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Rough-Fuzzy Clustering for Grouping
Functionally Similar Genes from Microarray Data
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Abstract—Gene expression data clustering is one of the important tasks of functional genomics as it provides a powerful tool for
studying functional relationships of genes in a biological process. |dentifying co-expressed groups of genes represents the basic
challenge in gene clustering problem. In this regard, a gene clustering algorithm, termed as robust rough-fuzzy c-means, is proposed
judiciously integrating the merits of rough sets and fuzzy sets. While the concept of lower and upper approximations of rough sets deals
with uncertainty, vagueness, and incompleteness in cluster definition, the integration of probabilistic and possibilistic memberships of
fuzzy sets enables efficient handling of overlapping partitions in noisy emvironment. The concept of possibilistic lower bound and
probabilistic boundary of a cluster, introduced in robust rough-fuzzy c-means, enables efficient selection of gene clusters. An efficient
method is proposed to select initial prototypes of different gene clusters, which enables the proposed c-means algorithm to convenge
to an optimum or near optimum solutions and helps to discover co-expressed gene clusters. The effectiveness of the algorithm, along
with a comparison with other algorithms, is demonstrated both qualitatively and quantitatively on fourteen yeast microarmay data sets.

Index Terms—DMicroarmay, gene clustering, overlapping clustering, rough sets, fuzzy sets

1 INTRODUCTION

ICROARRAY technology is one of the important

bictechnological means that has made it possible
to simultaneously monitor the expression levels of thou-
sands of genes during important biological processes
and across collections of related samples [1], [2], [3]. An
important application of microarray data is to elucidate
the patterns hidden in gene expression data for an
enhanced understanding of functional genomics.

A microarray gene expression data set can be repre-
sented by an expression table, where each row corre
sponds to one particular gene, each column to a sample
or time point, and each entry of the matrix is the mea-
sured expression level of a particular gene in a sample
or time point, respectively [1], [2], [3] However, the
large number of genes and the complexity of biclogical
networks greatly increase the challenges of comprehend-
ing and interpreting the resulting mass of data, which
often consists of millions of measurements. A first step
toward addressing this challenge is the use of clustering
techniques, which is essential in pattern recognition pro-
cess to reveal natural structures and identify interesting
patterns in the underlying data [4].

Cluster analysis is a technique for finding natural
groups present in the gene set. It divides a given gene
set into a set of clusters in such a way that two genes
from the same cluster are as similar as possible and the
genes from different clusters are as dissimilar as possible
[2], [3]. To understand gene function, gene regulation,
cellular processes, and subtypes of cells, clustering tech-
niques have proven to be helpful. The co-expressed

genes, thatis, genes with similar expression patterns, can
be clustered together with similar cellular functions. This
approach may further understanding of the functions
of many genes for which information has not been
previously available [5], [6]. Furthermore, co-expressed
genes in the same cluster are likely to be involved in
the same cellular processes, and a strong correlation of
expression patterns between those genes indicates co-
regulation. Searching for common DN A sequences at the
promoter regions of genes within the same cluster allows
regulatory motifs specific to each gene cluster to be
identified and cis-regulatory elements to be proposed [6],
[7]. The inference of regulation through gene expression
data clustering also gives rise to hypotheses regarding
the mechanism of transcriptional regulatory network [8].

The purpose of gene clustering is to group together
co-expressed genes which indicate co-function and co-
regulation. Due to the special characteristics of gene
expression data, and the particular requirements from
the biclogical domain, gene clustering presents several
new challenges and is still an open problem. The cluster
analysis is typically the first step in data mining and
knowledge discovery. The purpose of clustering gene ex-
pression data is to reveal the natural data structures and
gain some initial insights regarding data distribution.
Therefore, a good clustering algorithm should depend
as little as possible on prior knowledge, which is usually
not available before cluster analysis.

Different clustering techniques such as hierarchical
clustering [9], F-means algorithm [10], self organizing
map [11], graph theoretical approaches [12], [13], [14],
[15], model based clustering [16], [17], [18], [19], and
density based approach [2(]] have been widely applied to
find groups of co-expressed genes from microarray data.
A comprehensive survey on various gene clustering
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algorithms can be found in [4], [7].

One of the main problems in gene expression data
analysis is uncertainty. Some of the sources of this uncer-
tainty include incompleteness and vagueness in cluster
definitions. Also, the empirical study has demonstrated
that gene expression data are often highly connected,
and the clusters may be highly overlapping with each
other or even embedded one in another [A)]. Therefore,
gene clustering algorithms should be able to effectively
handle this situation. Moreover, gene expression data
often contains a huge amount of noise due to the com-
plex procedures of microarray experiments [21]. Hence,
clustering algorithms for gene expression data should
be capable of extracting useful information from a high
level of background noise.

In this background, the possibility concept introduced
by fuzzy set theory [22] and rough set theory [23] have
gained popularity in modeling and propagating uncer-
tainty. Both fuzzy sets and rough sets provide a math-
ematical framework to capture uncertainties associated
with the data. One of the most notable prototype based
partitional clustering algorithms is fuzzy c-means [24],
[25]. It assigns each gene to every cluster by allowing
gradual memberships. In effect, it offers the opportunity
to deal with the data that belong to more than one cluster
at the same time. [t assigns memberships to a gene which
are inversely related to the relative distance of the gene
to cluster prototypes. Also, it can deal with the un-
certainties arising from overlapping cluster boundaries
and reveal additional information concerning gene co-
expression [26], [27], [28], [29]. In particular, information
regarding overlapping clusters and overlapping cellu-
lar pathways has been identified from fuzzy clustering
results [29], [30]. However, the resulting membership
values of fuzzy c-means do not always correspond well
to the degrees of belonging of the data, and it may be
inaccurate in a noisy environment [31]. To reduce this
weakness and to produce memberships that have a good
explanation of the degrees of belonging for the data,
Krishnapuram and Keller [31] proposed possibilistic o
means algorithm. However, it sometimes generates co-
incident clusters [3].

Integrating the merits of rough sets and fuzzy sets, dif-
ferent rough-fuzzy clustering algorithms such as rough-
fuzzy c-means [32], rough-possibilistic ~-means [33], and
rough-fuzzy-possibilistic c~-means [33] have been pro-
posed, where each cluster is represented by a cluster
prototype, a crisp lower approximation and a proba-
bilistic and /or possibilistic fuzzy boundary. The cluster
prototype is computed based on the weighted average of
crisp lower approximation and fuzzy boundary. All these
algorithms can be used for clustering co-expressed genes
from microarray gene expression data sets [3]. However,
the crisp lower approximation of a gene cluster in rough-
fuzzy clustering [32], [33] is usually assumed to be spher-
ical in shape, which restricts to find arbitrary shapes
of gene clusters. Recently, fuzzy-rough supervised gene
clustering algorithm is proposed in [34] to find groups

of co-regulated genes whose collective expression is
strongly associated with sample categories.

In this paper, a rough-fuzzy clustering algorithm,
termed as robust rough-fuzzy c-means (rRFCM), is pro-
posed for clustering functionally similar genes from
microarray gene expression data sets. It integrates ju-
diciously the merits of rough sets, and probabilistic
and possibilistic memberships of fuzzy sets. While the
integration of both membership functions of fuzzy sets
enables efficient handling of overlapping partitions in
noisy environment, the concept of lower and upper
approximations of rough sets deals with uncertainty,
vagueness, and incompleteness in cluster definition.
Each cluster is represented by a set of three parameters,
namely, a cluster prototype or centroid, a possibilistic
lower approximation, and a probabilistic boundary. The
cluster prototype depends on the weighting average of
the possibilistic lower approximation and probabilistic
boundary. An efficient method is proposed to select
initial prototypes of different gene clusters; thereby cir-
cumventing the initialization and local minima problems
of c-means algorithm. The effectiveness of the proposed
algorithm, along with a comparison with other gene
clustering algorithms, is demonstrated on a set of four-
teen microarray gene expression data sets using some
standard validity indices.

