


where ½x�þ ¼ maxðx; 0Þ and Dik ¼ jjxi ÿ zkjj. T is the temperature
schedule, which is a sequence of strictly positive numbers such
that T1 � T2 � . . .Tt ¼ 0ðlim t ! 1Þ. The suffix t of T indicates the
number of generations through the annealing process. The new
configuration is accepted/rejected according to a probability

1

1þ exp
ÿðEÿE0Þ

T

� � ;

which is a function of the current temperature and energy
difference between the two configurations. The temperature is
gradually decreased toward a minimum value Tmin while the
system settles down to a stable low energy state.

Note that, while the single linkage algorithm precomputes the
distance between all pairs of points and subsequently uses them at
each level of the hierarchy, both the K-Means and the SA-based
algorithms compute the distance between the points to all the
cluster centers in each iteration. Therefore, if n is the total number
of data points, N is the dimensionality of the data, and K is the
number of clusters being considered, then the complexity of the
distance computation phase in single linkage will be Oðn2NÞ, i.e., it
is linearly dependent on N . Again, both the K-Means and the SA-
based method will have complexity OðKnNÞ in each iteration, i.e.,
linearly dependent on N as well.

3 CLUSTER VALIDITY INDICES

In this section, the four cluster validity indices that have been used
in this article to evaluate the partitioning obtained by the above
three techniques for different values of K are described in detail.

Davies-Bouldin (DB) Index: This index [10] is a function of

the ratio of the sum of within-cluster scatter to between-cluster

separation. The scatter within the ith cluster, Si, is computed as

Si ¼ 1
jCij

P

x2Ci
fjjxÿ zijjg and the distance between cluster Ci

and Cj, denoted by dij, is defined as dij ¼ jjzi ÿ zjjj: Here, zi
represents the ith cluster center. The Davies-Bouldin (DB) index

is then defined as

DB ¼ 1

K

XK

i¼1

Ri;qt; ð2Þ

where Ri;qt ¼ maxj;j6¼i
Si;qþSj;q

dij;t

n o

. The objective is to minimize the DB
index for achieving proper clustering.

Dunn’s Index: Let S and T be two nonempty subsets of RN .

Then, the diameter 4 of S is defined as 4ðSÞ ¼ max
|ffl{zffl}x;y2S

fdðx; yÞg
and set distance � between S and T is defined as

�ðS; T Þ ¼ min
|{z}x2S;y2T

fdðx; yÞg. Here, dðx; yÞ indicates the distance

between points x and y. For any partition, Dunn defined the

following index [11]:

�D ¼ min
|{z}1�i�K

min
|{z}1�j�K;j 6¼i

�ðCi; CjÞ
max
|ffl{zffl}1�k�K

f4ðCkÞg

8

<

:

9

=

;

8

<

:

9

=

;
: ð3Þ

Larger values of �D correspond to good clusters, and the number of
clusters thatmaximizes �D is taken as the optimal numberof clusters.

Calinski Harabasz (CH) Index: This index [12] for n data
points and K clusters is computed as

½trace B=ðK ÿ 1Þ�
½trace W=ðnÿKÞ� :

Here, B and W are the between and within cluster scatter matrices.
The maximum hierarchy level is used to indicate the correct
number of partitions in the data. The trace of the between cluster
scatter matrix B can be written as

trace B ¼
XK

k¼1

nkjjzk ÿ zjj2;

where nk is the number of points in cluster k and z is the centroid
of the entire data set. The trace of the within cluster scatter matrix
W can be written as

traceW ¼
XK

k¼1

Xnk

i¼1

jjxi ÿ zkjj2:

Therefore, the CH index can be written as

CH ¼
PK

k¼1 nkjjzk ÿ zjj2
K ÿ 1

" #

=

PK
k¼1

Pnk

i¼1 jjxi ÿ zkjj2
nÿK

" #

: ð4Þ

Index I : The index I is defined as follows:

IðKÞ ¼ 1

K
� E1

EK
�DK

� �p

; ð5Þ

where K is the number of clusters. Here,

EK ¼
XK

k¼1

Xn

j¼1

ukjjjxj ÿ zkjj;

and

DK ¼ max
K

i;j¼1
jjzi ÿ zjjj:

n is the total number of points in the data set, UðXÞ ¼ ½ukj�K�n is a
partition matrix for the data, and zk is the center of the kth cluster.
The value of K for which IðKÞ is maximized is considered to be
the correct number of clusters.

As can be seen from (5), the index I is a composition of three
factors, namely, 1

K,
E1

EK
, and DK . The first factor will try to reduce

index I as K is increased. The second factor consists of the ratio of
E1, which is constant for a given data set, and EK , which decreases
with increase in K. Hence, because of this term, index I increases
as EK decreases. This, in turn, indicates that formation of more
numbers of clusters, which are compact in nature, would be
encouraged. Finally, the third factor, DK (which measures the
maximum separation between two clusters over all possible pairs
of clusters), will increase with the value of K. However, note that
this value is upper bounded by the maximum separation between
two points in the data set. Thus, the three factors are found to
compete with and balance each other critically. The power p is
used to control the contrast between the different cluster
configurations. In this article, we have taken p ¼ 2.

