therefore all we have to
show is that it is always possible to convert a given Gad

(with an arbitrary level of containment) to Gad
0 using the

procedure mentioned above such that Gad
0 is a PTP graph.

Suppose abc is a CT in Gad . Without loss of generality,
suppose that the edge bc is chosen for eliminating this CT.
Accordingly, a new vertex e is inserted onto it so that bc is
now broken into two edges, be and ec. Since abc is a
complex triangle, there exists at least one node, say d,
within the region enclosed by the cycle abca which is
connected to the vertices b and c. This is guaranteed by the
fact that Gad is triangulated. To eliminate the CT abc a new
edge de connecting the vertices d and e has to be inserted.
Now two cases may arise.

Case (i): The edge bc is on the boundary of the region
enclosed by Gad (Fig. 7). In this case, the insertion of the
new vertex e and new edge de neither introduces a face that
is not a triangle, nor produces any internal vertex with
degree less than 4, nor creates a cycle that is not a face and
has a length equal to 3 (i.e. a CT). Therefore none of the
conditions of a PTP graph are violated.

Case (ii): The edge bc is inside the region enclosed by Gad

(Fig. 8a). Since bc is inside the region enclosed by Gad and
Gad is triangulated, there must exist a triangle outside the
region of abc of which bc is an edge (Fig. 8a). Let that
triangle be bcf. We introduce the edge ef (Fig. 8b). It is
easy to see that by doing so none of the three conditions of
a PTP graph are violated.

If we go on eliminating all the CTs of Gad in this way,
i.e. by introducing one new vertex for each CT and one or
two edges, whichever is appropriate, for each newly
introduced vertex, the resulting graph Gad

0 is a PTP
graph. u

Thus, given a planar triangulated adjacency graph Gad,
all CTs of Gad can be eliminated by selecting an edge from
each CT and putting an extra node on that edge. However,
with each extra node, an additional rectangular area is
introduced in the floor-plan that does not contain any
circuitry. This is undesirable because it wastes valuable
floor area and complicates routing. Therefore the number
of such additional areas should be minimised. Since more
than one CT may share an edge, it is possible to eliminate
all such CTs in one go by selecting such a shared edge and
putting an extra node on it. The complex triangle elimina-

tion (CTE) problem for general adjacency graphs with an
arbitrary level of containment may, thus, be defined as the
problem of finding the minimal set of edges so that each
CT may have at least one edge in that set.

In [8] Sun and Yeap have shown that for adjacency
graphs with 0-level containment the unweighted problem
is optimally solvable in polynomial time, although the
complexity of the unweighted CTE problem for general
graphs with multiple levels of containment was unknown.
They conjectured that this problem is also NP-complete. In
this paper, we prove that the unweighted CTE problem for
adjacency graphs with multiple level of containment is also
NP-complete even though for 0-level containment it is
optimally solvable in polynomial time. This can be intui-
tively explained by the fact that in the case of 0-level
containment, i.e. when no CT of Gad contains (or is
contained by) any other CT, an edge e of Gad can be
shared by at most two CTs. This is because, given a
straight line-segment pq, at most two non-overlapping
triangles can be drawn on it. This greatly simplifies the
optimisation problem and renders it solvable in polynomial
time. In the case of adjacency graphs with multiple levels
of containment, an edge may be shared by an arbitrary
number of CTs. Moreover, while eliminating a CT in an
optimal way, it can be approached from outside, i.e. from
CTs containing it, or from inside, i.e. from CTs contained
by it. This complicates the problems as the number of
choices multiply.

