Journal of Biomedical Informatics 40 (2007) 726-749

An algorithm for modularization of MAPK and calcium
signaling pathways: Comparative analysis among different species

Losiana Nayak., Rajat K. De

Machine Intelligence Unit, Indian Statistical Institwe, X3 BT, Road, Kolkata 700008, India

Abstract

Signaling pathways are large complex biochemical networks. It is difficult to analyze the underlying mechanism of such networks as a
whole. In the present article, we have proposed an algorithm for modularization of signal trmansduction pathways. Unlike studying a sig-
naling pathway as a whole, this enables one to study the individual modules (less complex smaller units) easily and hence to study the
entire pathway better. A comparative study of modules belonging to different species { for the same signaling pathway) has been made,
which gives an overall idea about development of the signaling pathways over the taken set of species of calcium and MAPK signaling
pathways. The superior performance, in terms of biological significance, of the proposed algorithm over an existing community finding
algorithm of Newman [Newman MEI Modularity and community structure in networks. Proc Natl Acad Sci USA 2006; 103{ 238577

#2] has been demonstrated using the aforesaid pathways of . sapiens.
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1. Introduction

Signaling pathways are complex biochemical networks
that regulate numerous cellular functions. They are non-
linear, exist as complex webs, and function by serial and
successive interactions among large number of vital bio-
molecules and chemical compounds. Biomolecules are
large in size and volume in comparison to the tiny pores
present in biological membranes like cell membrane,
nuclear membrane, mitochondrial membrane etc. So they
cannot possibly travel through these barriers and convey
the message to initiate a counter action in all possible cir-
cumstances. The information must pass via some other
means. Hence the message is signaled from one biomole-
cule to another in a cascade till it reaches its destination.
These cascades are known as signaling pathways.
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MAPK signaling pathway is one of the most ubiqui-
tous signal transduction systems [2]. It is characterized
by the general path, “Stimulus > MAPKKK = MAPKK =
MAPK = Response”™, where MAPKK is the kinase of
MAPK and MAPKKK is the kinase of MAPKK. The
symbol “A4 > B” stands for 4 stimulating 8. In most
of the cases, MAPK KK is activated by small G proteins
such as Ras and Rapl [3.4] MAPK signaling pathway is
conserved in all evcaryotes and plays a key roke in regu-
lation of gene expression as well as cytoplasmic activities.
They transduce a large variety of external signals; leading
to a wide range of cellular responses, including mating,
filamentation, high osmolarity responses, cell wall remod-
elling, sporulation (8. cereviviae), cell growth, differentia-
tion, stress response, T-cell development, inflammation
and apoptosis (mammals), morphogenesis, spatial pat-
terning [ amoehae), eye development (D, melanogasier),
vulva induction (C. elegans) [3]. In general MAPK sig-
naling pathways comprise of the conventional MAPK
pathway, JNK pathway, p38 pathway and ERK
pathway.
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Calcium signaling patl;-ways are 'I.'er;.' peculiar in nature.
MNormal intracellular Ca™" level (107" M) is much lower
from the extracellular concentration of 10~ M. Calcium
ions precipitate phosphate of the established energy cur-
rency of cells. Also high concentration of intracellular cal-
cium ions lead to cell death. This is the reason why calcium
ion concentration must be maintained at low levels in cyto-
plasm. Hence cells have evolved techniques for free calcium
ion binding to reduce its effect towards cytosol, which later
is used as well for signal transduction across and inside the
cell [5]. Ca®" gradients within cells have been proposed to
initiate cell migration, exocytosis, lymphocyte killer cell
activity, acid secretion, transcellular ion transport, neuro-
transmitter release, gap junction regulation and numerous
other functions [6].

Ca®" ions affect the cell cycle in more than one way.
Depletion of the InsP; receptor-gated Ca®™ pool results
in cell cycle arrest at Go/G| and S phases. Cakium is nec-
essary and sufficient for resumption of meiosis in marine
eges and have role in completion of meiosis and initiation
of mitosis [7]. It is also found that gene transcription
depends on how Ca”" enters into the cell. Entry of Ca™’
through voltage-dependent L type Ca®" channels and N-
methyl-p-aspartic acid (NMDA) receptors initiates gene
transcription through distinct DNA-regulatory elements.
Intranuclear increase in Ca®" initiates gene expression
and cell cycle progression, but also can activate degradative
processes in programmed cell death or apoptosis. Pro-
longed high calcium ion concentration activates nucleases
that cleave DNA and degrade cell chromatin. Ca®*-depen-
dent proteases, phosphatases and phospholipases break
DNA, resulting in a loss of chromatin structural integrity
[8]1 Many intracellular signal transduction pathways con-
sider elevated calcium level as an important signal [9].

Modularization is a process which divides a network
into smaller units for better understanding and analysis
of the original network. The idea is used here to divide cal-
cium and MAPK signaling pathways into smaller simple
units called modules. There is no single definition available
for a module. Hence certain criteria are used to define
them. Here we have assumed that a module is a subset of
the original biochemical network, which tends to be selfsuf-
ficient and have minimal dependency on the rest part of the
network. The justification for dividing a network into a
number of modules lies in the fact that the complexity of
each module is much less than that of the entire pathway
and is an easier means of studying the entire network by
parts. Thus analyzing all the modules generated from a
pathway separately, we can have a betier operational view
of the whole network.

Methods were developed for defining biochemical net-
work modules in an unbiased fashion. These unbiased net-
work modules were mathematically derived from structure
of the whole network under consideration [10]. One way to
organize the signaling reactions, might be to separate mod-
ules with clearly defined input and output, based on path-
way and cellular compartments where relationships among

modules may depend on the hiological state and cellular
context [11]. Another way of studying signaling pathways
is to create operational boundaries, which do not exist in
acell. It should be noted that these modules might not cor-
respond to conventional cell biological boundaries such as
various membranes. Boundaries of such modules are often
defined by functional input—output relationships. Modules
may also reflect spatial locations in cytoplasm, as defined
by protein scaffolds and anchors [12]. Based on absence
of retroactivity, modules can also be defined as done in
[13]. Thus division of a biological reaction network into
smaller units highly facilitates its investigation.

