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Abstract

MicroRNAs are small single stranded RNA molecules of ~ 22 nt in length which play important role in post
transcriptional gene regulation either by translational repression of mRENA or by their cleavage. Since their discovery,
continuous efforts to identify the miRNA genes led to the discovery of several miRNAs in plants as well as animals.
Owing to the limitations of the molecular genetic techniques of miRNA identification, computational approaches
were introduced for better and affordable in silico-miRNA predictions. Here, we compared a few miRNA gene
identification tools, such as *‘MiPred’,*Triplet-SVM’,*BayesMiRNAfind’,*OneClassmiRNAfind and
‘BayesS VMmiRNAfind’ to evaluate the performance of its predictability based on the real and pseudo precursor
miRNA datasets. Of all the tools examined MiPred is more sensitive (96% ) in identifying pseudo miRNAs than
Triplet-SVM for real/pseudo miRNA classification, whereas for mature miRNA prediction *one-class® SYM classifier
shows best specificity (96 % ), while BayesS VMmiRNAfind shows least specificity (8% ).

Keywords: MiPred; Triplet-SVM; BayesMiRNAfind; OneClassmiRNAfind; BayesS VMmiRNAfind; Sensitivity; Speci-
ticity: Accuracy; Mathew’ s correlation coetticient; Positive predictive value

Abbreviations: miRNA: MicroRNA; pre-miRNA: Precursor MicroRNA; HMM: Hidden Markov Model; SVM: Sup-
port Vector Machine; PCA: Principal Component Analysis; K-NN: K-Nearest Neighbor; MCC: Mathew’s Correlation
Coefficient; PPV: Positive Predictive Value

Introduction

etal., 1993; Wightman et al., 1993). They were previ-

Interest in mIRNAs and their role as gene expression
ously known as small temporal RNAs (stRNAs), but to-

regulators has been growing immensely (Clop et al., 2006, : ; " :
Feng etal., 2009). The first effort that could identify such ~ daY recognized as the first of the large class of small regu-
latory non-coding RNA molecules, ‘microRNAs". Now it
is believed that this class of molecules is not only limited
to development but also plays a very important role in the
regulation of a wide range of biological processes (Gard
et al., 2006, Feng et al., 2009).

a small regulator, the lin-<4 RNAn C. elegans, was done
by Victor Ambros and colleagues, Rosalind Lee and
Rhonda Feinbaum (Bartel, 2004 ). It was shown that
the 21 nt lin-4 RNA, represses mRNA and controls part
of the C. elegans larval development. The next small regu-
latory RNA to be discovered was the let-7, which con-

MicroRNAs are small non-coding RNAs of approxi-
trols another later developmental stage of C. elegans (Lee

mately 22nt (ranged 19-25nt) known to be involved in
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posttranscriptional gene regulation either by cleavage of
mRNAs or repressing the translation of mRNAs (Bartel
DP, 2004 ). The microRNAs reported to be encoded within
noncoding regions of genomes and within protein coding
genes. The mRENA genes are transcribed by RNA poly-
merase 11; in some cases RNA polymerase I1I may also be
involved. Primary transcripts of the miRNA genes, “pri-
miRMNAs", are processed in the nucleus to ‘pre-miRNAS’
by the RNAase III type endonuclease ‘Drosha’ and ex-
ported from the nucleus to the cytoplasm by nuclear ex-
port factor Exportin 5 and the Ran-GTP coftactor. The 60—
90-nt miRNA precursors form the stem-loop structures,
and the cytoplasmic ribonuclease class 111 enzyme *Dicer’
excises miRNAs fromthe pre-miR NA hairpin stem ( Bartel,
2004). Dicer, either alone or with the help of Drosha,
cleaves both strands of the precursor to form a double-
stranded mIR NA/mIRNA* duplex (Dezulian et al., 2006).
The mature miRNA strand of the duplex with the less stable
57 15 then incorporated into RNA induced silencing com-
plex (RISC) while the other strand is rapidly degraded.