The rest of this paper is organized as follows: Section
2 presents a new clustering algorithm, termed as robust
rough-fuzzy c-means (rREFCM), based on the theory of
rough sets and fuzzy sets. Implementation details and
a brief description of different microarray gene expres-
sion data sets are reported in Section 3. Experimental
results and a comparison among several gene clustering
algorithms are presented in Section 4. Section 5 reports
the biological significance of generated gene clusters.
Concluding remarks are given in Section 6.

2 RoBUST RFCM ALGORITHM

This section introduces a new c-means algorithm, termed
as robust rough-fuzzy c-means. The proposed c-means
adds the concepts of fuzzy memberships, both proba-
bilistic and possibilistic, of fuzzy sets, and lower and
upper approximations of rough sets into c-means algo-
rithm. While the integration of both probabilistic and
possibilistic memberships of fuzzy sets enables efficient
handling of overlapping clusters in noisy environment,
the rough sets deal with uncertainty, vagueness, and
incompleteness in cluster definition.

2.1 Objective Function

Let X = {zi,---,2;,---,za} be the set of n objects
and V = {v;,---,v;,---,v.} be the set of ¢ centroids,
where z; € ™ and 1, € ®™. Each of the clusters 3, is
represented by a cluster center v;, a lower approximation
A(A3:) and a boundary region B(3) = {A(3)\ A5},
where A(3;) denotes the upper approximation of cluster
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A;. The proposed c-means algorithm partitions X into ¢
clusters by minimizing following objective function:

wd; + (1 —w)By  if A3 #0, B3 £ 0
o = A if A5 #0, B(53) =10 i1)

By if A(3) =0, B(3)+0

where 4, = Z Z Vij '"* lz; —1,¢||

i=1x;cA(8;)
+Z”i Z {1 - y:_',l:I”Eg:
=1 cA(%)
and B; = Z Z (paag) ™ |l — w2
t=1 r;e B(d:)

The parameters w and (1 — w) correspond to the rel-
ative importance of lower and boundary regions, while
1 < ni; < oo and 1 < niz < oo are the probabilistic and
possibilistic fuzzifiers, respectively. Note that p; £ [0, 1]
is the probabilistic membership function as that in fuzzy
c-means and [0,1] represents the possibilistic
membership function that has the same interpretation
of typicality as in possibilistic e-means.

Cluster fy

Possibilistic Lower Approximation
A(R; ) with vij —= [0, 1]

Prohahilistic Boundary
Bif wimpij_..[ﬂ, 1]

Hij: provhahilistic membership vij: possibilistic membership
Fig. 1. Robust RFCM: cluster 3, is represented by possi-
bilistic lower approximation and probabilistic boundary

In robust rough-fuzzy c-means, each cluster is repre-
sented by a centroid, a possibilistic lower approxima-
tion, and a probabilistic boundary (Fig. 1). The lower
approximation influences the fuzziness of final partition.
According to the definitions of lower approximation and
boundary of rough sets [23], if an object z; € A(4;), then
x; & Al ), W # 4, and x; ¢ B(3;),¥i. That is, the object
x; is contained in 74, definitely. Hence, the memberships
of the objects in lower approximation of a cluster should
be independent of other centroids and clusters. Also,
the objects in lower approximation should have different
influence on the corresponding centroid and cluster.
From the standpoint of “"compatibility with the cluster
prototype”, the membership of an object in the lower
approximation of a cluster should be determined solely
by how far it is from the prototype of the cluster, and
should not be coupled with its location with respect
to other clusters. As the possibilistic membership

depends only on the distance of object =; from cluster
A, it allows optimal membership solutions to lie in the
entire unit hypercube rather than restricting them to
the hyperplane given by (3). Whereas, if z; € B{3),
then the object ; possibly belongs to cluster 3; and
potentially belongs to another cluster. Hence, the objects
in boundary regions should have different influence
on the centroids and clusters, and their memberships
should depend on the positions of all cluster centroids.
S50, in robust rough-fuzzy c-means, the membership
values of objects in lower approximation are identical
to possibilistic e-means [(4)], while those in boundary
region are the same as fuzzy c-means [(2]].

2.2 Membership Function
Solving (1) with respect to j;; and v, we get

) —1
| (il = .
5 [Z = ] A

k=1
subject to Zﬁ-u = 1,%j, and 0 < Zjij_ll < %, (3)

i=1

llz; — |2 B
vy = |1+ T

} Tela 13 ‘| : @

subject to 0 < Zu;_.. < o, ¥i; amd maxw; >0,%5;  (5)
=1

i=l

where the scale parameter 1; is given by

e
Z{u,-_..:l”':*ﬂ;r:_, — *4:5||E

= K- = e 5 {ﬁ]

which represents the zone of influence or size of the
cluster 4;. Typically K is chosen to be 1. Combining
(2) and (4), the following relation can be established
between the probabilistic and possibilistic memberships
of object z; in cluster 3;:

. 1 -1
m (a1 —vig) prR=E Y i
Z S
e A\l — vy)
From the above relation, it can be seen that the prob-

abilistic membership p;; is directly proportional to the
possibilistic membership v;; of object z; in cluster ;.

2.3 Cluster Prototypes

The new centroid is calculated based on the weighting
average of the possibilistic lower approximation and
probabilistic boundary. Computation of the centroid is
modified to include the effects of both fuzzy mem-
berships, probabilistic and possibilistic, and lower and
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upper bounds. The modified centroid calculation for
robust rough-fuzzy c-means is obtained by solving (1)
with respect to v

wly + (1 —w)Dy if A3 £ 0, B3 #£0
vy = Cy if A(3,) #0, B(4,) =0 (8)
D, if A(3,) =0, B(3:) #0
Z ':Vi_-,ujﬂllzmj Z {fi.i_-,u:'rhlmj
W]"!E['E C1 gz x;eA09;] : ; D]_ 2 x;eB(d) :
> > G
rie Al ) r;eB(8])

Hence, the cluster prototypes or centroids depend on
the parameters w and (1 —w), and fuzzifiers 4, and s
rule their relative influence.

2.4 Details of the Algorithm

Approximate optimization of the objective function .J
[(1)] by the robust rough-fuzzy c-means is based on
Picard iteration through (2), (4), and (8). This type of
iteration is called alternating optimization.

The process starts by choosing ¢ objects as the initial
centroids of the ¢ clusters. The possibilistic memberships
of all the objects are calculated using (4). The scale
parameters 1; for ¢ clusters are obtained using (6). Let
v = (v, ¥y, ,1,) represents the possibilistic
cluster 4; associated with the centroid ;. After com-
puting ;; for ¢ clusters and n objects, the values of vy
for each object x; are sorted and the difference of two
highest memberships of z; is compared with a threshold
value 4,. Let »; and wy; be the highest and second
highest memberships of =;. If {v; — wy;) > &, then
z; € AlF), otherwise x; € B(4) and z; € B(j3) if
vy = da. After assigning each object in lower approxima-
tions or boundary regions of different clusters based on
the thresholds §; and ds, the probabilistic memberships
jtij for the objects lying in the boundary regions are
computed from the possibilistic memberships v; using
(7). The new centroids of different clusters are computed
as per (8). The main steps of the robust rough-fuzzy o
means algorithm proceed as follows:

1) Assign initial centroids v, i = 1,2,---,e. Choose
values for fuzzifiers sy and e, and calculate
thresholds 4, and & . Set iterabion counter § = 1.