Here we propose an algorithm for modularization of
signaling pathways. Creation of modules starts with a
member having maximum number of relations in a given
network. The module grows in size by including neighbors
of the starting member in successive steps. The neighbors
are either included into or excluded from the module
depending on the number of their relations being present
its inside or outside. That is, if a member has less than or
equal to a certain number of relations (known as complex-
ity level ¢) outside the module, it gets included in the mod-
ule. The term, complexity level, is specified and can be
varied by the user. For comparative analysis, we have to
select an appropriate c-value for each pathway. The algo-
rithm is applied to calcium and MAPK signaling pathways
of H. sapiens for different c-values and an appropriate -
value is selected for further study over different organisms.
The effectiveness of the algorithm is demonstrated on two
different signaling pathways, viz., MAPK and calcium sig-
naling pathways for different species. Hence we associate
biological significance to each of the modules and compare
the levels of development of these pathways in different
species. The species we have considered for analyzing
MAPK signaling pathways are B taurus (cow), C. famili-
aris (dog), D melanogaster (fruitfly), H. sapiens (human),
M. muscwdus {mouse), P troglodytes (chimpanzee), B nor-
vegicus (rat), 8. cerevisioe (yeast) and 8. scrofa (pig), and
those for analyzing calcium signaling pathways are all the
previous ones except fruitfly and yeast. The superior capa-
bility of the algorithm, in partitioning a signaling network
into a set of biologically significant modules, over that of
an existing community finding algorithm of Newman [1]
has been demonstrated using the aforesaid pathways of
H sapiens.

The article is organized as follows. First we have given a
review on existing methods for partitioning biological net-
works. The next section describes the proposed algorithm
in details, and its application to an example network
{Fig. 1). The results section contains thorough analysis of
human calcium signaling pathway (Fig. 8), comparative
analysis of modules obtained from calcium signaling path-
way of different species, analysis of modules of human
MAPK signaling pathway (Fig. 14), comparative analysis
of modules obtained from MAPK signaling pathway of
different species, a section on change of modules with
increasing c-value, modules obtained by applying New-
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Fig. I, An example network . Modes are biomolecules, lons are denoed
with a circle followed by names and the rest (e, biomelecules) only by
names. Edges are dilTerent For diferent kinds of relations that exist
between twoe biomolecules. That is, — indicates activation, — indicales
binding and —| indicates inhibition between two nodes.

man’s community finding algorithm [1]. A detailed analysis
of comparison between the two methods is included to
show superiority of our algorithm over the other. The con-
clusion section provides a summary of the work explained
in the paper.

2. A review on partitioning of biological networks

There exist various approaches for partitioning net-
works. These include hierarchical clustering techniques
[14-16], graph partitioning [17.18] block modelling [19]
differential equation based methods [20], cartographic rep-
resentations [21]. Among them, approaches based on graph
partitioning [17,18,22] and community structure detection
[23,1.24] are popular. Algorithms based on these two con-
cepts are vastly used to divide, study and analyze networks.
Some of these methods have been applied to biological net-
works. Graph partitioning algorithms were applied mostly
to nonbiological networks. These include VLSI [Very
Large Scale Integration) [25.26], CAD (Computer Aided
Design) [27,28], Hypertext Browsing [29], geographic infor-
mation services [30], parallel computing [28], integrated cir-
cuit designing [31] and for biological networks like
physical mapping of DNA (Deoxyribo Nucleic Acid) [32]
among others. On the other hand, a huge variety of com-
munity detection techniques have been developed based
on the notion of centrality measures [33,34], flow models
[35], random walks [36,37] resistor networks [24], optimi-
zation [38], and many other approaches.

2.1 Graph partitioning technigues

A typical problem in graph partitioning is to divide of a
set of tasks among the processors of a parallel computer so
as to minimize the necessary amount of interprocessor
communication [1]. In such an application, the number of
processors is wsually known in advance along with an
approximate figure of the number of tasks that each pro-
cessor can handle. Thus we know the number and size of

the groups into which the network is to be split. Moreover,
the goal is usually to find the best division of the network
regardless of the fact whether a good division even exists or
not.

WVast and complex biochemical networks have inherent
non-local features that require the global structure to be
taken into account in the decomposition procedure. It is
important to know, the naturally occurring subnetworks
of a network, while studying its functionality as a whole.
Holme et al. [39] have proposed an algorithm for decom-
posing biochemical networks into subnetworks based on
the global network structure. They have analyzed full hier-
archical organization of biochemical networks {metabolic
and cellular networks) of 43 organisms taken from the
WIT database. The investigation of Jeong et al. [40] sug-
gests the presence of the same topological scaling proper-
ties in metabolic networks that show striking similarities
to the inherent organization of complex non-biological sys-
tems. Identifying recurrent patterns across multiple net-
works is also an important step to discover hiological
modules, especially from microarray datasets. Most of
the existing algorithms are very costly in time and space
for frequent pattern mining as the pattern sizes and net-
work numbers increase. Hu et al [41] have developed a
novel algorithm, called CODENSE, to efficiently mine fre-
quent coherent dense subgraphs across a large number of
massive graphs. Unlike the other methods, this algorithm
is scalable in the number and size of the input graphs,
and adjustable in terms of exact or approximate patiern
mining. Graph theoretical algorithms can also be used to
identify backbone clusters of residues in proteins. The iden-
tified clusters show protein sites with the highest degree of
interactions. Patra and Vishveshwara [42] have devised a
method for identifying highly interacting centers (clusters)
in proteins. This method can be applied to the problems
such as identification of domains and recognition of struc-
tural similarities in proteins. Pathway analysis of large met-
abolic networks meets with the problem of combinatorial
explosion of pathways. Schuster et al. [43] have developed
an algorithm for metabolic pathway decomposition based
on local connectivity of the metabolites. Applicability of
the method is analyzed with metabolic networks of M.
preumoniae. Some studies have also been done on networks
of £ coli and C elegans by Wagner et al. [44].