Since the early studies elucidating the important role of
miR NAs, there has been a continuous increase in the num-
ber of microRNAs along with simultaneous increase in
the range of genomes encoding miR NAs, and it is worthy
to mention that these small regulators play much more
important role than previously thought (Gard et al., 2006).
MicroRNAs and their associated proteins appear to be one
of the more abundant ribo-nucleoprotein complexes in the
cell. In general these have been detected by molecular
genetic technique of cloning and Northern blotting but
the detection of miRNAs whose expression is restricted
to non-abundant cell types or specific environmental con-
ditions could still be missed. Moreover these experimen-
tal methods are biased towards abundant microRNAs and
are time-consuming. In these regard the computational
approaches have been developed to complement experi-
mental approaches to miRNA gene identification. It was
found that the prediction of miRNA precursor candidates
is fairly easy, whereas excluding false positives, as well
as, exact prediction of the mature miRNA is a harder task.
Thus, the computational detection methods must there-
fore be refined to serve as a faster, better, and more effi-
cient method for miRNA detection.

In this regard, so far, several algorithms related to
miRNA gene identification have been developed success-
fully. These approaches possess ditferent roles like to pre-
dict the miIRNA genes based on the evolutionary conser-
vation of miRNA (miRScan, MirSeeker, MirFinder etc).
Similarly various other bioinformatics’ predictions com-
bined with microarray analysis (PalGrade); HMM

{ ProMir) and structure-and-sequence analysis (miRAlign,
MicroHarvester) helped to develop these ditferent algo-
rithms. Concept of machine learning approaches also was
incorporated with the biology of miREN A to develop algo-
rithms for the same purpose of miRNA gene identifica-
tion, as for example: Diana-MicroH, mirC oS, miMatcher,
Microprocessor-5VM, miRNA-SVM, RNAmicro,
miREncoding etc. Apart from these algorithms, some other
approaches do make predictions at ditferent step of miRNA
biogenesis e.g., some deal with the problem of classifica-
tion, especially whether a given RNA sequence 1s miIRNA
precursor or not { “Triplet-5V M’ and "MiPred’); and some
other approaches predict the location of mature miRNA
in a given gene sequence (‘BayesMiRNAfind’,
‘OneClassmiRNAfind’, ‘BayesSVMmiRNAfind' etc).
Based on these two criteria, we have attempted to investi-
gate the performance of the various tools of miRNA gene
identification in this study. The comparative analysis can
tell how well we can predict a given RNA sequence to be
a precursor-miR N A and then how well we may know what
is the location of mature miRNA in that particular pre-
CUTSOT SequUEnce.

Methodologies for Gene Identification

For the computational identification of miIENA gene
various successful methods had been developed so far and
it 1s a major thirst research area. This is because these tiny
gene regulators have so many important functions such
as their role in developmental timing, cell death, cell pro-
liferation, haematopoesis and patterning of nervous sys-
tem (Ambros, 2004). Lim et al., (2003) came up with an
idea to identify miRNA genes that are conserved in more
than one genome and developed miRScan for the same
purpose. It was followed by another algorithm MirSeeker
that analyzes the intronic and intergenic regions that are
evolutionary conserved in D). melanogaster and D
pseudoobscura (Lai et al., 2003). The conservedness of
these short sequences across species seems to be an 1m-
portant factor to develop an algorithm for miRNA gene
prediction. Accordingly, Bonnet et al., (2004) developed
MirFinder, a genome wide computational approach, to
detect miIRNA genes present in the Arabidopsis genome
based on the conservation of sequences between
Arabidopsis and Oryza genome. One more approach for
the identification of miIRNAs in A, thaliana was based on
rigid complementarities that exist between plant miRNAs
and their targets named as findMiR NA ( Adai et al., 2005).

Apart from sequence conservation, other factors also
helped to develop different algorithms for the same pur-
pose. In 2005, Bentwitch et al. developed PalGrade, which
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is an integrative approach that combines bicinformatics
prediction with microarray analysis and sequence directed
cloning. Information both at sequence and structural level
helped to develop ProMir which is a probabilistic co-learn-
ing method based on paired HMM to identify close as
well as distant homolog (Nam et al., 2005). Wang et al.,
(2005) were able to detect new miRNA based on struc-
ture and sequence alignment with a novel computational
approach miRAlign. Similar sequence and structure in-
tormation helped to develop MicroHarvester for the iden-
tification of candidate miRNA homolog in a set of se-
quences given a query miRNA (Dezulian et al., 2006).
Another concept. that miRNAs are often found in clus-
ters, was the basis of mirAbela (Sewer et al., 2003) that
took into consideration only those genomic regions that
are present around known miRNAs from mouse, human
and rat.