2) Compute v;; by (4) for ¢ clusters and n objects.

3) If vy and wy; be the highest and second highest
possibilistic memberships of object =; and (v; —
vl = & then z; € A(4). In addition, by proper-
ties of rough sets, z; € A(3,).

4) Otherwise, x; € B(5;) and z; € B(3;) if v;; = da.
Furthermore, x; is not part of any lower bound.

5) Compute p,; for the objects lying in boundary
regions for ¢ clusters using (7).

6) Compute new centroid as per (8).

7) Repeat steps 2 to 6, by incrementing ¢, until no
more new assignments can be made.

In effect, the proposed algorithm has an overall com-
putational complexity of O(tenm), where §, ¢, n, and m
represent the number of iteration, clusters, objects, and
dimension of each object, respectively.

2.5 Selection of Parameters

The parameter w has an influence on the performance of
robust rough-fuzzy c-means algorithm. Since the genes
lying in lower approximation definitely belong to a
cluster, they are assigned a higher weight w compared
to (1 — w) of the genes lying in boundary regions. On
the other hand, the performance of proposed c-means
significantly reduces when w =~ 1. In this case, since
the clusters cannot see the genes of boundary regions,
the mobility of the clusters and the centroids reduces.
As a result, some centroids get stuck in local optimum.
Hence, to have the clusters and the centroids a greater
degree of freedom to move, } < (1 —w) < w < 1.

The performance of robust rough-fuzzy c~-means also
depends on the values of two thresholds 4; and &, which
determine the cluster labels of all the genes. In other
word, the robust rough-fuzzy c-means partitions the
data set into two classes, namely, lower approximation
and boundary, based on the values of 4, and 4. The
thresholds 4, and & control the size of granules of rough-
fuzzy clustering. In practice, the following definitions
waork well:

-

b=~ E{yu vi;) (9)
where n is the total number of genes, v;; and vy, are the
highest and second highest memberships of object =,.
That is, the value of 4, represents the average difference
of two highest possibilistic memberships of all the genes
in the data set. A good cdustering procedure should make
the value of §; as high as possible. On the other hand,
the genes with (; — ;) = §; are used to calculate the

threshold d4s:
~ 1
8y = — ;
7 Z 4

(10)

where 7 is the number of genes those do not belong
to lower approximations of any cluster and w;; is the
highest membership of gene z;. That is, the value of
dy represents the average of highest memberships of #
genes in the data set.

2.6 Selection of Initial Cluster Prototypes

A limitation of the c-means algorithm is that it can only
achieve a local optimum solution that depends on the
initial choice of the cluster prototypes. Consequently,
computing resources may be wasted in that some initial
centers get stuck in regions of the input space with a
scarcity of data points and may therefore never have
the chance to move to new locations where they are
needed. To overcome this limitation of the c-means algo-
rithm, next a method is proposed to select initial cluster
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prototypes, which is based on a similarity measure. It
enables the algorithm to converge to an optimum or near
optimum sclutions or cluster centers.

Prior to describe the proposed method for selecting
initial cluster centers, next a quantitative measure, called
degree of similarity, is defined to evaluate the similarity
between two genes.

Definition 1: The degree of similarity (DOS) between
two objects z; and x; is defined as

. i lxie — =3
Dﬂﬁ{;r:,;.. IJ:| — Z |:]. = ﬁ

L ™ Wiy
=1 TR wreire |

(11)

where m is the number of features of the object z;, ks
and k.., denote the maximum and minimum values
along the kth feature, respectively. The DOS is used
to quantify the similarity between pairs of genes. If
expression values of two genes are different, the DOS
between them is small. A high value of DOS(z;, ;)
between two genes z; and z; asserts that they may
have similar expression patterns and are likely to be
involved in same biological process. If two genes are
same, the DOS between them is maximum, that is,
DOS(zi,x) = 1. Hence, 00 < DOS{z;.z;) = 1. Also,
DOS(z,x;) = DOS(z;, 24).

Based on the concept of degree of similarity, next a
method is described for selecting initial prototypes. The
main steps of this method proceed as follows:

1) For each gene m;, calculate DOS(z,, z;) between

itself and the gene =;, ¥i_,.

2) Calculate similarity score between genes x; and z;

v _J 1 ifDOS(m,xz;) > A
S(zi,z;) = { 01 otherwise

where 05 < X < 1.
3) For each gene z;, calculate total number of similar
genes of x; as

(12)

N(z:) = Y S(zi,zy). (13)
=1

4) Sortn genes according to their values of N{z,) such
that N(z;) = N(za) = --- = Niz,).

5) If N{z;) > N(z;) and DOS{z;,z;) > A, then z;
cannot be considered as a initial cluster center,
resulting in a reduced set of genes to be considered
for initial cluster centers.

Finally, ¢ initial centers are selected from the reduced
set as potential initial centers. The main motive of in-
troducing this initialization method lies in identifying
different dense regions present in the data set. The
identified dense regions ultimately lead to discovering
natural groups present in the data set. The whole ap-
proach is, therefore, data dependent.

3 EXPERIMENTAL SETUP

In the present research work, the performance of the pro-
posed robust rough-fuzzy c-means [rRFCM) algorithm is

compared with that of hard c-means (HCM) [10], fuzzy
c-means (FCM) [27], rough-fuzzy c-means (RFCM) [32],
cluster identification via connectivity kernels (CLICK)
[14], and self organizing map (SOM) [11] on several mi-
croarray gene expression data sets. The major metrics for
evaluating the performance of different algorithms are
Silhouette index [35], Davies-Bouldin index [36], Dunn
index [36], 7 index [37], Eisen plot [5], and execution
time. Also, the biological significance of the generated
gene clusters using different methods is analyzed using
the Gene Ontology Term Finder [38], [39]. For each
microarray gene expression data set, the number of gene
clusters ¢ is decided by using the CLICK [14] algorithm.
The weight parameter w for rough-fuzzy clustering is
set to 0.99, while the values of fuzzifiers iy = 2.0
and #i; = 2.0. The source code of the proposed algo-
rithm and the supplementary information are available
at hitp:/ /www.isicalac.in/~pmaji/results /rrfcmhtml.

3.1 Gene Expression Data Sets Used

In this paper, publicly available fourteen yeast microar-
ray time series gene expression data sets are used to
compare the performance of different gene clustering
methods. Table 1 presents the accession number, number
of genes, and time points of each microarray data set,
which are downloaded from Gene Expression Omnibus
(http:// www.incbi.nlmnih.gov /geo/).

3.2 Quantitative Measures

Following quantitative indices are used to evaluate the
performance of different gene clustering algorithms for
grouping functionally similar genes from microarray
gene expression data sets.

3.2.1 Dawvies-Bouldin Index

The Davies-Bouldin (DB) index [36] is a function of the
ratio of sum of within-cluster distance to between-cluster
separation and is given by

1 = Slvg )+ Sy
DR = > Z rrisc {__ Lk }

itk )

i=1
for 1 < i,k < . The DB index minimizes the within-
cluster distance 5(v;) and maximizes the between-cluster
separation d(v;, ;). Therefore, for a given data set and ¢
value, the higher the similarity values within the clusters
and the between-luster separation, the lower would be
the DB index value. A good clustering procedure should
make the value of DB index as low as possible.

3.22 Dunn Index

Dunn's index [36] is also designed to identify sets of
clusters that are compact and well separated. Dunn's (D)
index maximizes

= [un ¢ min M
o= { {mmcrﬁ'{l_rrj}}

i ik
for 1 <4, k.0 < e. A good clustering procedure should
make the value of Dunn index as high as possible.