The outline of the proof supporting the claim that the
unweighted CTE problem with multiple levels of contain-
ment is NP-complete is now described. It is first shown that
the decision problem corresponding to the said optimisa-
tion problem is in NP. Then a graph called the complex-
triangle-adjacency graph Gct is constructed from Gad in
polynomial time and the CTE decision problem is formu-
lated in terms of this graph Gct . In particular, we show that
the CTE decision problem is equivalent to the edge-label
cover decision problem for such Gct obtained from Gad .
The concept of an edge-label as well as the edge-label
cover decision problem has been introduced in this work.
Finally, it has been proved that the edge-label cover
decision problem is NP-complete by reducing the node
cover decision problem, a well-known NP-complete
problem [10] to the edge-label cover decision problem, in
polynomial time.
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3 Complete proof

In this Section we formally state the CTE problem for
unweighted adjacency graphs with an arbitrary level of
containment and then present the complete proof regarding
its NP-completeness.

The CTE problem can be stated as follows: given a
planar triangulated adjacency graph Gad(Vad, Ead) with an
arbitrary level of containment of CTs, the problem is to
find a set E 0�Ead of minimal cardinality such that E0

contains at least one edge from each complex triangle of
Gad . The CT elimination problem is an optimisation
problem. We may state the corresponding decision problem
in the following way.

CT elimination decision problem: Given a PTG Gad(Vad,
Ead) with an arbitrary level of containment, is there a set
E0�Ead, jE

0 j � k, such that E0 contains at least one edge
from each CT of Gad?

As already mentioned, in the weighted version of the CT
elimination problem there is a positive weight attached to
each edge of the PTG. This positive weight is proportional to
the importance of interconnection, e.g. the number of nets
connecting the modules. In the weighted CT elimination
problem, the total weight of E0 (i.e. Su,v w(u, v),
(u, v)2E0) should be minimal. The weighted CT elimination
problem is NP-complete. Also, for an adjacency graph with
0-level of containment, the unweighted complex triangle
elimination problem is optimally solvable in polynomial
time. In this paper, we consider the more generalised
problem of k-level containment. We establish that the gener-
alised unweighted CT elimination problem is NP-complete.

Theorem 1: The unweighted CT elimination decision
problem is in NP.

Proof: Let Gad(Vad, Ead) be a PTG containing n edges, say
e1 , e2 , . . . , en and p number of CTs, say CT1 , CT2 , . . . ,
CTp . Let {ei1 , ei2 , ei3} be the outer edges of CTi , 8i¼ 1,
2, . . . , p. A non-deterministic algorithm to obtain a set of k
edges such that there is at least one edge from each CT,
if there exists such a set, is given below in Algorithm
CT-COVER-k in a pseudo-language. The algorithm uses an
array S of size k. For each element S[i] of the array, an edge
of Ead¼ {e1 , e2 , . . . , en} is selected non-deterministically.
Note that the set of edges included in S may contain less
than k edges because an edge may be selected more than
once. Once S is filled up in this way, the algorithm checks
whether each CT of Gad contains at least one edge in it. The
paradigm of non-determinism ensures that S will contain a
set of k or less number of edges that covers all CTs of Gad

provided there exists such a set.

Algorithm CT-COVER-k

=* To find a set of k edges that covers all CTs of a given
PTG Gad(Vad, Ead). *=
=* S is an array of k elements, each element of S contains
an edge of Gad *=

1: Begin

2: For i 1 To k Do

3: j choice ð1 : nÞ

=*choose an integer between 1 to n non-deterministically*=

4: S½i�  ej =* include ej; the jth edge, in the set *=

5: Endfor

6: For i 1 To p Do =* has the ith CT been covered? *=

7: covered FALSE

=* start assuming that it is not covered *=

8: For j 1 To k Do

=* see if the jth edge in S covers CTi*=

9: If S½ j� 2 fei1; ei2; ei3g Then

10: covered TRUE, break

=* go for the next CT if this CT is covered *=

11: Endif ;

12: Endfor

13: If (covered ¼ FALSE) Then failure Endif

=* CTi is not covered *=

14: Endfor

15: Success =* all CTs are covered *=

16: End-CT-COVER-k:

Analysis of Algorithm CT-COVER-k

The For-loop of lines 2–5 will execute k times. The For-
loop of lines 6–14 runs, in the worst case i.e. in case the set
really covers all CTs, p times and it contains an inner loop
on lines 8–12 that runs, in the worst case, k times. There-
fore the time complexity of the algorithm is O(kþ k� p).
Since k� p, the complexity of the algorithm is O(p2).