Novel concepts kept on floating and led to novel dis-
coveries, Berezikov et al., (2005) reported that phyloge-
netic shadowing of miENAs in primate species revealed
a characteristic conservation profile that can be used to
detect the majority of known miRNAs efticiently and also
predict an extensive novel set of miRNAs based on hu-
man-mouse-rat genome wide comparisons. On the other
hand Lindow et al., (2005), developed ‘microMatcher” for
the identification of plant miIRNAs that do not depend on
phylogenetic conservation and identified 592 novel
miRNAs which were not conserved in other plant ge-
nomes.

This 15 the present scenario where several prominent
computerized miIRNA detection approaches have been
developed and utilized successfully. Most of these pre-
dictor algorithms depend on evolutionary conservation of
miRNA sequences between different species. Such ap-
proaches allow filtering out many of the false-positive
candidates, but they are obviously limited to detecting only
the conserved microRNAs. Hence the concept of machine
learning came into the picture when the need was to 1den-
tity the non-conserved miRNAs. Such way of identifica-
tion of novel microRNAs is a difficult pattern-recogni-
tion challenge. A single property is not sufficient for ac-
curately detecting microRNAs, and in most cases rigid
thresholds of the values for each of those properties is
also not sufficiently sensitive. Rather, it is the combina-
tion of multiple properties, along with suitably different
weighing of these different properties, that provides de-
sirable accuracy. In this regard, many prediction algorithms
based on machine learning have been developed. Xue et
al., (2005), first developed an ab initio method called as
Triplet-SWYM, for distinguishing true pre-miRNAs from

other pre-miRNA like hairpin structures taking into ac-
count a novel local contiguous structure sequence teature
and used SYM with these features to classify real and
pseudo pre-miRNAs. In order to improve the predictions
by Triplet-SVM, another tool MiPred was developed
which utilized the same feature (local contiguous struc-
ture sequence feature) in a hybrid way with another fea-
tures including the MFE of the secondary structure, di-
nucleotide shuffling and P-Value of randomization test
with a novel machine learning algorithm: Random Forest
(Jiang et al., 2007). Several other algorithms made use of
the SWM like Diana-MicroH (Szafranski et al., 2008) to
predict miRNA hairpins using unique feature related to
enzymatic cleavage with two additional features viz., GC
content and stem linearity; mirCoS (Sheng et al., 2007)
that used three 5 VM models sequentially to discover novel
miRNAs in mammalian genomes; Microprocessor-5VM
that predicts processing sites for 50% of known human 5
miRNAs and miRNA-SVM that 1s trained on the output
of the former one to identify non-conserved miRN As
(Helvik et al., 2007); RN Amicro, another SYM based
approach that includes non stringent filter for consensus
secondary structures and can easily identify pre-miRNAs
in multiple sequence alignment (Hertel et al., 2006);
miMatcher pipeline developed by Lindow et al.,(2007)
performs intragenomic matching of potential miRNAs and
their targets followed by classification of these miRNA
candidates using 5V M and miREncoding (Zheng et al_,
2006) to encode the pre-miRNA sequences together with
their secondary structures into the proposed 43 features
using Weka software (Frank et al., 2004 ) in order to evalu-
ate the performance of the selected classification algo-
rithms along with the use of polynomial kernels for SVM
algorithm. Apart from SVM Bayes classitier had also been
used to develop new machine learning algorithm
BayesMiRNAfind (Youset et al., 2006),
BayesSVMmiRNAfind (http://wotan.wistar.upenn.edu/
BayesS VMmiRNAfind/) and OneClassMiRNAfind gene
algorithm (Yousef et al., 2008). Brameier et al., (2007)
used, for the first time, machine learning algorithm based
on linear genetic programming and developed a unique
ab initio method called as mirPRed for the prediction of
novel mature mIRNAs by genome scanning.

Materials and Methodology
Materials

The comparative study used five tools falling into two
different categories. The first one includes ‘MiPred’ and
‘Triplet-S¥M’" meant for the classification of real and
pseudo pre-miRNAs and the second one includes
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‘BayesMiRNAfind", ‘OneClassmiRNAfind’,and
‘BayesSVMmiRNAfind for the prediction of mature
miRNA. Out of the three tools in the latter category
‘OneClassMiRNAfind” have options for five classitiers
viz. SVM, Gaussian, Kmeans, PCA and K-NN and
‘BayesSVMmiRNAfind" have options for two classifiers
viz. naive-Bayes and SVM. Positive as well as negative
datasets were used for this comparative study. The posi-
tive dataset consists of 678 real miRNA precursor se-
quences of Home sapiens, which were downloaded from
the miR Base database release 11.0 (Griffiths-Jones et
al., 2008, Griffiths-Jones et al., 2006; Griffiths-Jones,
2004). These sequences in the database have been either
experimentally supported or obtained from literature min-
ing and thus are the actual pre-miRNAs. The use of this
positive dataset will therefore help to identify the number
of true positives and false negatives that will define the
sensitivity of a particular tool.