(15)
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TABLE 1
Brief Dﬂmﬁptiﬂﬁ of Fourteen Yeast Micmarray Time Series Data Sets
| Parameter / GDS ails 754 1013 | 1550 | 1611 | 2002 | X003 [ 29 | 2267 | 2318 | 2347 | 2712 | 2713 | 2715
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Fig. 2. Variation of Silhouette index for different values of threshold A

3.23 jindex

The 3 index [37] is defined as the ratio of total variation
and within-cluster variation, and is given by

©ooTg

a_N 2
g = i where N = ZZ zis — 7|2

i=1 j=1

[

M=) |l —uill;

i=1 j=1

and Z Ty = T8 i16)
i=1

n; is the number of objects in the ith cluster (i =
1,2,---,¢c), n is the total number of objects, z;; is the
jth object in cluster 4, v; is the mean or centroid of ith
cluster, and ¥ is the mean of »n cbjects. For a given data
set and ¢ value, the higher the homogeneity within the
clusters, the higher would be the 7 value. The value of
i also increases with .

4 RESULTS AND DISCUSSION

The experimental results on fourteen microarray data
sets are presented in this section. Subsequent discussions
analyze the results with respect to DB index [36], Dunn
index [36], Silhouette index [35], 7 index [37], Eisen plot
[5] and execution time.

4.1 Optimum Value of Threshold A

The threshold A in (12) plays an important role to select
initial cluster prototypes of different gene clusters. It
controls the redundancy among the initial prototypes.
Hence, it has a direct influence on the performance of
proposed algorithm as well as other e-means algorithms.

To find out the optimum values of threshold A for
different microarray gene expression data sets, the Sil-
houette index [35] is used. Letagener; € 3,,i = L, ...ny
and n, is the cardinality of cluster 7,. For each gene =;

let a; be the average distance between gene z; and rest
of the genes of 3,, that is,

a; = d:n'.l_-'. f_,};‘ B — {‘Ei}j

where dy,l.,.) denotes the average distance measure
between a gene and a set of genes. For any other cluster
Ay # A, let dyy (24, 3,) denote the average distance of
gene z; to all genes of 3,. The scalar b; is the smallest of
these dyoulzi, Fp)p = 1,---,e.p # v, that is,

(17)

b = mir {dave(Zi, )} (18)
p=1.- cpFEr
The Silhouette width of gene z; is then defined as
L o (19)

max{l;, a; }
where —1 < s(z;] < 1. The value of s{z;) close to 1
implies that the distance of gene z; from the cluster j,
where it belongs is significantly less than the distance
between z; and its nearest cluster excluding 3., which
indicates that x; is well clustered. On the other hand,
the value of s(1;) close to -1 implies that the distance
between z; and 3, is significantly higher than the dis-
tance between z; and its nearest cluster excluding 3.,
which indicates that x; is not well clustered. Finally, the
values of s(x;) close to 0 indicate that z; lies close to the
border between the two clusters. Based on the definition
of s(z;), the Silhouette of the cluster 3. (k =1,---.¢) is

defined as 1
S(8.) = — E sl@r;
l:: k:l —_— o { :I

where n; is the cardinality of the cluster 7. The global
Silhouette index for threshold A is defined as

1 w—
&=;§ﬂm

where 8. € [—1,1]. Also, the higher the value of S, the
better the corresponding clustering is.

(20)

(21)
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TABLE 2
Performance of Proposed Algorithm on Fourteen Microarray Data Sets for Different Values of A

Microarray | Value Cluster o Diffeent Valus of Threshold 4~~~
Data Sets | of ¢ | Validity Index |[ 080 [ 091 [ 042 | 045 [ 054 [ 0.05 [ 09 | 007 [ 008 (09 [ 1
Silhouette Index || 0.7 | 0.5 | 0.9 | 0.18 | 0.19 | 0.18 | 0.16 | 0.15 | 0.16 | 0.13 | 0.17
GDEHS 2 DF Index 092 [ 095 | 107 [ 1.0 | 108 [ 148 [ 15 | 1.0 [ 150 | 1.80 | 1.3
Dunn Index || 0055 | 0.65 | 049 | 061 | 055 | 040 | 04% [ 040 |04 |09 0%
Silhouette Index ||~ | 081 | 071 | 0.5 [ 0% | 085 [ 0% | 0.6 [ 0.2 | 012 [ 017
GDE759 25 DF Index T O [ (05 |08 [ 075 [ 128 [ 16 [ 208 [ 210 [ 176 |
Dunn Index 101 [ 117 [ 000 | 06% [ 063 (04 [ 05 [ 0% [ 080 [ 0.5
Silhouette Index || 053 | 054 | 08 | 0.8 |08 | 081 [ 070 | 0.9 |02 | 0% | 031
GDs1013 | 18 DF Index 047 [ 048 [ 011 | 0.12 [ 0.34 | 008 [ 028 | 071 | 108 | 096 | 076 |
Dunn Index || 040 | 108 | 805 | 402 | 460 | 435 (099 | 052 | 0.3 | 0.8 | 0.00
Silhouette Index || * * * 08 |05 [ 079 | 055 | 0.5 |02 | 055 |
GDs1s50 | 21 DF Index * ¥ * 008 | 0.10 [ 0.1 [ 030 | 075 | 1.06 | 1.10
Dunn Index g L g e |40 400 [ 1F |G | 0135 [ 600
Silhouette Index || 054 | 04F | 030 | 031 [ 026 | 0.19 [ 0.0 | 0.9 | 0.6 | 0.18 | 0.3
GDS1611 | 26 [ DB Index T8 |05 [0 (070 [ 079 [ 099 |08 [ 110 | T8 | 115 | 09T ]
Dunn Index 151 | 148 | 141 [ 0.4 [ 1.09 [ 080 |08 | 0% [ 015 | 0.5 | 1.4
Silhouette Index || 085 | 075 | 074 | 062 | 061 [ 040 |08 (05 |01 | 017 | 018
GDs2002 | 25 DF Index 019 [ 0% | 0% |04 [0& (075 [ 10 [ 1.8 [1& | 186 [ 19
Dunn Index || 342 | 15 | 138 | 0.60 [ 054 | 0.4 (04 | 0% | 0.5 | 035 | 0.17
Silhouette Index || 080 | 075 | 068 | 0.5 |05 | 0.3 [ 035 | 0% |04 | 017 | 0.3
GDs2003 | 23 DF Index 071 [ 02 [ 045 (0@ |08 (10 [ 18 (1% [17% | 1.0 [ 1%
[unn Index 180 | 155 |08 (075 |04 | 043 |05 | 0% | 0.8 | 0.5 | (.16
Silhouette Index ||~ * * * ¥ 08 |05 [ 0.5 |03 | 0.5 |
GDE2196 | 24 DF Index o I I O 2 - P O < L
Dunn Index * ¥ * ¥ * T35 | 2R [ 100 [ 0% | 0.0
Silhouette Index || 042 | 0037 | 020 [0 |06 | 030 |03 |00 |08 |03 |03
GDE22%7 | 14 DF Index 050 [ 062 | 069 [ 0.5 |08 [ 055 [ 060 | 0.8 (071 | 08 [ 073
Dunn Index || 037 | 011 | 012 | 0.15 | 097 | 0% [ 042 | 041 |02 | 0.15 | 0.06
Silhouette Index || * | 079 | 076 | 060 | 063 | 057 [ 045 | 0.5 [ 007 | 013 | 0.8
GDs2318 | 21 DF Index 015 | 017 | 024 [ 038 | 041 [ 060 | 106 | 1.8 [ 170 | 1.9
[unn Index 15 | 168 |08 | 0.9 | 091 | 081 | 048 | 0.43 | 0.3 | 0.49 |
Silhouette Index || 088 | 05 | 081 [ 070 | 068 | 067 |04 [ 0.8 [0 | 012 | 0.9
GDE237 | 18 DF Index 000 | 013 [ 019 |03 [ 0% | 0% | 040 | 08 |15 | 1.8 [ 15 |
Dunn Index || 300 | 295 | 095 | 103 | 1.18 | 112 | 0.8 | 0.45 | 0.40 | 0.3 | 0.38
Silhouette Index || 05 | 039 | 040 [ 0% [ 02 [ 02X [0 [0 |03 | 0% |05
GDs271z | 15 DF Index 0% [ 08 [ 05 (05 |05 [ 071 [ 077 | 006 [ 06 | 05 [ 0.5 |
Dunn Index || 08T | 023 | 0% | 062 | 028 | 031 [ 0385 | 008 [ 012 [ 011 | 006
Silhouette Index || (.38 | 052 | 040 [ 042 [ 0% [ 028 | 0.4 |04 |05 | 0.5 | 0.3
GDs2713 | 14 DE Index 040 [ 05 [ 0H (040 |06 |06 |09 |04 |16 |05 | 06
Dunn Index || 024 | 067 | 088 | 0.30 | 053 | 046 | 0.3 | 0.0 | 0.8 | 001 | 007
Silhouette Index || 058 | 000 | 039 |03 |08 [0 |00 [ 040 |04 |05 |00
GD=2715 | 16 DF Index 030 | 046 | 045 | 045 [ 05 | 066 |04 | 043 046 | 05 | 065
Dunn Index 117 (0% [ 0% [0 |02 |02 (05 | 017 [ 015 | 0.13 | .04