2.2 Community finding algorithms

Community structure detection, by contrast, is the best
thought of partitioning technique that is used to shed light
on the structure of large-scale networks, such as social net-
works, internet and web data, or biochemical networks [1].
Community structure detection methods normally assume
that the network of interest divides naturally into sub-
groups, if any, and the experimenter’s job is to find those
groups. The number and size of the subgroups are thus
determined by the network iwself and not by the
experimenter.
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In many networks, nodes are joined together in tightly
knit groups, between which there are only looser connec-
tions. Girvan et al. [33] have proposed a method for detect-
ing such communities. They have used the idea of centrality
indices to find community boundaries. Community finding
algorithms can alko be applied to a network of relations
among genes [43]. Wilkinson and Huberman [46] have
studied a network of gene co-occurrences for colon cancer
from the literature, and partitioned it into communities of
related genes. Their method identifies communities where
the component genes of each community are related by
their functions. They have designed the partitioning proce-
dure to be particularly applicable to large networks in
which individual nodes may play a role in more than one
community. Biological networks can be of different kinds.
A metabolic network represents metabolic substrates and
products with directed edges joining them. Protein interac-
tion networks convey mechanistic physical interactions
among proteins [47). Expression of a gene may be con-
trolled by other proteins (activators and inhibitors) in a
genetic regulatory network. Hence a genome can be viewed
as a switching network with vertices representing the pro-
teins and directed edges representing dependence of protein
production on the proteins at other vertices [47]. A robust
approach to partition a network involves maximization of
a benefit function called “modularity’ over possible divi-
sions of the network as proposed by Newman [23].

Metaholic and signaling pathways are shaped by the
networks of interacting proteins whose production, in turn,
is controlled by the genetic regulatory networks. Maslov
and Sneppen [48] have quantified correlations among con-
nectivities of interacting nodes and compared them to a
null model of a network (a network with all links randomly
rewired ). They have found that for both protein interaction
and gene regulatory networks, links between highly con-
nected proteins are systematically suppressed, whereas
those between a highly connected and lowly connected
pairs of proteins are favored. This effect decreases the like-
lihood of cross talk between different functional modules of
the cell and increases the overall robustness of a network
by localizing effects of some perturbations. Stelling et al.
[49] have devised a theoretical method for simultaneously
predicting key aspects of network functionality, robustness
and gene regulation from network structure alone. They
have determined and demonstrated that the non-decom-
posable pathways are able to operate coherently at steady
state by using £ coli central metabolism as an illustration.

A gene may have several connections, circuits and path-
ways that may crosslink and represent connected compo-
nents. Guelzim et al. [50] have created a network of 94
genetically or biochemically established interactions among
491 yeast genes. After thorough analysis of the interaction
network, it has been found that the number of regulating
proteins per regulated gene has a narrow distribution with
an exponential decay, while the number of regulated genes
per regulating protein has a broader distribution with a
decay resembling to a power law. As a whole, the yeast

transcriptional regulatory network combines a small max-
imal diameter, an elevated local semi-clustering, a high
number of feedback circuits and a global fragmentation.
Here each small connected piece indicates towards imple-
mentation of a biological function, and the global fragmen-
tation serves to limit inter-functional crosstalk at the
transcriptional level.

Clustering properties of the reaction networks can be
obtained from maps of known metabolic pathways. Raine
and Morris [51] have investigated random connection
model, random cluster model and accumulation model
for construction of metabolic networks. The random clus-
ter and accumulation models exhibited “‘small-world™
(Small worlds are networks that are linked in such a
way that they exhibit a high degree of clustering like
ordered networks but a relatively short average number
of links between any two nodes like random networks)
features, in agreement with the structure of real biological
networks, while random cluster and accumulation models
also depict a long-tailed distribution of nodes of the taken
networks.

Milo et al. [52] have defined “network motifs™ as pat-
terns of interconnections occurring in complex networks.
Such motifs were found in networks from biochemistry,
neurobiology, ecology and engineering. The motifs shared
by ecological food webs were distinct from the motifs
shared by the genetic networks of E coli and 8. cerevisiae
or from those found in the world wide web. Similar motifs
were found in networks that perform information process-
ing, even though they describe elements as different as hio-
molecules within a cell and synaptic connections between
neurons in O elegans. The authors have used motifs to
define universal classes of networks. It is worth to detect
and understand network motifs in order to gain insight into
their dynamical behavior and to define classes of networks
and network homologies. Motif detection in £ coli tran-
scription regulation networks is also have been carried
out by Shen-Orr et al. [33].

Newman et al. [24,23,1.47,38.45,33] have proposed a
series of algorithms to find communities in various kinds
of networks. These algorithms are designed to optimize a
network’s divisions based on the properties of the network
itself. We have compared our method with an interesting
community finding algorithm of Newman [1], which has
already been applied to metabolic pathways along with
other kind of networks. Newman's algorithm optimizes a
quality function known as “modularity” over possible divi-
sions of a given network. Modularity score is directly
dependent on the network architecture in terms of adja-
cency matrix and eigenvalues of a symmetric matrix calcu-
lated from the adjacency matrix. Positive value of
modularity indicates possible presence of modules in a net-
work. One important aspect of the algorithm is that it
refuses to divide a network if no good division exists. In
other words, a negative value of modularity indicates no
possible division of the given network. Throughout the
paper we have referred this algorithm as Newman’s com-
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munity finding algorithm. One may refer to [1] for its fur-
ther details.

3. The proposed algorithm

In order to decompose a network into several modules,
we have proposed an algorithm which is described in this
section. The algorithm views an entire biochemical pathway
as a graph having gene products and chemical compounds
as vertices, and edges being different kinds of interactions
among them. An edge can be a protein—protein interaction
or protein-compound interaction or a link to another map.
For simplicity, here we have not taken the links to other
maps into account. A module is a subset of the original net-
work, which is defined in Section “Introduction”. Before
describing the algorithm, let us define some useful terms.

e I Set of all nodes (representing gene products and
chemical compounds) present in a network, where each
node must have atleast one relation, ie., isolated nodes
are not included in this set

e M: Set of nodes present in a module (a part of network)

o io Exiension index (stage of inclusion of immediate
neighbors of nodes in a module)

e o Complexity level {a value fixed by the user determin-
ing the inclusion (exclusion) of nodes in (from) a
module)

Table 1
Relations found among members present in the example network

51 No. Preceding node Succeeding node

0l
0z
03
04
05
06
a7
08
09
]
Il
12
13
14
(]
la
17
I8
19
20
21
22
23
24
25
26

Relation

omngneE =

NTCte ST = =N mEER 0T
BB R E R EEEREEEE SRR R ®

“ECcCHHEsRYROZ-ATAOCRST

Capital alphabets represent members of the network. Various tvpes of
relation between a pair of members are depicted by small alphabets, There
are three kinds of relations {a - activation; b - binding/association; i -
inhibiticn).