The negative dataset consists of 700 sequences of hu-
man pseudo pre-miRNAs. The source of this negative
dataset is the coding dataset used by Xue et al., (2005).
This ‘coding dataset’ consists of 8494 pre-miRNA like
hairpins from which we collected the first 700 sequences
(in order to make the number of positive and negative
dataset sequences approximately equal) for this compara-
tive analysis of various tools. These 700 sequences are
the pre-miRNA like hairpins which are basically those
sequence segments that have similar stem loop structure
as actual miIRNAs but stll not been reported as pre-
miRNAs (Xue et al., 2005). The use of this negative dataset
will help to identify the number of false positives and true
negatives that will define the specificity of a particular
tool. Further details regarding the formation of the cod-
ing dataset can be obtained from Xue et al., (2005). The
number of sequences given, as input, to all of these tools
is same except for Triplet-SVM, where some sequences
are not accepted due to the constraints in the algorithm.

Analysis

The positive and negative datasets are given as input to
each of these tools and the output was analyzed to calcu-
late the number of true positives (TP ). true negatives (TN),
false positives (FP) and false negatives (FN).

True positives is defined as the number of experimen-
tally supported miRNA precursors that are predicted by a
program and false negatives are those experimentally sup-
ported miRNA precursors that are not predicted by the
program. Similar to the above case, false positives is de-
fined as the number of all negatives that is predicted by a

program and true negative on the other hand is all nega-
tives that i1s not predicted by the program (Sethupathy et
al., 2006).

Further, in order to evaluate the performance of these
different predictive tools, we used the statistical param-
eters, viz., Sensitivity (Se), Specificity (Sp), Accuracy
{Acc),a summary statistic: Mathew correlation coefficient
(MCC) and Positive predictive value (PPV). These pa-
rameters are based on TP, FN, TN and FP and are calcu-
lated using the following equations (Jiang et al., 2007):

Accuracy (Acc) = (TP+TN)/(TP+TN+FP+EN)*100
Specificity (Sp) = TN/ATN+FP)*100

Sensitivity (Se) = TP/TP+FN)*100
MCC=((TP*TN)-(FP*EN) )/
((TP+FPy*(TN+FN)* TP+FN)y*(TN+FP))*

The Positive Predictive value (PPV) 1s calculated using
the following formula (http://fwww.medicine uiowa.edu/
path_handbook/Appendix/Chem/ PRED_VALUE
_THEORY html}.

Positive Predictive value (PPV) =TPF/ (TP+FP) #* 100,

a. Prediction of real/pseudo precursor-miRNA

Positive Data | MNegative Data
| TP | FN | FP | TN

MiPred 8053 | 1946 | 400 | 96.00
TripletSVM* | 7839 | 2161 | 1426 | 85.74

Tools

b. Prediction of mature miRNA
1. OneClassMiBENAfind

SVM 7124 | 2876 | 557 | 94.43
Gaussian 69.62 | 3038 | 13.43 | B6.57
K-means TROL | 2109 | 13.43 | 8657

PCA 73.16 | 26.84 | 13.43 | B6.57

KNN BOO9 | 1991 | 13.43 | B6.57

2, BayesMIRNAflind | 7522 | 2479 | 10.43 | 89.57
3. BayesSVMmiRNAfind
Naive-bayes 9675 | 324 | 92.00 | 8.00

SVM 8746 | 1254 | 92.00 | 8.00
* The sample size: Positive (634), Negative (491)

Table 1: Percent count of TP, FN, FP and TN for two
classes of predictions based on 678 real (Positive data set)
and 700 pseudo (Negative data set) miRNA precursor se-

quences. a: Prediction of real/pseudo precursor miRNA,
b: Prediction of mature miRNA.
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Results

The results of the miRNA prediction tools are summa-
rized in two ways; first in terms of percent count of TP,
FN, FPand TN (Table 1) and second in terms of Sensitiv-
ity, Specificity, Accuracy, MCC and PPV of each tool
(Table 2).