For fourteen microarray data sets, the value of A is
varied from 0.90 to 1.0. Fig. 2 represents the variation of
Silhouette index with respect to different values of A on
GDS1013, GDS2267, and GDS2713 data sets considering
w = (L9, 1y 2.0, and e = 2.0). From the results
reported in Fig. 2, it is seen that as the threshold A in-
creases, the Silhouette index value increases and attains
its maximum value at a particular value of A*. After that
the Silhouette index value decreases with the increase in
the value of A Hence, the optimum value of A for each
data set is obtained using the following relation:

A* = arpg mil.x{S;.}. (22)

The optimum values of A* obtained using (22) are (.90
for GDS608, GDS1611, GDS2002, GDS2003, GDS2347,
GD52712, and GD52715, 091 for GD5759, GDS2318, and
GD52713, 0.9 for GD51550 and GD52267, 092 and 0.96
for GD51013 and GD52196, respectively. Finally, Table
2 presents the performance of the proposed clustering
algorithm for different values of A. The results and subse-
quent discussions are presented in this table with respect

to Silhouette index, DB index, and Dunn index. From the
results reported in Table 2, it is seen that the proposed
clustering algorithm achieves its best performance at
A = A, irrespective of the cluster validity indices used.
However, the Dunn index attains its maximum values at
A = 0L91 for GDSA08 data and 0.92 for GDS759, GDS2318,
and GDS2713 data, which are marked bold in Table 2.

4.2 Random Versus Proposed Initialization Method

Table 3 provides the comparative results of different c-
means algorithms with random initialization of centroids
and proposed initialization method described in Section
2.6 for fourteen yeast microarray data sets. The best
results of each ~-means clustering algorithm are reported
for their optimal A values. In most of the cases, the
proposed initialization method is found to improve the
performance in terms of Silhouette index, DB index,
and Dunn index for all e-means algorithms. QOut of
168 comparisons, the proposed initialization method is
found to provide significantly better results in 147 cases
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TABLE 3
Comparative Performance Analysis of Random and Proposed Initialization Methods

Data [ritial Silhouette Index DB Index | Dunn Index |
Sets Centers HCM [ FCM THRERCM [ (FERCM || HCM [ FCM T RFECM | (RFCM || HCM | FCM | RFRCM | «FEFCM |
CDS608 Random 0078 | 006G | 0110 1.558 1931 | 2082 1.a08 U@y | 0%Fs |00 | %7 [EEST

: Froposed [ 008% | 0.015 | 014 0.269 19X T 2070 1.396 0.921 0355 | 0.000 | 0.35 0.551

GDET5 Random 0082 | 0017 | 01X (1.278 230> | 2E08 1.779 1.231 [ 035 | 0000 [ 0.081 1453

Froposed || 0300 | 005 | 0373 0.514 178 | 1990 [ 058 0221 || G075 | 0.000 | 0368 1112

CDS1013 Random 0FY) | 0249 | 0313 508 095" | 1459 1142 0557 [ 0007 | 0.00% | 0.001 053
Y [ TProposed || 047 | 0253 | 045 0.572 0475 [ 1515 | 0756 0.109 || (Gs | 0.003 | 0.074 CNET
GDS1550 Random 0245 | 0259 | 0243 1.419 (1.571 1.439 1LiK2 0.565 || 0.000 | 0.001 [ 0.000 0078 |
Froposed || 0451 | 0250 | 0466 0.578 1.551 1350 | 0491 0.080 || 0011 | 0.003 | 0.1 [F T

GOS1611 Random 0158 | 088 | 017 1.552 138 | 1735 1.193 0795 || 047 [ 0006 | 0453 114
Froposed || 0245 | 0055 | 035658 0.539 1179 | 18590 | {0.690 0430 || 050F | 001 | 0419 1506 |
cD0m? Random 007 | 000 0.109 1413 212 | 25876 1.a79 0o7e || 002l | 0000 | 0.0e7 0455 |
: Froposed || 0175 | O5E | 0372 0.549 175 1 ZB0 [ 0969 0.188 || 005 | 0.000 | 0.407 347 |
GO03 Random 0082 | 0014 | 0135 1304 2035 | 2975 Wil 05989 || OH5 | 0.000 | 0.058 043 ]

Froposed || 01591 | Ode8 | (.308 0.502 L&35 | 1780 1.900 0.211 Q04 0,000 | 0.000 1501

CO106 Random 0309 | 0300 | 0317 1446 (.55% | 1182 | 0.691 0.463 || 0000 | 0.001 | 0.000 0025
Froposed || 0453 | 0383 | 0481 0.865 0375 | 1090 | 0856 0.083 || 0.020 | 0.003 | 0.118 358 |
GDDW%T Random 0230 | 0197 | 0235 1495 (L885 | 2402 LiK& l:'.l;?_’:_l___ 1 | 0008 | 0.01a 0145 |
Proposed || 0317 [ 019 | (.513 0605 0795 | 1110 | 0.8ed 0.325 | 022 | 0.008 | 0415 0965 |

CO18 Random 0153 | 0085 | 02X 11430 1a8d | 1986 1674 0.767 || 005 | 0.000 | 0.051 1549
Froposed || 0355 | 008 | 0438 0.791 0515 | 0540 [ 0789 0151 || 0061 | 0000 | 0.079 1532 |
CDDM7T | Random 013 | 0031 0160 0474 5 Ll B B F O e B ___Fﬂ_:ﬁ‘ﬂ_l_'. 0.005 | 0.000 | 0.007 ﬂ_Tf"}i_:
o Proposed || 0513 | 0031 (Il 0.575 o5 | 1980 | 0497 (00| I D 5 e [ B
CD712 Random 0Z5) | 0208 | 0251 0.618 0EDE | 1780 | 07490 X9 || 0051 | 002 | 0.058 073 ]