M*: Set of nodes present in a module after kth extension
Ng: Set of succeeding nodes of a given node

n: An individual member of Ny

Ng: Set of preceding nodes of a given node

n,: An individual member of N

r: Type of interaction that exists between npand n;r = a
depicts a relation of activation, r = b depicts a relation
of binding or association, r = i depicts a relation of inhi-
bition, r = 4 depicts a relation of indirect effect between
nodes n, and n,

Ng: Set of relations (interactions that can exist between
two nodes)

* 1, = (Hp. 1, r): An individual member of Ny

R,y Total number of relations that exist with n as the
preceding node

£,.: Total number of relations that exist with » as the
succeeding node

Mp: Set of permanent nodes (nodes having all their rela-
tions inside a module)

o Maxv: A function that detects maximum value among all
elements present in a given set

The total number of relations with » as either a preced-
ing or succeeding node is given by

Tu = RJ.IP+RJ.I.'E ':,]-II

Since R, and R, are outdegree and indegree, respectively,
of a node n, T, is equivalent to total degree of the node n.

Table 2
Caleulation of total-relation of members present in the example network

51 Mo Monle name

al
0z
03
04
05
il
a7
08
09
]
I
12
13
14
(]
6
17
I8
19
20
21
22
23
24
25
26

Out-relation In-relation Total-relation

Pl = —

OmMEoDN®E

B - o e oo il e e«
Fd L et Bk bbb i — —

P Podl = el =

Pd Pl = Pd = = =
Fd D e e e (S0 e O D0 D e D e hbd = =D - DD
Pt =

MeMEso-WROTOZECR-"—

P Pod L P i = =

=

Towl number of relations ol & node (2) is the sum of relations with » as a
preceding node (out-relations) and relations with n as 2 sucoeding node
{in-relations).
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Fig. 2. Initial module of the example network. First steps of the algorithm
involves creation of an initial module, taking the mmediate neighbors of
the starting node inte account. For e =2, nodes L, O, T, 2.V, 5, O gzt
included in first extension, as immediate neighbors of node P,

T, represents the total number of relations associated with
node n. Ty stands for the total number of relations of node
s that gets included in a module during kth extension. Like-
wise, T, represents a set, comprising of T,-values, where
R M.

31 Description

The algorithm starts with detection of a node n having
maximum number of relations in the node pool £ for a
given network. Considering the detected node as the start-
ing point (the starting member being always a permanent
member), an mitial module is created for relations r, where
n is either a predecessor or a successor. Thus the module is
created by including immediate neighboring nodes of n.
Here an eventuality may arise where more than one node

e

va— O

-
o =

9 \
\‘ /, ‘: ¥
El— L =~ P A
Q T
Fig. 4. The modularized example network. Aler complete modularization

of the example network, we get 3 modules, e, dark gray colored region—
masdule J, while region—module P and light gray region—maodule K.

=
o e

have maximum number of relations. Then any one of the
nodes (having maximum number of relations) that is
encountered first by the algorithm is taken as the start
point by default (followed by the others).

Once a module is initialized, the total number of rela-
tions [ T,,) of every individual member is considered. For
a node in a module, if the number of relations lying inside
the module is equal to the total number of relations associ-
ated with the node, the member is considered to be perma-
nent. If a node in a module has more than ¢ relations that
lie outside the module, it gets excluded from the module
along with decreasing the previous non-permanent nodes’

Fig. 3. Stages in construction of Module £, This ligure gives stepwise construction of module # for o= 2 Alter each extension, nodes having all their
relations inside the medule are declared permanent. Nodes having more than two out-relations are excluded rom the expanding module, and the rest are
taken as under consideration members and their immediale neighbors are included during the next phase of extension.
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Fig 5. KGML layoul lfor caldum signaling pathway of f sapiens,. KEGG/Pathway database provides information of caleium signaling pathway in xml
format that can be represented graphically by java (KGML layvout).

total relations T, by one. These extension and exclusion k10
processes continue till there is no new immediate neighbor- end if
ing node to be included, or no node is left to be declared 2: Extend module
permanent. 1t is to be mentioned here that once a member for (k—k+ 1) do
is declared permaneni, it gets removed from the node pool select nodes from Ng and Np of # and put in M
E_ Hence the chance of a single member to be included in end for
more than one module is avoided. Also, if a member 3: Check permanency of nodes
appears more than once in a network, its positional signif- if NgUNpc M* for a node #* then
icance is taken into account. That is, if a member X is pres- Ee FE— {n"}.M,-: — Mgl 1n""]
ent four times in a network, it will be considered four times end if
as X1, X2, X3 and X4. 4: Exclude node
After successful completion of the creation of a module, if [T - number of nodes in M* related to #*]> ¢ then
the algorithm will search for another starting point and M e M* — 0¥
repeat the above mentioned steps to create another mod- for (n* " & M) do
ule. This process of creating modules (one by one) will con- Tyen — [(Tyen) — 1]
tinue till exhaustion of all the nodes present in the node end for
pool E. The basic steps followed to create the modules end if
are presented in a pseudo code (Algorithm 1). 5: Build a complete module
Algorithm for creation of modules from a network rep;[a:p 5.4
-‘.‘
Kiowe: Ev 4 ??‘rg[ecn:::,modml&
1: Find start/central node ]‘i-’:pEﬂt
I T, « M.r;.r{_}"_”}} then Step 1-5
ne— start point/central node Wl B¢

Mpe MpUln}E e E— |n)
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Table 3
List of medules of human calcium signaling pathway For different o-value
Sl Mo, Module name c=1 c=2 c=13 4 c=15 c=6 c=17

Mowde Rel Mode Rel Mowde Rel Mowde Rel Moude Rel Mowde Rel
0l (C00076)2 24 23 25 24 X 28 4 43 46 5l o 59
02 CALMLA & 7 & 7 8 7 & 7 & 7
03 (C00076)1 fi 5 7 fi 7 i fi 5
04 CO1245 2 | 9 g 10 12
03 CO0las | Mil | Mil
06 BSTI 4 3 4 3
07 PLCEL 2 |
08 PLCGL 2 |
09 PLCEL 3 2
I PLCDA | Mil
Il RYRI 1 Mil

The column Mode indicates number of nedes and column Bel gives number of relations present in a moduke,

3.2 An example

The hypothetical network in Fig. 1 is considered for
generation of modules. The network contains 26 nodes
and 26 relations existing among the nodes. The set of
relations (Wg) is given in Table 1. The total number of
relations (T,), for all members (n), is considered for select-

ing the node with maximum number of relations, as the
starting point of an originating module. Total number
of relations possessed by each node is calculated from
Table 2.