Xie and Beni defined an index [15] that is a ratio of the
compactness � of the fuzzy K-partition of a data set to its separation
s. Mathematically, the Xie Beni (XB) index may be formulated as:

XB ¼
PK

k¼1

Pn
j¼1 u

2
kjjjxj ÿ zkjj2

nmini;j jjzi ÿ zjjj2
: ð6Þ

Here, ukj is themembership of the jth point to the kth cluster and the
XB index is independent of the algorithm used to obtain it. The XB
index has beenmathematically justified in [15] via its relationship to
a well-defined hard clustering validity function, the Dunn’s index
(�D). In this section, we provide a theoretical justification of index I
by establishing its relationship to the Dunn’s index via XB index
with the underlying assumption thatK � ffiffiffi

n
p

, which is a practically
valid assumption. From (5) and (6), we have

XB� I ¼ 1

n�K2
� E2

1 �
ðmaxKi;j¼1 jjzi ÿ zjjjÞ2

minKi;j¼1ðjjzi ÿ zjjjÞ2

�
PK

k¼1

Pn
j¼1 u

2
kjjjxj ÿ zkjj2

ðPK
k¼1

Pn
j¼1 ukjjjxj ÿ zkjjÞ2

:

ð7Þ
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Note that

E2
1

ðPK
k¼1

Pn
j¼1 ukjjjxj ÿ zkjjÞ2

� 1;

and

ðmaxKi;j¼1 jjzi ÿ zjjjÞ2

minKi;j¼1ðjjzi ÿ zjjjÞ2
� 1:

Therefore,

XB� I � 1

n�K2
�
XK

k¼1

Xn

j¼1

u2kjjjxj ÿ zkjj2: ð8Þ

Since, in most real-life situations, we have K � ffiffiffi
n

p
, so,

XB� I �
PK

k¼1

Pn
j¼1 u

2
kjjjxj ÿ zkjj2

n2
: ð9Þ

Let us assume that cluster k has nk points, and the distances of these

nk points from the cluster center zk are dk1; dk2; . . . ; dknk
. Note that

PK
k¼1 nk ¼ n. Let us define �k as

Pnk

i¼1
d2ki

nk
and �min as minkð�kÞ. Here,

�min represents the minimum of the mean squared distances of the

points from their respective cluster centers (orminimumof themean

squared error of the points in the respective clusters). In (9),
PK

k¼1

Pn
j¼1 u

2
kjjjxj ÿ zkjj2 can be written as

PK
k¼1

Pnk

i¼1 d
2
ki. Since

PK
k¼1

Pnk

i¼1 d
2
ki ¼

PK
k¼1 nk�k � n�min, so, XB� I � �min

n : It is proven

in [15] thatXB � 1
�2
D

: Therefore,

I � 1

�2D
� �min

n
: ð10Þ

Evidently, index I becomes arbitrarily large as �D grows without
bound. It has been proven in [16] that, if �D > 1, the hard K-
partition is unique. Therefore, if the data sets have a distinct
substructure and the clustering algorithm found it, then the
corresponding I � �min

n .

4 EXPERIMENTAL RESULTS

4.1 Data Sets and Implementation Parameters

The three artificial data sets that have been used in this article are
AD_10_2, AD_4_3N, and AD_2_10. AD_10_2 is a two-dimensional
overlapping data set with 10 clusters, whereas AD_4_3N is a three
dimensional with four clusters. Fig. 1 and Fig. 2 show the data sets
AD_10_2 and AD_4_3N, respectively (assuming the numbers to be
replaced by data points). AD_2_10 is an overlapping 10-dimen-
sional data set generated using a triangular distribution of the form
shown in Fig. 3 for two classes, one and two, both of which have
equal a priori probabilities. It has 1,000 data points. The range for
class one is ½0; 2� � ½0; 2� � ½0; 2� . . . 10 times and that for class two is
½1; 3� � ½0; 2� � ½0; 2� . . . 9 times.

Two real-life data sets considered are Crude_Oil and Cancer.
Crude_Oil is an overlapping data [17] having 56 data points, five
features, and three classes. The nine-dimensional Wisconsin breast
cancer data (Cancer) (http://www.ics.uci.edu/ mlearn/MLReposi-
tory.html) is used for the purpose of demonstrating the effectiveness
of the classifier in classifying high-dimensional patterns. It has 683
samples belonging to two classes: Benign (class 1) and Malignant
(class 2). Table 1 presents the number of points, dimensions, and the
number of clusters in each data.

In this article, the K-Means algorithm was executed for a
maximum 100 iterations. The simulated annealing algorithm was
implemented with the following parameters: Tmax ¼ 100,
Tmin ¼ 0:001, � ¼ 0:05, and NT ¼ 100. Both the K-Means and the
SA-based clustering algorithms were initialized with the same set
of cluster centers for each K in order to make the comparison fair.
Note that the single linkage clustering algorithm assumes that,
initially, each point forms a cluster of its own. The values of Kmin

and Kmax are chosen as two and
ffiffiffi
n

p
for all the algorithms, where n

is the number of points in the data set.
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Fig. 1. AD_10_2 partitioned into 10 clusters by the SA-based clustering technique.