Froposed || 0310 | 0.211 0.318 0.558 0711 1a8d | 163 0.332 MY 10003 | 0.062 0514
GD273 Random 0223 | (.20 .21 1.598 0593 | 1673 | 0804 0248 || 0017 | 0016 | 0.25 0497
Froposed || 0298 | 0199 | (.2780 0.520 077 1 13 1961 [0 LT V™ T R i I B e [T
CD715 Random X | 0177 | 03 1581 0866 | 4032 | 080 0751 O | 0016 | 0.051 [iECEI
i " | Froposed || 0277 | U185 | (.78] 0.550 055 | 1990 | 0572 0.36 || 0055 | 0.00I5 | O.00F 113 |

compare to the random initialization method. From the
results marked bold in Table 3, it is seen that the rRECM
algorithm with proposed initialization method performs
better than any other s-means clustering algorithms in
all cases irrespective of the initialization methods.
However, it can also be seen that the HCM algorithm
with the proposed initialization method outperforms the
rRECM algorithm with random initialization method in
five and four cases in terms of Silhouette index and
DB index, respectively. On the other hand, the RFCM
algorithm with the proposed initialization method per-
forms better in six, five, and two cases compare to the
rRECM algorithm with random initialization method
with respect to Silhouette index, DB index, and Dunn
index, respectively. Also, the FCM algorithm with pro-
posed initialization method performs better than the
rRECM algorithm with the random initialization method
in only one case in terms of Silhouette index. The better
performance of the proposed initialization method is
achieved due to the fact that it enables the algorithm
to converge to an optimum or near optimum solutions.

4.3 Quantitative Performance Analysis

This section presents the comparative performance anal-
ysis of different gene clustering algorithms with respect
to Silhouette index, DB index, Dunn index, 3 index, and
execufion time.

4.3.1 Performance of Different C-Means Algorithms
In order to establish the importance of possibilistic lower
approximation of proposed robust rough-fuzzy c-means

(rRECM) over crisp lower approximation of existing
rough-fuzzy c-means (RECM) [32], extensive experimen-
tation is carried out on fourteen yeast microarray data
sets. Results and subsequent discussions are presented in
Table 4, along with the performance of both HCM [10]
and FCM [27], for optimum values of A The bold value
in Table 4 signifies the best value.

All the results reported in Table 4 establish the fact
that the proposed gene clustering algorithm is superior
to other c-means clustering algorithms. It is also seen
that the proposed rRFCM algorithm achieves better re-
sults with comparable time than that obtained using
existing RFCM algorithm, irrespective of the data sets
and quantitative indices used. The possibilistic lower ap-
proximation of the rRFCM helps to extract gene groups
of any shape, while crisp lower approximation of the
RFCM is forced to extract circular shaped gene clusters.
In effect, the chance of inclusion of noisy genes becomes
more in the RFCM as compare to the proposed rRFCM
algorithm. Hence, the possibilistic lower approximation
of the proposed rRFCM helps in discovering clusters of
genes that are highly similar to each other.

The best performance of the rRFCM, in terms of
Silhouette, DB, Dunn, and 7 indices, is achieved due
to the fact that the probabilistic membership function of
the rRFCM handles efficiently overlapping gene clusters;
and the concept of possibilistic lower approximation
and probabilistic boundary of the rfRFCM algorithm
deals with uncertainty, vagueness, and incompleteness
in cluster definition.
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TABLE 4
Performance of HCM, FCM, RFCM, and rRFCM Algorithms

Different | Method/” Microarray Data Sets/GDS
Indices | Algorithm || 605 | 759 | 1013 [ 1550 | ieil | X007 [ 2005 | % [ a7 | 5318 | B8 | &2 | 775 | F15
HCM 0.08 | 0.30 | 048 145 024 | 018 | 019 .49 0.32 | 0.35 | 051 .31 (130 [
Silhouette FCM 0.01 | 0.4 | 035 .28 0fa | 05 | 017 .38 0F [ 008 | 003 | 0.8 0.20 0.19
Index | RFCM 15 (037 | 049 [0 [ 037 [ 037 | 021 IR .31 04 083 | 0.32 .28 0.2
rRFCM 0.7 | 0.51 0E7 .88 .54 .85 080 0L.E7 .61 0.4 [IF.1.] 10.56 .52 .58
HCM 192 | 1.72 | 047 (153 1.18 1.73 | 1483 (.37 07 | 081 | 095 | 0.A1 (.78 {185
DB FCM 0I5 | 151 155 18 | X083 | 178 109 .11 05 | 198 1.68 1ad 1.98
Index RFCM 140 TO0B | 073 [ED] 0469 | 0.99 | 190 .54 0.8 [ 079 | 045 T 048 1.94 .57
rRFCM 0.92 | 0.22 011 (AN 04z 019 021 [INIE] 0.32 0.15 [INiE] 0.33 .35 0.30
HCM 0.3 | 007 ] d0d .01 050 | 0.03 | 007 (.02 0 | 005 | 003 | 005 .05 (.05
Crunn FCM 0.00 | 0.00 7 000 (.00 007 | 0.00 | 000 0.00 .01 0.00 | 000 | 0.0 (X .02
Index RFCM 0.3 | 0% | 007 [INE! 043 [ 041 | 400 01z 0 [ 0358 | 019 | 0.08 .03 .02
rRFCM 10.55 L11 505 [N 151 3.42 1.50 3.53 0.97 1.53 310 .51 067 1.13
HCM 3.5 | 364 | 1954 | 4395 | 1912 | 274 | 250 | 8527 | 1075 | 316 | 193 | 1074 | 965 | 1029
g FCM 200 306 | 257 | A 117el | 100 | 13285 | 8575 95 7245 | 1ad [100Z | 914 9.3
Index | RFCM 22 |20 1434 | BV 11595 | 1.4 | 182 | 3315 | 1057 | 190 155 | 1008 | 472 01
rRFCM 4.65 | 4.03 414 5.3 | 23.01 3.43 325 102.91 | 39.51 3.42 331 3475 | M.2% | 3214
g HCM 23 52 25 32 6l7 51 43 49 40 42 25 15 15 I3 |
Time FCM i) 1 103 i) 738 a7 7| 95 | 4 53 15 [ 4] g
{sec) RFCHR 1] 5h 34 10 327 13 117 30 1] 23 8 i) 1] [T
rRFCM ENy] 2 11 10 [iek] 51 25 ] 35 ] 11 e 34 35
TABLE 5
Performance of CLICK, SOM, and rRFCM on Fourteen Yeast Microarray Data Sets
Microarray Silhouette Index DB Index Dunn Index A Index
Data Sets CHOCK T 50M T FFCM || COCK [ SOM T (RFCM || COCK [ SOM | (RFCM || COCK | SOM | «RFCM
[ =T -004 003 | 027 1152 1503 0.92 0106 0.2 .55 079 2.0 4,68
GOS759 -008 402 | 081 27491 1903 0.22 002 0.0 111 .52 23 403
CDS1013 -(152 {106 0.87 971381 | 340 0.11 (.00 .00 8.05 097 EXT 41.40
CDS1550 -049 .15 .55 52551 2.0\ 0.08 0100 (.00 (X 107 6.51 56.34
GDS1611 -027 (.05 .54 H972 B.0H 0.42 001 .05 151 102 1549 23.01
GDS2002 -012 41.05 .55 2670 1541 0.19 103 .00 342 (152 1.67 343
CDS2003 -0109 A1.06 .50 1741 1522 0.21 1105 0.0 150 (182 1.70 3.25
CDS219% -0153 .17 0.87 372840 | 258 0.08 100 (.00 3.53 097 4.33 10291
GDS26E7 -0142 (.02 [iX1 754935 5.7 0.32 .00 .00 0.97 198 3.8 349,51
CDS2318 <013 411 0.79 17 57 7HAH 0.15 005 .00 1.53 1.86 1.65 3.42
CDS2347 -.11 413 .58 1691 3516 0.9 (003 .00 310 (1586 1.30 331
GDS2T712 -042 (.07 .56 X357 2.7 0.33 .00 (.00 0.51 090 3.28 34.78
GDS2713 -39 (.07 .52 9308 | 197 0.35 (.00 .00 0.67 092 357 34.26
GDS2715 -0141 (.08 (.55 SM7346 | 198 0.30 .00 .00 113 (159 345 32,14