Here node P is having the highest number of relations
with other nodes of the given network. S0 P is the starting
point of the first module. The module resembles to Fig 2,
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after first extension, by including immediate neighbors of 5. The whole process is repeated with the node K, the

node P. The steps for determining the modules of the net- node with maximum relations among the left over
work are described below. nodes of E.
6. After creation of three modules namely P, K and J, node
1. For Ty, Ty and Ty, it is found that NgUNpc M. pool £ becomes empty.
Hence O, Q and T became the permanent members.
2. After second extension, for Ty, To and Tx, it is found Fig. 3 shows different stages during construction of

that NpUNgc M. So they were also considered as the module P, and the modularized entire network is given in
permanent members of the module. But T-—(number  Fig. 4.
of nodes in M~ related to K5)=4 —1=3>2. Here ¢

is taken as two. Since node K has more than two out- 4. Resulis and comparative analysis

relations lying outside the present module, K cannot be

a member of the module created with P as the starting In this section the proposed modularizing algorithm is
node. applied to some real life biological networks, viz., calcium

3. After third extension, for T, T and T2, it is again signaling pathways belonging to B taurus (cow ), C. famili-
found that &g U JW’PCM"*_ So except W, every member aris (dog), H. sapiens (human), M. musculus (mouse), P.
present in M” in the module is permanent, ie.. they have  troglodytes (chimpanzee), R. norvegicus (rat) and S, scrofu
been excluded from £ {pig)., and MAPK signaling pathways of B iawrus, C

4. Fourth extension has made W permanent. Likewise,  familiaris, D. melmogaster (fruit fly), H. sapiens, M. muscu-
after 5th and 6th extension, we have got M®= M. lus, P. troglodytes, R norvegicus, 8. cerevisiae (yeast) and
Hence creation of one module is now complete. Here S serofa. The data is taken from KEGG/Pathway data-

e have named the modules by the name of their  base (httpy//www. genome. jp/kegg/pathway html#environ-
starting node. Module P contains 12 permanent mental) [54-56] We have considered XML files
members. representing the KGML (KEGG Markup Language) lay-
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outs for calcium signaling pathways. Since KGML layout
for MAPK signaling pathway is not available in the data-
base except fruitfly, mouse, rat and yeast, we have consid-
ered available pictorial representations for these species.
Modules have been created from both calcium and MAPK
signaling pathways of . sapiens for different values of c.
For comparative analysis of a signaling pathway of differ-
ent species, we have considered a particular c-value, for
which the modules appear to be biologically significant.
Using these c-values, we have compared these two above
mentioned pathways for the aforesaid species in terms of
the levels of development. This is followed by the compar-
ison of performance of the proposed algorithm with an
existing community finding algorithm of Newman [1]. As
mentioned earlier, a module is named with its starting
node.

4.1 Calcium signaling pathway of H sapiens

Calcium signaling pathway of H sapiens contains 33
nodes.  One node (C13050) i isolated. So
|E] =355 — 1 =54 These 54 nodes are having 39 relations
(ie., [Ngl = 59) among them as shown in Fig. 5. Modules

are created from the same pathway for complexity level
(c)of 1,2 3 4 5 6,7 and above. The results are given
in Table 3.

411 Modwlarization for ¢ = 1

For ¢ =1, we get 11 modules. Module (Cii76)2
emphasizes role of plasma membrane, endoplasmic reticu-
lum and mitochondria in calcium ion balance of cells. But
some receptors like RYR (Ryanodine receptors) present in
ER membrane are not included in this module. Module
CALMES represents roke of calmodulin like proteins (cal-
cium binding proteins) that upon binding with free calcium
ions change confirmation and trigger other enzymes and
ion channels. ( CNN76) module contains calcium channels
present in plasma membrane for import purpose. Module
B5T] deals with calcium ion flow from outside to inside
of bone marrow cells but the way its intracellular balance
is maintained is not clear in the modul. Moreover for
c=1, the network is splitting profusely. Over splitting is
giving rise to a lot of small modules as shown in Fig. 6.
This is the reason why we are unable to assign any biclog-
ical significance to the rest seven modules. So modulariza-
tion of the same network is done for ¢ = 2.
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Fig. 9. Modularizd MAPK signaling pathway of [ruitlly. The simple network isell exists as a combination of three separate independent modules,

412 Modularization for ¢ =2

For ¢ =2, 6 modules are obtained as shown in Fig. 7.
Modules CALM L6 and BS5T! remain unchanged. In mod-
ule { COMNI76)2, Ryanodine receptors are included, making a
clear picture of overall calcium ion flow and balance in a
cell. The module (COMNI76)! is increased by one node
PLCD3. The changed module shows plasma membrane
based calcium import channels and interaction of the
imported calcium ions with one of the PLC {Phospholipase
C) group. CH 2435 module includes proteins belonging to
PLC family and their relation with C01245. From prior
knowledge we know that PLC group members break into
C01245 as a result of activation. C01245 molecule is a
ligand for ITPRI1 (inositol 14.5-triphosphate receptor,
type 1) present in ER membrane. This module is resulted

in due to merging of the modules (0245, PLCBI, PLCGI
and PLCE! found for ¢ = 1. So the problem of over split-
ting noticed for ¢ =1 is reduced here. But still we are left
with the problem of module B5T/ as described above
and a singleton module (ie.. a module comprising of a sin-
gle node) CIHNAS to describe. Its difficult to analyze such
small modules. This has led to modularization of the net-
work for ¢ = 3.