Hence it is proved that the unweighted CT elimination
decision problem is in NP. u

We now proceed to prove that not only the unweighted
CT elimination decision problem is in NP but the problem
is also NP-complete. In order to do so, we first transform
the given instance of a CT elimination decision problem
(presented in the form of an adjacency graph Gad(Vad, Ead)
containing a set of CTs along with the edge set of each
CT), to another graph, called the complex triangle adja-
cency (CT adjacency) graph Gct(Vct , Ect). The CT elimina-
tion decision problem is then restated in terms of this CT
adjacency graph Gct . It is then shown that the node cover
decision problem, a well-known NP-complete problem, can
be reduced to the unweighted CT elimination decision
problem. The steps for constructing the CT adjacency
graph Gct(Vct , Ect) from the given adjacency graph
Gad(Vad, Ead) are as follows.

(i) For each CTi of Gad, include a vertex vi in Vct . In other
words, each CT of Gad is represented in Gct by a vertex.
(ii) For each pair of vertices (vi , vj) of Gct , add an edge
(vi , vj), labelled with eij , if and only if eij is an edge shared
by CTi and CTj , where CTi and CTj are the CTs correspond
to vi and vj , respectively.

The CT adjacency graph shown in Fig. 5a(i) is shown in
Fig. 5a(ii). The list of CTs and the associated edges of
Fig. 5a(i) is given in Table 1. The CT adjacency graph and
the list of CTs and the associated edges of Fig. 5b(i) is
shown in Fig. 5b(ii) and Table 2, respectively. The
complexity of the aforesaid algorithm can be determined
by making use of the following theorem.

Theorem 2: A planar triangulated graph (PTG) with n
vertices (n� 4) can have at most (n7 3) CTs.
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Proof: We prove the theorem by the method of contra-
diction. Let G(V, E) be a PTG with n vertices and more
than k CTs. Specifically, let G have k CTs such that
k> n7 3. Among all the CTs, we select an innermost
CT, i.e. a CT that does not contain any other CT within it.
Suppose vi , vj and vk are the outer vertices of the selected
CT and vl is the vertex inside the triangle defined by vi , vj ,
vk . If we remove vl from G, exactly one CTwill be removed
from G. The resulting PTG, G0, will consist of n0¼ n7 1
vertices and k0¼ k7 1 CTs. By applying the process
repeatedly, always choosing an innermost CT at each
step, we can remove all CTs from G and at each step of
this procedure exactly one vertex will be removed from G.
Eventually we obtain a PTG, say G0 , without any CT at all.
If n0 is the number of vertices in G0 , then n0¼
n7 k< n7 (n7 3)¼ 3, or n0< 3. This is a contradiction
because a PTG cannot be formed with less than three
vertices.

Since there are at most (n7 3) CTs in the adjacency
graph, step (i) of the algorithm runs (n7 3) times in the
worst case. Step (ii) runs (n7 3)� (n7 4)=2 times in
the worst case. Therefore the worst case complexity of
the algorithm is O(n2). u

Two important observations regarding the CT adjacency
graphs are:

(a) Each isolated CT of the adjacency graph maps to an
isolated vertex of the CT adjacency graph.
(b) If there exists an edge, e, shared by l number of CTs,
say CT1 , CT2 , . . . , CTl , then there exists a clique of size l
in the CT adjacency graph consisting of the corresponding
l number of vertices. Each edge of this clique will be
labelled e.

In a CT adjacency graph Gct(Vct , Ect) an edge-label e is
said to cover a vertex v2Vct if there exists an edge in Gct

that is incident on v and is labelled e. For example, in
Fig. 5a(ii), the edge-label ac covers the vertex 4. Vertex 1
is covered by both ac and bc.