4.3.2 Performance of CLICK, SOM, and rRFCM

In order to establish the superiority of the proposed
rRECM algorithm over two existing gene clustering algo-
rithms, namely, CLICK [14] and SOM [11], extensive ex-
perimentation is performed on fourteen yeast microarray
data sets. Table 5 presents the comparative assessment of
these three clustering algorithms, in terms of Silhouette
index, DB index, Dunn index, and 7 index, where bold
value represents the best value. From the results reported
in this table, it can be seen that the proposed rRFCM
algorithm performs significantly better than both CLICK
and SOM, irrespective of microarray data sets and quan-
titative indices used. Hence, the proposed algorithm can
identify compact groups of co-expressed genes.

4.4 Qualitative Performance Analysis

The Eisen plot gives a visual representation of the
clustering result. [n Eisen plot [5], the expression value
of a gene at a specific time point is represented by
coloring the corresponding cell of the data matrix with
a color similar to the original color of its spot on the

microarray. The shades of red color represent higher
expression level, the shades of green color represent low
expression level and the colors towards black represent
absence of differential expression values. In the present
representation, the genes are ordered before plotting so
that the genes that belong to the same cluster are placed
one after another. The cluster boundaries are identified
by white colored blank rows.

The gene clusters produced by the HCM, FCM, RFCM,
500, and fRFCM algorithms on fourteen yeast data sets
are visualized by TreeView software, which is available
at http://rana.lbl.gov /EisenSoftware and the plots for
four data sets are reported in Fig. 3 as examples. From
the Eisen plots presented in Fig. 3, it is evident that the
expression profiles of the genes in a cluster are similar
to each other and they produce similar color pattern,
whereas the genes from different clusters differ in color
patterns. Also, the results obtained by both RFCM and
rBFCM algorithms are more promising than that by
both HCM and FCM algorithms. For the purpose of
illustration, the Eisen plots for gene clusters generated
by the SOM are also presented in Fig. 3. From the plots
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(a) GDS1611: n =

270, m =90, c=12

{b) GDS2267:

n=%Hm=31

(c) GDS3712: n =

id) GDS:

I3 n=02T.m=21,c =14

Fig. 3. Eisen plots of different clusters for four yeast data sets generated by HCM, FCM, RFCM, SOM, and rRBFCM

presented in Fig. 3, it is clearly evident that the proposed
tRECM generates the Eisen plots having similar color
pattern within the cluster as compare to thL SOM.

5 BIOLOGICAL SIGNIFICANCE ANALYSIS

To interpret the biological significance of the generated
gene clusters, the Gene O[‘ltulul—*v (GO) Term }_I[‘IdLI‘ is
UhLd [38], [39]. It finds the most significantly enriched
GO terms associated with the genes bt_lunl-ﬂnw to a
cluster. The GO project aims to bmld tree structures,
controlled vocabularies, also called ontologies, that de-
scribe gene products in terms of their associated bi-
ological processes (BP), molecular functions (MF) and
cellular components (CC). The GO Term Finder de-
termines whether any GO term annotates a specified
list of genes at a frequency greater than that would
be expected by chance, calculating the associated p-
value by using the hypergeometric distribution and the
Bonferroni multiple-hypothesis correction [38], [39]:

) - ( Tt ) ( ;k}‘f—_,:_»t )
2 &

T

p=1 (23)

A

where A’ is the total number of genes in the background
distribution, M is the number uf genes within thdt dis-
tribution that are annotated, +_|th+_r directly or indirectly,
to the node of interest, n is the size of the list of genes
of interest and % is the number of genes within that list
which are annotated to the node. The closer the p-value
is to zero, the more significant the particular GO term
associated with the group of genes is, that is, the less
likely the observed annotation uf the particular GO term
to a group of genes occurs by chance. On the other hand,
the false discovery rate (FDR) is a multiple-hypothesis
lt"\tll‘ll-' error measure |[‘|Li|f_<|t|[‘|l-T the expec ted pmp{:rhun
of fdl‘\L positives among the set of significant results.
The FDR is particularly um-_ful in the umll}fhlh of high-
throughput data such as microarray gene expression.

5.1 Functional Consistency of Clustering Result

In order to evaluate the functional consistency of the
gene clusters produced by different algorithms, the bi-
ological annotations of the gene clusters are considered
in terms of the GO. The annotation ratios of each gene
cluster in three GO ontologies are calculated using the
GO Term Finder [38]. The GO term is searched in which
most of the genes of a particular cluster are enriched.
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Fig. 4. Biological annotation ratios of different algorithms on fourteen gene expression data sets

The annotation ratio, also termed as cluster frequency,
of a gene cluster is defined as the number of genes in
both the assigned GO term and the cluster divided by
the number of genes in that cluster. A higher value of
annotation ratio indicates that the majority of genes in
the cluster are functionally more closer to each other,
while a lower value signifies that the cluster contains
much more noises or irrelevant genes. After computing
the annotation ratios of all gene clusters for a particular
ontology, the sum of all annotation ratios is treated as the
final annotation ratio. A higher value of final annotation
ratio represents that the corresponding clustering result
is better than other, that is, the genes are better clustered
by function, indicating a more functionally consistent
clustering result [40].

The upper portion of Fig. 4 presents the comparative
results of the RFCM and rRFCM algorithms, in terms
of final annotation ratio or cluster frequency, for the
MF, BE, and CC ontologies on fourteen yeast microarray
data sets. All the results reported here confirm that the
rRECM provides higher or comparable final annotation
ratios than that obtained using the RFCM algorithm in
most of the cases. Out of 14 cases, the RFCM provides
higher final annotation ratios in only 2, 3, and 1 cases for
the ME BT, and CC ontologies, respectively. The middle
portion of Fig. 4 reports the comparative final annotation
ratio or cluster frequency of the HCM, FCM, and rRFCM
algorithms on fourteen data sets. From the results re-
ported in this portion, it is seen that the proposed rRFCM
algorithm attains higher final annotation ratio than that
obtained using other c-means algorithms in 14, 11, and
9 cases for the MFE BE, and CC ontologies, respectively.
On the other hand, the HCM achieves higher values, for

the BP? and CC ontologies, respectively, in 2 and 2 cases,
while the FCM provides in 1 and 3 cases.

Finally, the lower portion of Fig. 4 compares the
final annotation ratios obtained using the CLICK, SOM,
and rRFCM algorithms. From the results reported in
this portion, it can be seen that the final annotation
ratio obtained using the proposed rRECM algorithm is
higher than that obtained using both CLICK and 50M,
irrespective of the ontologies and data sets used. Hence,
all the results reported in Fig. 4 establish the fact that the
majority of genes in a cluster produced by the rRECM
algorithm are functionally more closer to each other than
those by other algorithms, while the clusters obtained
using existing algorithms include much more noises or
irrelevant genes.