4 1.3 Modularization for ¢ = 3

Four modules are created for ¢ = 3 as shown in Fig_ 8.
Module B5T! for ¢=2 is merged with the module
(CO76)2 that gives a complete explanation of calcium
ion balance in bone marrow cells through Ryanodine recep-
tors present in ER membrane. Module Ci65 for e =2 is

Dlgl,z
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Fig. 10, Modularized MAPK signaling pathway of veast. The simple network splits into three separate independent modules.
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Table 4
Modules obtained from calcium signaling pathway of different species for ¢ = 3
Human, rat and mouse Cow Pig Doz Chim panzes
Mame Modes Mame Mondes Mame Muondes Mame Mondes Mame Mondes
(C00076)2 29 (C00076)2 13 (C000768)2 9 (C0007a)2 5 (OO0 7682 4
CALMLG & C01245 1 CHEMI 2 GMAS 3 469986 3
(C00076a) L T CALM2 5 (O00076a) L 2 PTGER3 2
C01245 1 CD38 4

GMASIL 5

This wble contains information about modules obained from aleium signaling pathway of 1. sapiens (human), & norcegicns (rat), M muscwlis (mouse),
B towrns (cow), S0 serofa (pig), © famifiaris (dog) and P roglodvies (chimpanzes). The column Mame gives name of the module and the column Modes

indicates the number of nodes present in a module.

merged with module C0J245. CODL63 is a byproduct when
PLC group members break to C01245. Like C0O1245, it is
not a ligand for ITPR L. It binds with PK.C (protein kinase
) that takes part in controlling PM based calcium ion
channels. But we are able to decipher its role clearly only
after its merging with module C0/245. For ¢ =2, where
C00165 is included in another module, it is confusing to
decipher and understand this information. Thus it appears

EDHF | ] TrkadB |
HT3I4

[ F2F |—w] F3FR

FROFR

that we can associate some hiological significances to these
modules. We are getting exactly similar modules for ¢ = 4.

4.2 Fixing the c-value
Mow question arises once we get biologically significant

modules at some value of ¢, whether we should proceed
further and continue modularization at higher values of ¢
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Fig. I1. MAPK signaling pathway of M. sapiems as given in KEGG/PATHWAY database. The isolated nodes are omitled [rom the network as our

algorithm cannot consider them.
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Table 5
List of modules of human MAPK signaling pathway for different c-values
51 No. Module name c=1 c=2 c=73 c=4 c=5
Modde Rel Monde Rel Monde Fel Mode Rel Monde Rel
0l JNEK 14 15 14 15 21 23 22 25 22 25
02 P8 13 14 13 15 13 15 40 47 40 47
03 ERK lé 1E 17 19 17 19 17 19 17 1a
04 Ras 1 9 15 15 lé I8 27 24 13 42
03 MEKKI 7 f 7 f 13 14 11 12 7 f
06 TAKI 4 3 4 3 14 lé 3 2 3 2
07 MEK4 3 2 3 2 4 3 2 | 2 |
0Og MEK?7 4 3 4 3 4 3 4 3 4 3
04 MEKI | Mil | Mil 1 Mil | Mil
I MEK?2 | Mil l Mil 1 Mil | Mil
11 ASK1 2 | 7 i 7 6
12 THFR 2 1 2 | 2 1
13 GRRB2 7 6 7 f 11 I
14 e | Mil 1 Mil | Mil
15 MEK?2 2 | 2 | 2 1
lé MEKG 1 Mil | Mil 1 Mil
17 TrkA/B 4 3 4 3
18 ILIR 2 | 2 1
19 Ca™ 3 2 3 2
20 CASP 3 2 3 2
21 TRAF2 2 1 2 |
22 TR AFG 2 | 2 1
23 TARI 3 2 3 2
24 RalB 2 | | Mil
25 Rafll | Mil 1 Mil
26 Tpl 2ot | Mil | Mil
27 MLK32 2 | 3 2
28 MIK 2 | 2 |
24 IKK | Mil | Mil
30 neLyz 1 Mil
3l PP2CA | Mil | Mil
32 DAXX 5 4
13 PEC 2 |
34 PEA 1 Mil
15 Mos | Mil
36 MPL | Mil
7 ERKS 4 3 4 3 4 3 4 3 4 3
iR GADD4S 2 1 2 | 2 1 2 | 2 1

The column Mode indicates number of nedes and column Rel gives number of relations present in a module.

to get more meaningful modules or stop the process. To get
a logical answer, we continue modularization for ¢ =35, 6
and other higher values. We get 3 modules for ¢ = 5. Mod-
ule { (OWWI76)2 is increased by several nodes and relations,
which make it large and complex, hence our primary objec-
tive of dividing a complex network to simpler units fails
here. (CON76)] module is decreased by one node and
one relation that again gives rise to the already discussed
problem of calcium ion balance inside the module. Module
CALML6 is identical to that of obtained for lower values
of ¢. For ¢ = 6, we have got only 2 modules. The whole net-
work is divided into two paris, ie., the unchanged
CALMLA module and ( CH076)2 module comprising the
rest part of the network. In quest of a solution it only
aggravated our problem. For ¢ =7 and higher values, the
whole network rounds up to a single module.

Soin general we can assume after a certain level, modular-
ization with increasing c-value will yield similar results with

that of previous complexity level or the modules will be
enough larger making their siudy and analysis difficult. As
our objective is to do a simplified study of a network and
we are getting approximately biologically significant mod-
ules for ¢ = 3, we have fixed c-value to 3 for calcium signaling
pathways. This value of ¢ is used in the next subsection for
comparing calcium signaling pathways of other species.

4.3, Comparative siudy on modules of caleium signaling
pathways of different species

Here the proposed algorithm is applied to calcium sig-
naling pathways of 6 different species available in
KEGG/Pathway database for ¢=23. The original
{CO076)2 module that was found in M. sapiens exists in
two parts namely, ((C0076)2 and 469986) in P. froglo-
dytes. Here (CON76)2 module is under developed com-
pared to that in K sapiens. Role of endoplasmic
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Fig. 12, Modularized MAPK signaling pathway ol £ sapiens for ¢ = 1. Here the network is divided inte 38 modules. Twelve of them are singleton and

very [ew are eligible lor consideration of biolegical significance.

reticulum in calcium balance is negligible. However, mito-
chondria plays significant role in this regard. Absence of
coordination among PM based ion channels, ER receptors
and mitochondria is evident and indicates little role of cal-
cium ions in signal transduction for P. troglodyies. The rest
modules that we have found in f. sapiens are not present
here. In case of C. familiaris (dog), module { CN076)2 is
a bit developed. It shows the role of calcium ions in muscle
contraction, a fact not being shown in the same module for
chimpanzee. In addition, part of module CH245 is
detected.