Table 1 shows the percent count of TP, FN, FP and TN
obtained by the two types of predictive algorithms; a) Pre-
diction of real/pseudo miRNA precursor and b) Predic-

a. Performance of real/pseudo precursor-miRNA predic-
tion tools

Tools Spi%) Se (%) | Acc (%) | MCC | PPV
MiPred . (0 #0.53 #8.39 07761 | 9512
TripletSWM | 85.74 Th3Y Bl.6d) 06362 | B7.65

b. Performance of mature miRNA prediction tools

1. OneClassMiEMNAfind

SWVM 9443 | 7120 | 83.02 | 0.6768 | 9253
PCA 86.57 | 73.15 | 7997 | 0.6035 | B339
Kmeans 86.57 | 78.91 | 82.80 | 0.6572 | BS06
Cianssian 8057 | 6961 | TR23 | 0.571 84.07
K-NN 86.57 | 80.09 | 8338 | 0.6684 | 8324

2.BayesMiRNAfind | 89.57 | 75.22 | 82.51 | 0.6556 | 8747
3. BayesSVMmiRNAfind

SVM 800 [ 96.76 | 51.67 | 0.1029 | 5046
Naive Bayes 800 [ 8746 [ 47.09 | 0.0853 [ 47.04
Table 2:  Percent values of the efficiency parameters:

Specificity, Sensitivity, Accuracy. MCC and PPV to infer
the performance of two predictive algorithms a: Perfor-
mance of real/pseudo precursor-miRNA prediction tools,
b: Performance of mature miRNA prediction tools.

tion of mature miRNAs based on both positive and nega-
tive data sets.

Table 2 shows the performance evaluation indicators,
especially Sensitivity, Specificity, Accuracy, MCC and
PPV obtained by the same two types of predictive algo-
rithms: a) Prediction of real/pseudo miRNA precursor and
b)) Prediction of mature miRNA.

Prediction of Real/psendo miRNA Precursor

Of the two methods considered for classification of real
and pseudo pre-miRNAs, MiPred is more sensitive in iden-
tifying the pseudo precursor miRNAs (96%), whereas
TripletSVM is less accurate in identifying both types of
miRNAs (Table 1a). On the other hand, the Specificity of
MiPred is as high as 96% compared to the 85% specific-

ity of Triplet-SVM. The results are in agreement to the
total number of true negatives given by the respective tools.
The Sensitivity of both these tools is almost same (78-
B0%) but because of the high specificity of MiPred the
overall accuracy is more for this tool. Hence MiPred is a
better tool when compared to Triplet-5VM which 15 also
indicted by the 95.12% PPV for this tool. The MCC value
for MiPred (0.7761) is high compared to the other tool
TripletSVM (0.6362) showing the high efficiency of
MiPred in classifying the real and pseudo pre-miRNA
sequences (Table 2a).

Prediction of Mature miRNA

In case of predictive algorithms related to prediction of
mature miRNAs, the two methods OneClassmiRNAfind
and BayesMiRNAfind show similar results of correctly
identifying the psendo miRNA data (86-96%) than the
real miRNA data (69-80% ). Except the SVM classifier of
OneClassmiR NAfind all other classifiers show relatively
high percent of FP (13.43%) whereas the
BayesMiRN Afind shows a lower FP value (10.43%),
which is higher than that of one-class SVM classitier, but
lower than all other one-class classitiers. Interestingly, the
tool BayesSVMmiRNAfind was able to identity the real
pre-miRNAs (87-96%) but is least efficient in identifying
the pseudo pre-miRNA data with a TN value of 8 % only
(Table Ib). On the other hand, the specificity of one class
SVM classifier is best (96%) followed by
BayesMiRNAfind (89.57%), whereas the specificities of
all other one-class classifiers are in the same range
(86.57%). Again one important observation 15 the very
low specificity of BayesSVMmiRNAfind (8%) suggest-
ing that this tool is not the preferred choice to correctly
identify especially the pseudo pre-miRNAs. The sensi-
tivities of the three tools along with their classitiers fall in
the range of 71-87% except for BayesSYMmiRNAfind
where 1t 1s Y6%. This suggests that although
BayesSVMmiRNA find is far from identifying the nega-
tive data correctly, but it can very well be used to predict
the positive data. Further, the positive predictive value
(PPV) of this tool 1s also low for both of its classifiers (for
SWM it is 47.94% and for naive Bayes it is 50.46%) when
compared to other tools for the prediction of mature
miRNA depicting the ineffectiveness of the predictions
made by it. The overall accuracy of these tools is some-
what in the same range of 78-83% except for
BayesSVMmiRNAfind, where there is a decrease in the
range 47-51% because of its very low specificity. Fur-
ther, the MCC value, which tells about the efficiency of
the tool, falls in the same range (0.571-0.6768) but it is
lowest in case of BayesSVMmiRNAfind for both of its
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classifiers naive-Bayes (0.0853) and SVM (0.1029) (Table
2b).