5.2 Biologically Significant Gene Clusters

This section presents the comparative performance anal-
ysis of different gene clustering algorithms, in terms
of number of significant gene clusters generated. Fig. 5
presents the results for the ME BE and CC ontologies on
fourteen yeast microarray data sets. The GO Term Finder
[38] is used to determine the statistically significant gene
clusters produced by different algorithms for all the
GO terms from the MF, BE and CC ontologies. If any
cluster of genes generates a p-value smaller than .05,
then that cluster is considered as a significant cluster.
The upper portion of Fig. 5 presents the comparative
results of the RFCM and rRFCM algorithms for the
MF, BF, and CC ontologies. From the results, it is seen
that the proposed rRFCM generates more or comparable
number of significant gene clusters in ten, thirteen, and
twelve cases, while the RFCM generates more number
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Fig. 5. Biologically significant gene clusters of different algorithms on fourteen gene expression data sets

of significant gene clusters in four, one, and two cases
for the ME BF, and CC ontologies, respectively.

The middle portion of Fig. 5 reports the number of
significant gene clusters generated by the HCM, FCM,
and tRFCM algorithms for the ME BE and CC ontologies
for all microarray data sets. All the results reported in
this portion establish the fact that the rRFCM algorithm
generates more or comparable number of significant
gene clusters than that of other s-means algorithms in
most of the cases. For the MF ontology, out of four-
teen cases, the rRFCM generates more significant gene
clusters in eight cases, while the HCM generates in six
cases. On the other hand, the rRFECM produces more or
comparable number of significant gene clusters in nine
cases and the HCM generates more number of significant
gene clusters in only five cases for the BP ontology. In
case of the CC ontology, the tRFCM algorithm generates
more or comparable number of significant gene clusters
in eight cases and the HCM generates more number of
significant gene clusters in six cases. On the other hand,
the rRFCM algorithm generates more or comparable
number of significant gene clusters in ten cases and the
FCM generates more number of significant gene clusters
in four cases for both MF and BP ontologies. While, in
the CC ontology, the rfRFCM generates more number of
significant gene clusters in seven cases and the FCM
generates more number of significant gene clusters in
seven cases. In other words, all the results reported in
Fig. 5 establish the fact that the proposed rough and
fuzzy set based tRFCM can discover more functionally
similar groups of co-expressed genes than that of other
c-means algorithms.

Finally, the performance of CLICK, 50M, and rRFCM

algorithms is compared in lower portion of Fig. 5 with
respect to the number of significant gene clusters gener-
ated for ME BP, and CC ontologies. From the results
reported in this portion, it is seen that the proposed
rRFCM algorithm generates more or comparable number
of significant gene clusters compare to CLICK and 50M
algorithms in most of the cases. Out of fourteen cases, the
rRFCM algorithm generates more or comparable number
of significant gene clusters than both CLICK and SOM
in twelve, nine, and nine cases for the MFE, BP, and CC
ontologies, respectively. Hence, the proposed rRFCM can
generate more biclogically significant gene clusters than
both CLICK and SOM.

5.3 Biological Interpretation of Gene Clusters

This section presents the biclogical interpretation of
some gene clusters those are generated only by the pro-
posed tRFCM algorithm, but not generated by any other
clustering algorithms. Table & presents the unique GO
terms obtained using the tRFCM algorithm for GDS2003
data set as an example, along with the corresponding
cluster index and frequency, p-value, and FDR.

In GDS2003 data set, the gene expression of JM43
and isogenic msn2/4 mutant KKY8 cells were recorded
in aerobic to anaerobic shift condition [41]. Hence, this
data set should reflect the processes those are involved
in aerobic and anaerobic respiration of yeast cell. In
anaerobic condition, yeast cell ferments and produces
alcohol [42]. The GO term alcohol biosynthetic process
corresponding to cluster 21 of the rRFCM reflects this
activity of yeast cell. The yeast cells of this data set were
cultured in galactose medium that acts as a derepressor,
that is, in absence of glucose and in presence of galactose,
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TABLE &
Unique GO Terms Obtained Using Proposed Algorithm for GDS2003
Omntology Cluster GO Term [/ Gene Cluster Frequency | P-Value | FOR (%)
- 1 tramscriphion regulator achivity 0072 | 3Z2E013 [RI]
6 transferase activity 0.400 2 28E003 000
& succinate dehydrogenase activity 0.250 S AREAH 0.00
Molecular Function 10 carbon-carbon lyase activity 0.250 5 A0EAQTE 1200
12 fructose transmembrane transporter actvity 0154 2.06EAQ05 000
13 copper ion binding 0.250 1.OSE4002 600
23 heme binding 0429 7IEQG Q.00
1 cellular component organization (L3358 B ATEA(46 000
3 interphase of mitotic cell cycle (L3353 2 16EAQ03 000
8 tricarboxylic acid cycle 0250 2.01E-Q02 1200
Biological Process 9 de novo’ IMP biosynthetic process (L3585 1.458E010 000
11 electron transport chain (.50 1.65E015 000
12 hexose transport 0.23 4. TaEAQ08 000
21 alcohol bicsynthetic process 1.000 .5E0H 0.00
Ceilulir Companent 11 mitochondrial respiratory chain (.283 2 BIEAQA] 000
12| phemn membring enviched fraction. glse | 1OoEOm | Ao

the GAL gene converts galactose into glucose that can be
further utilized for generating energy [43]. The transcrip-
tion of GAL gene is thus regulated by the presence of
galactose. This phenomena can be reflected by the term
transcription regulator activity of cluster 1.

The terms electron transport chain (ETC) and mi-
tochondrial respiratory chain annotating the genes of
cluster 11, and tricarboxylic acid cycle (TCA) of cluster §
reflect the processes involved in aercbic respiration of
yeast cells [42]. The enzyme succinate dehydrogenase
is involved in between TCA and ETC cycles, which is
the only enzyme of the TCA cycle that is an integral
membrane protein [42]. The genes of cluster 8 obtained
by the rBEFCM are also annotated by the term sucei-
nate dehydrogenase activity. Moreover, the ETC cycle
involves copper bound protein [44] and cytochromes
[45]. These two processes are reflected by the terms
copper ion binding and heme binding of cluster 13 and
cluster 23, respectively, of the rRFCM algorithm. In order
for galactose to be metabolized by yeast, it must first be
transported into the cell. Yeast cells have hexose trans-
porters in their membranes to tackle this task [43]. The
rRECM algorithm is also able to group genes in cluster
12 those are annotated to the term hexose transport.

The biological interpretation of some unique clus-
ters identified by the proposed rRFCM algorithm re-
ported above establish the fact that the algorithm gen-
erates significant gene clusters those are biclogically
relevant with respect to the given microarray data
sets. The unique GO terms obtained using the rRFCM
for all fourteen microarray data sets are available at
http: / / wwwisical.ac.in / ~pmaiji/ results / rrfem. him1.

6 CONCLUSION

The contribution of the paper lies in developing a new
gene clustering algorithm, which integrates judiciously
c-means algorithm, rough sets, and probabilistic and
possibilistic memberships of fuzzy sets. This formulation
is geared towards maximizing the utility of both rough
sets and fuzzy sets with respect to knowledge discov-
ery tasks. The effectiveness of the proposed algorithm

is demonstrated, along with a comparison with other
related algorithms, on fourteen yeast microarray gene
expression data sets using some standard cluster validity
indices and gene ontology.

The proposed initialization method is found to pro-
vide better performance in 87.50% cases than random
initialization; thereby successful in effectively circum-
venting the initialization and local minima problems of
iterative refinement clustering algorithms like ~means.
The proposed method also attains its best results in
82.14% cases for optimum parameter values. Moreover,
the proposed algorithm performs significantly better
than other methods, irrespective of the microarray data
sets and quantitative indices used, and provides biolog-
ically significant and relevant gene clusters.
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