In 5. serofa (pig), for the first time, plasma membrane,
endoplasmic reticulum and mitochondria are coordinating
with each other to maintain calcium ion balance in module
{Ck76)2. Still it is a far ery from calcium signaling mech-
anism of M. sapiens. Here two members of module
(Ci76) ! are also detected. For calcium signaling path-
way of 8 tauruy (cow), we have got 5 modules. The origi-
nal (CN76)2 module exists in three parts (module
(C76)2, modulke GNAST and module CD3I8) with sev-
eral members missing. Module CH245 is fully developed

but contains two members of the under developed module
(C7e) . Partly developed module CALM2 shows the
roke of calcium binding proteins in calcium signaling. As
a whole calcium signaling pathway of B fawrus shows high-
est similarity with that of /. sapiens among the 6 species we
have considered for our study. As calcium signaling path-
way of H. sapiens, R norvegicus and M. nusewdus are iden-
tical, we got similar modules for these 3 species. Table 4
gives data about modules present in calcium signaling
pathways of these 7 different species. Analysis of these
modules obtained from different species leads us to a con-
clusion that f sapiens, B norvegicus and M. muscudus have
highly developed calcium signaling mechanisms, B faurus
and 8. scrofa lie as intermediates. But that of C familiaris
and P. froglodytes is very much under developed. In order
to resirict the size of the article, we have included here the
figures corresponding to M sapiens only.

It may be mentioned here that in certain species when
part of the pathway is only functional, modularized study
is helpful. For example, module { CO76 )2 of human cal-
cium signaling pathway is consistent among our taken set
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Fig. 13 Modularized MAPK signaling pathway of H.

of species in varying size {Table 3), while other modules are
not. So one can avoid the other modules and compare
module {CON76)2 of human caleium signaling pathway
with that of other species instead of comparing the whole
pathway to get a comparative view among them.

d.4. MAPK signaling pathway of H. sapiens

MAPK signaling pathway of H. sapiens is a complex
network of 135 nodes and 182 relations (|[Ng| = 182).
TAO1/2 is the only isolated node present in this network,
ie, [E]=135—-1=134 (Fig 11). Modules are created
from the same pathway at complexity level of 1,2, 3, 4, 5
and higher. A list of modules created for each c-value is
given in Table 3.

441 Modularization for ¢ = 1

For e=1, MAPK signaling pathway of H. sapiens
eets divided into 38 modules (Fig. 12). Twelve of them
are singleton modules. Among the rest modulks, only
six seem to give any biological significance, i.e., modules
JNK, p38, ERK, Ray, MEKK! and GRB2Z. Module ERK

sapiens for ¢ = 2, The network splits into 32 modules.

along with modules TrkA/B, GRE2? and Rav roughly rep-
resent the conventional MAPK signaling pathway. Mod-
ules JNK and MEKK! are parts of the INK pathway.
p38 pathway is represented by a module named p38.
The partly known ERK pathway is represented by mod-
ule ERKS. Here c-value is very low. So the network is
facing the problem of over splitting and we go for higher
complexity values.

4.4.2 Modularization for ¢ =2

For ¢ =2, 32 modules are obtained as shown in Fig. 13.
Module JNK, p38, ERK, MEKK!, GRB2? and ERKS
remain unchanged except increase by a single node or rela-
tion. Module PKC, PKA, Mos and Ray merge to give rise
to a larger meaningful module. In addition ASK[ emerges
as a major module here. Still 9 singleton modules and 14
small to medium sized modules are left to be explained.
So we switch to modularization for ¢ = 3.

4.4.3. Modularization for ¢ = 3
We are pgetting 18 modules for c=3 Module
GRB2, Ray and ERK divide effectively the classic
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Fig. 14, Modularized MAPK signaling pathway of . sapiens for ¢ = 3. Human MAPK signaling pathway gets divided into 18 modules for ¢ = 3 Here

the problem of over splitting of the network is minimizad .

MAPK signaling pathway into 3 parts. JNK pathway
is divided into 4 parts namely module MEKK/!, mod-
uke MKK4, module MKK? and the module JNK.
Modules p38, ASK] and TAK! counter for p38 path-
way except 1/2 small modules. Here the problem of
over splitting is a lot minimized with only 4 singleton
modules and 2 small modules. The details are shown
in Fig. 14.

d.4.4. Modwlarization for e = 4, §

For ¢ = 4, the network is neatly separated into 12 mod-
ules. Just 2 singleton modules are present. But some mod-
ules like p33 are getting much larger and complex in size.
The scenario becomes more difficult for c-value of 5 as
the number of modules decreases to 10, each being larger
that the previous ones. The modularized networks of
human MAPK signaling pathway for ¢ =4 and ¢ =3 are
given in Figs. 15 and 16, respectively. For higher values
of ¢, the modules become even more complex.

4.5 Comparative study on modules of MAPK signaling
pathways of different species

Keeping the factors, ie., over splitting of network and
complexity of a module in mind, we here provided a com-
parative view among MAPK signaling pathways of the
taken set of Y species for ¢ = 3. MAPK signaling pathways
of D melanogaster and 8. cerevisiae are very simple, and
are different in layout from that of the remaining species.
Modularized MAPK signaling pathway of D melanogaster
is given in Fig. 9. The figure clearly represents three inde-
pendent modules. The MAPK signaling pathway of S
cerevisice also gives 3 independent modules for ¢ =4 as
shown in Fig. 10. We have compared the modules obtained
from the rest 7 species for ¢ = 3. Details of these modules
are given in Table 6. MAPK signaling pathway of I sapi-
ens and M. musculus are almost identical. In MAPK signal-
ing pathway of M. musculus, two nodes namely RafB and
LZK are absent. So their modules have maximum resem-
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Fig. 15 Modularized MAPK signaling pathway of . sapiens for ¢ = 4. Modulariztion for o = 4 divides MAPK signaling pathway of . sapiens into 12
modules. Most of them are eligible for consideration of biological significance.

blance with each other. Next comes the modules of R nor-
vegicus. In B tgurws, maximom modules found in B sapi-
ens are in elementary stage and exist in two or three
separate modules. MAPK signaling pathway of dog, pig
and chimpanzee are least developed. So we are finding a
eradual development of the pathway from C familiaris
to M. sapiens. We have included here the figures corre-
sponding to M. sapiens, D melanogaster and 8. cerevisiae

only.

4.6, Changes encountered in modules with increase in c-value

With increasing values of ¢, the modules decrease by
number. In case of a particular module, it is noticed that
with each increase in c-value by 1, either new members
get added to the module, or the module remains static.
Here first we are considering module (C00076)2 of human
calcium signaling pathway. This module is increasing in
terms of members/nodes with increase in e-value till
¢ =13, then remains the same for ¢ =4, again increases in

size for ¢ = 5 and 6, and finally the whole calcium signaling
pathway gets converged into it for ¢ = 7. Changes in mod-
ule (CO0076)2 with increasing c-values is shown in Fig. 17.