Discussion

The basic principle of many computational methods is
to learn from known examples in order to find new ones
and make better predictions. From a computational per-
spective, this corresponds to the problem of machine learn-
ing, an area of artificial intelligence used to develop tech-
niques that allow computers to learn from examples. Since
all the mechanisms behind mIRNAs and their actions are
not completely revealed, computational tasks associated
with miRNA studies are often posed as a challenging
machine learning problem with limited prior information
(Yoon et al., 2006). In spite of such difficulties several
algorithms based on the concept of machine learning have
been developed but because the field of miRNA research
15 still in its blooming phase and the understanding at the
molecular level is yet not very clear, the process of algo-
rithms development for miRNA identification may not be
completely exhaustive. It demands more understanding
of the molecular aspect of miRNA biology and more clar-
ity is needed to develop more accurate and efficient tools
for the aforesaid purpose. Thus a comparative analysis of
the performance of the various prediction tools available
might be useful to carry out further research work in this
area.

The present study takes into consideration the compara-
tive analysis of the tools available for pre-miRNA classi-
tication and mature miRNA prediction in order to under-
stand the limitations in these algorithms so that further
etforts can be done for their improvement. Of all the tools
studied, the earliest was TripletSVM, which included just
the local contiguous sequence-structure feature. There is
no inclusion of any thermodynamic related features hence
there is a possibility of improvement in its overall perfor-
mance. And it was achieved when MiPred was developed
later on, which includes a hybrid feature incorporating
local contiguous sequence structure feature along with the
MEFE and P value of randomization test. This improve-
ment 15 visible in the result (Table 2) as the sensifivity as
well as accuracy of MiPred is high compared to that of
TripletSVM. Moreover, the specificity of MiPredis ~11%
higher than Triplet5VM: this is of much importance, as
specificity is related to the false positive rate. More the
specificity more will be the tendency of the program not
to erroneously predict the negative data. The high perfor-
mance of MiPred can also be contributed to the novel clas-
sifier algorithm Random Forest used in their program
along with 5WVM.

Among the rest three tools, BayesMiRNAfind shows
good specificity and accuracy indicating its better perfor-
mance. The reason behind might be the inclusion of cer-
tain rules based on miIRNA gene structure and sequence,
thereby allowing prediction of non-conserved miRNAs.
Moreover in order to reduce the false positive rate the
tool 15 based on a comparative analysis over multiple spe-
cies In an attempt to develop an algorithm that has higher
specificity but almost similar sensitivity, which is also
depicted by the results. OneClassMiRNAfind with SVM
shows the best specificity among all classifiers which
themselves have the same specificities. In case of sensi-

Performance of miRMA gene identification tools

Sl S ES ‘f"; &
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Figure 1: Comparison of miRNA gene identification tools
as obtained from the evaluation measures of Specificity
(5p), Sensitivity (5e)and Accuracy (Acc).

tivities, OC-KNN and OC-K-means are superior to oth-
ers as measured by their ability to capture only the known
miR NAs. Twao-class classifier approach
BayesSVYMmiRNAfind with SVM is showing the best
sensitivity among all the tools compared but it has a very
low specificity due to which the overall predictive crite-
rion of accuracy is not good. Thus, BayesSYMmiR N Afind
with S¥M as a classifier has the highest sensitivity but its
specificity is lowest (Figure 1).

Keeping in mind the various algorithms and method-
ologies developed so far one possible area of further re-
search is to incorporate certain new features related to
miRNA and to develop some new and more efficient al-
gorithm for the same purpose. Furthermore, one possible
limitation of the present study is that it is only based on
comparing single programs and we have not considered
the possibilities of combinations of several programs e.g.,
performance of various unions and intersections of indi-
vidual programs, which might lead to a better compara-
tive analysis.
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