Fig. 2. AD_4_3N partitioned into four clusters by the SA-based clustering
technique.

Fig. 3. Triangular distribution along the X axis for AD_2_10.



4.2 Determining the Number of Clusters

The number of clusters provided by the three clustering algorithms

in conjunctionwith the fourvalidity indices for thedifferentdata sets

is provided in Table 2. As can be seen from the table, the index I is

able to indicate the correct number of clusters for all the data sets,

irrespective of the underlying clustering technique. For AD_10_2,

the values of I were found to be 299.288177, 295.271881, and

300.149780 when K-means, single linkage, and SA-based algorithms

were used, respectively. In this context, one may note that the

SA-based algorithmprovides an improvement over that ofK-means.
As is widely known, the K-means algorithm often gets stuck at
suboptimal values, a limitation that the SA-based method can
overcome.The index for the single linkagealgorithmmaydiffer from
thoseobtainedusing the other two clusteringmethods because of the
difference of the underlying clustering principle. It may be noted
from Table 2 that, irrespective of the clustering techniques that have
beenused in this article, noneofDB, �D, orCH indices are able to find
the appropriate number of clusters for AD_10_2. For AD_4_3N, it
was found that both DB and CH (in addition to I ) were able to
provide the exact number of clusters.On the contrary, �D failed todo
so, irrespective of the clustering techniques that have beenusedhere.
Like I , the CH index was found to provide the exact number of
clusters for AD_2_10 for all three clustering techniques. However,
theDBand �D indices failed todo so for thisdata. These are indicated
in Table 2.

For Crude_Oil, apart from index I , only the DB index provided
the correct number of clusters when the single linkage algorithm
was used. Even in this case, the minimum was not at a unique
value of the number of clusters. As seen from Table 2, the number
of clusters indicated in this case is three and four, when the DB
index was found to attain the minimum value. The other two
indices are unable to indicate the correct number of clusters.
Cancer data has two classes which have only a small amount of
overlap. As a result, all three clustering techniques, irrespective of
the cluster validity index used, were found to provide the
appropriate number of clusters for this data (Table 2).

4.3 Determining the Appropriate Clustering

The data set is partitioned into a number of clusters (K�), whose
value is obtained by noting the optimum of the validity index, as
done in the previous section. Note that, for this purpose, we use
index I since this is found to be the most reliable among the
indices used. The corresponding U�

K� is obtained by using this
value of K� in the simulated annealing-based clustering technique
that uses a probabilistic redistribution of points. It is well-known
that the K-means method has the limitation of getting stuck at
suboptimal configurations, depending on the choice of the initial
cluster centers. On the contrary, the simulated annealing based
technique can overcome this limitation since it has the power of
coming out of local optima. Fig. 1 and Fig. 2 demonstrate the
results for AD_10_2 and AD_4_3N, respectively. Since the
dimensionality of the other data sets is greater than three, their
partitioning could not be demonstrated graphically.

5 DISCUSSION AND CONCLUSIONS

In this article, an extensive comparison of several cluster validity
indices has been done for both artificial and real-life data sets, where
the number of clusters and dimensions range from two to ten. In this
regard, the performance of three crisp clustering algorithms,
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Description of the Data Sets

TABLE 2
Number of Clusters Provided by the Three Clustering Algorithms

Using the Four Validity Indices for Different Data Sets



namely, hard K-Means, single linkage, and a simulated annealing-
based clustering algorithm with probabilistic redistribution of data
points are also studied. The validity indices are used to evolve the
appropriate number of clusters. Subsequently, the simulated
annealing-based clustering algorithm is utilized for appropriately
partitioning the data into the said number of clusters.

In this context, a recently developed cluster validity index I is
described in this article. This index is found to attain its maximum
value when the appropriate number of clusters is achieved.
Compared to the other validity indices considered, I is found to
be more consistent and reliable in indicating the correct number of
clusters. This is experimentally demonstrated for the five data sets,
where I achieves its maximum value for the correct number of
clusters, irrespective of the underlying clustering technique. A
lower bound of the value of the index I is also theoretically
estimated in order to get the unique hard K-partition when the
data set has a distinct substructure. This is obtained as a result of
establishing a relationship of the index I with the well-known
Dunn’s index and the Xie Beni index.

In addition to the experimental evaluation presented in this
article, an extensive theoretical analysis comparing the validity
indices needs to be performed in the future. Comparison with
respect to the convergence speeds, as well as the effect of distance
metrics, other than the Euclidean distance considered here, on the
performance of the validity indices should be investigated. Note
that the clustering algorithms and validity indices considered in
this article are all crisp in nature. An extensive evaluation of fuzzy
algorithms and validity indices needs to be carried out. In this
regard, a fuzzy version of index I may also be developed.
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