In the context of the CT elimination optimisation
problem, the isolated CTs do not have any significance.
This is because, if E0�E is a set of edges containing at
least one edge of each CT, then it must contain exactly one
edge from each of the isolated CTs. Therefore whatever
optimisation we wish to achieve, we have to obtain it using
the remaining CTs. If we ignore the isolated CTs, the
corresponding isolated vertices may be removed from the
CT adjacency graph.

The CT elimination problem can now be restated in
terms of the CT adjacency graph. As for the construction of
Gct(Vct , Ect) from Gad(Vad, Ead), a set of edges of Gad

which contains at least one edge from each CT of Gad

corresponds to an edge-label cover of Gct . For example,
consider the adjacency graph of Fig. 5a(i) and the corre-
sponding CT adjacency graph, shown in Fig. 5a(ii). The
CTs of Fig. 5a(i) and the outer edges of each CT are listed
in Table 1. The minimal set of edges of Fig. 5a(i) such that
each CT has at least one edge in it is {bc, ac}. This is the
minimal edge-label cover of the CT adjacency graph shown
in Fig. 5a(ii).

Therefore, the CT elimination problem now reduces to
the problem of finding a minimal edge-label cover of Gct .
The corresponding decision problem is given below.

Edge-label cover decision problem

Given a CT adjacency graph Gct(Vct , Ect) and an integer k,
is there an edge-label cover Eetc such that jEelc j � k?

Theorem 3: The edge-label cover decision problem is
NP-complete.

Proof: The theorem can be proved by reducing the node
cover decision (NDC) problem to the edge-label cover
problem with the help of a deterministic algorithm that
has a polynomial time complexity.

Construction: Given a graph G¼ (V, E), let us construct a
dual graph G0(V0, E0) in the following way:

i) For each edge e2E, include a vertex v(e)2V0.
ii) For each pair of vertices v1(e1) and v2(e2) of V0

corresponding to the edges e1 , e22E perform step (iii).
iii) If there exists a vertex x2V such that both the edges e1
and e2 are incident on x, then include an edge between
v1(e1) and v2(e2) of V

0 and label that edge by x.

For example, the G0(V0, E0) graphs for the graphs of Fig. 4a
and Fig. 4b are shown in Fig. 9a and Fig. 9b.

Complexity analysis: If ne is the number of edges in G then
step (i) will be executed ne times. Step (ii) and Step (iii)
will be executed ne� (ne7 1)=2 times. Therefore the worst
case complexity of the algorithm is O(ne

2).
Theorem 4 presented below establishes that the node

cover decision problem can be reduced to the edge label
cover decision problem in polynomial time.

Theorem 4: A graph G(V, E) has a node cover of size k iff
there exists an edge-label cover of size (k7 i) in the
corresponding transformed graph G0(V0, E0), where i is
the number of isolated vertices in G0.

Proof:
(i) Only-if part: We assume that G(V, E) has a node cover
of size k and G0(V0, E0) is the corresponding transformed
graph with i number of isolated vertices. Each of these
isolated vertices of G0 corresponds to an isolated edge of G.
Therefore, G(V, E) must have i number of isolated edges.
Obviously, any node cover of G must contain i number of
nodes corresponding to these isolated edges, and the rest of

Table 1: List of CTs in the adjacency graph of Fig. 5a(i)

CT CT Exterior edge list

1 abca ab, bc, ac

2 bcfb bc, bf, cf

3 bcdb bc, bd, cd

4 acea ac, ae, ce

Table 2: List of CTs in the adjacency graph of Fig. 5b(i)

CT CT Exterior edge list

1 ajka ak, aj, jk

2 ijki ij, ik, jk

3 ikli ik, il, kl

4 bclb bc, bl, cl

5 fhlf fh, fl, hl

6 fghf fg, fh, gh

7 ghng gh, gn, hn

8 fgnf fg, fh, gn

9 efne ef, en, fn

10 demd de, dm, em
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the (k7 i) nodes should come from the rest of the graph.
Without loss of generality, we may remove the isolated
edges from G and the corresponding isolated vertices from
G0. Now, we have to show that if G(V, E) (devoid of
isolated edges and nodes) has a node cover of size k0,
then G0(V0, E0) (devoid of isolated nodes) must have an
edge-label cover of size k0.

Since there is no isolated edge in G, each edge in G is
adjacent to at least one other edge. This implies that
corresponding to each edge e in G there is a node v
adjacent to it such that d(v)� 2, where d(v) is the degree
of the vertex v. In other words, if there exists a node cover,
S�V of size k, then there is a node cover S0�V such that
jS0 j � k. This is obtained simply by replacing each v2 S
with d(v)¼ 1 by the vertex v0, at the other end of the edge.
That v0 has a degree of at least 2 is guaranteed by the fact
that the edge (v, v0) is not isolated. If v0 is already in S, then
drop v from S. We are justified in doing so because
S7 {v} still covers G. Since each node v2 S now has
d(v)� 2, i.e. v is shared by at least two edges of G, each v
must appear in G0(V0, E0) as edge-labels. This is similar to
the construction of G0 from G.

Let S0¼ {v1 , v2 , . . . , vp}, p� k be the node cover of G
obtained in this manner. Let vi2 S

0 cover l edges e1 , e2 , . . . ,
el2E. Since vi is a common vertex between any pair ei ,
ej2 {e1 , e2 , . . . , el}, the edges will map to a clique of size l
with vertices v1(e1), v2(e2), . . . , vl(el) in G0. Each of the
l(lþ 1)=2 edges of this clique will be labelled vi . There-
fore, in G0, the edge-label vi will cover all vertices v1(e1),
v2(e2), . . . , vl(el). The above analysis is valid for any vi2 S.
Since all edges of G are covered by S, the set of edges
of G0 labelled by the same set of vertices of S will cover
precisely all vertices of G0. For example, in Fig. 4a, {d, e}
is a node cover of size 2. The corresponding dual graph
shown in Fig. 9a has an edge-label cover {d, e} of size 2. In

Fig. 4b, ignoring the isolated edge fg, we have a node cover
{a, c, m, i, j} of size 5. The dual graph of Fig. 4b, shown in
Fig. 9b, also has an edge-label cover {a, c, m, i, j}.

(ii) If part: Suppose that S0¼ {e1 , e2 , . . . , ek} is an edge-
label cover of G0. Let C(el)¼ {vl1 , vl2 , . . . , vli}, . . . ,
C(ek)¼ {vk1 , vk2 , . . . , vkj} be the vertices of G0 covered
by the edge-labels e1 , e2 , . . . , ek respectively. Now
{vl1 , vl2 , . . . , vli}[ � � � [ {vk1 , vk2 , . . . , vkj}¼V0. Since
each vertex v2V0 corresponds to an edge in E and each
edge-label in G0 corresponds to a node shared by more than
one edge in G, the set {v(e1), v(e2), . . . , v(ek)}�V is a
node cover of G. u

Hence it has been proved that the node cover decision
problem can be reduced to the edge-label cover decision
problem in polynomial time. This establishes the fact that
the edge-label cover decision problem is NP-complete
which, in turn, proves that the unweighted complex-
triangle (CT) elimination problem for adjacency graphs
with an arbitrary level of containment is NP-complete.

4 Conclusion

In this paper we have advanced the claim that the
unweighted complex-triangle (CT) elimination problem
for adjacency graphs with an arbitrary level of containment
is NP-complete and have presented a proof in support of
our claim. The elimination of all complex triangles is an
indispensable step towards the floor-planning of a circuit
presented in the form of an adjacency graph using the
rectangular graph dualisation approach. Therefore the
proof regarding the NP-completeness of the problem has
far-reaching significance. Future work on this problem will
focus on finding efficient heuristics to generate an optimal
or near-optimal solution to the CT elimination problem.
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