But in some cases certain members get deleted from the
module with increase in c-value as seen in the case of mod-
ule Rav of MAPK signaling pathway (Fig. 18). Member
RasGRF is inside the module till ¢ = 2. But after that it
is gerting excluded from module Ras.

4.7 Comparison of results of the proposed algorithm with
that of Newman's community finding algorithm [1]

We have compared the performance of the proposad
algorithm with that of Newman's community finding algo-
rithm [1]. For this purpose, we have applied the existing
algorithm to our example network (Fig. 1), calcium signal-
ing pathway (Fig. 53) and MAPK signaling pathway
{Fig. 11} of H. sapiens.

The example network has been divided into 5 modules
by Newman's algorithm based on the connectivity of the
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simplilying a network.

nodes in the network. Our algorithm has created the mod-
ules one by one taking a few nodes each time, where there
was no competition between two modules to include a par-
ticular node. On the other hand, Newman’s algorithm has
divided the network optimally without considering limita-
tions like size and number of modules that are prevalent
in graph separation techniques. Successive divisions that
have been done by Newman’s algorithm in the example
network is given in Fig. 19(a). After first division we have
found two subnetworks (subnetl and subnet?) of 10 and 16
nodes, respectively. Subnetl is further divided into two
parts {modulel and module?). Likewise, subnet? is further
partitioned into 2 parts (ssubnet!l and ssubnet?) of 9 and 7
nodes, respectively. The procedure terminates after division
of ssubnet? into moduled (4 nodes) and module3 (3 nodes).
All of these modules are shown in Fig. 19{b).

When Newman's algorithm is applied to calcium signal-
ing pathway of I sapiens, 5 modules have been created of
size 15, 13, 9, 3 and 12 nodes, respectively, as shown in
Fig. 20. Similarly, human MAPK signaling pathway have

been divided into 10 modules (Fig. 21) of different sizes
after application of Newman’s community finding algo-
rithm. One interesting fact is that sometimes the AQ value
becomes very less but fails to reach exactly zero. In this
case, we have assigned a threshold for the AQ value. No
significant difference is found in case of the example net-
work and human calcium signaling pathway with different
threshold values. But human MAPK signaling pathway
has been partitioned into different number of modules
when threshold value of AQ varies between (.00000001
and 0.01 (Details are given in Table 7). Considering the
number of singleton modules (module that contain single
node) found among the modules created from different
threshold values of AQ, we have settled for analysis of
the set of modules obtained for the threshold value of
001 as it minimizes the number of singleton modules to
a greater extent. Details about all the modules obtained
from these three networks described above are given in
Table 5. The fact that whether and how much these mod-
ules are similar to modules got by our proposed algorithm
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Table &

Muod ules eoblained from MAPK signaling pathways of 7 different spedes for o= 3

Human and Mouse Cow Rat Pig Chim panzes Dog

Mame N M ame N Mame N Mame N Mame N M ame N
INK 21 Ca™ 3 INK 5 Ca™? 4 Ca™ 14

38 13 ERK 13 p3g 17 C-jun 2

ERK 17 e-los 2 ERK 14

Ras 6 Gl2 2 Ras 25 Ras Ras T
MEKKI 13 IKK 2 MEKK | 14 MEKKI 12

TAKI 14 CDi4 2 LPS 2 CASP 2

MEKK4 4 MEKK4 5 MK K4 2
MKKT 4 CDC42/Rac 2 MEKT7 5 CDC42Rac 3
MEKI | FASL 2 MEKI |

MEK2 1 FASL 3

ASKI T TGFR 2 TGFRR 5 TGFBR 2 TGFR 2

TNFR 2 TNFR 3 TNFR 3

GRRB2 Il EGF 2 GREB2 I EGF 2 EGF 2

JIP3 1 FGF 2

MEK3 2 TrkA/B 2

MEKK6 |

ERKS 4 MNur?? 2 ERKS 4 MNur?? 2
GADD4S 2

This table contains information aboul the modules obained rom MAPK signaling pathways of M sapiens (human), & norvegicus (rat), M musolus
S, serofa (pig), O familiaris (dog) and P. roglodvies (chimpanzee). Column & is giving number of nodes present in the mod ules,

(mouse), B tawrus (cow),
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Fig. I8, Module Bay of human MAPK signaling pathway for different values of ¢, The diagram shows change in moedule Bas lor dilferent c-values.

or whether they are important from biological point of
view, is an important point of discussion.

The proposed method has divided human calcium
signaling pathway into four biologically meaningful
modules. It also enables us to get some meaningful

b Msdulc 4 [P— o Meduic &
Me| ¢ |o l
r
E——» O "—J W
d '
5 X
A —= F Ii \ !
Hmvz\
. S |
B — I '; [ ", Y
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C—» H ; K|l 1. = P By
D—= T+ /_,/ -.__II\
Medulc 2 Q T Meduie 1

Fig. 19, Example network modulariztion using Mewman's algorithm [1].
{a) Shows successive divisions of the network with lines of decreasing gray
value made by Mewman's algerithm [1]in the example networck. The lines
are numbered accordingly to remove any conflusion of the reader. Mumber
I denetes division one creating twoe subnetworks, 2 denotes [urther
division of subnetwork! and 2, and fnally number 3 denotes successive
divisions of subsubnetwork?, Finally the network gets divided into Gve
maslules as shown in (k).

modules from the much complex MAPK signaling path-
way of M sapiens.

Modulel (of calcium signaling pathway) created by
MNewman's algorithm contains reactions of calmodulin-like
proteins along with IP3, DAG, cADPR, 51P, NCX and
Na®. Calmodulin-like proteins help in Ca®" ion balance
temporarily in cellular environment and in turn, Ca®" ions
effect reactions of proteins from PLC family. Here one
event may be indirectly effected by the other, but there is
no direct relation between their behavior. With our
method, we get module CALMG6 that explains only the
behavior of calmodulin like proteins. Module? and mod-
uled, obtained by Newman’s algorithm, explain flow of
Ca®" jons between plasma membrane, endoplasmic reticu-
lum and mitochondria partly, as some nodes related to this
function still lie in module3 and module5. This phenome-
non has been fully explained by module [(CiNNI76)2
obtained by our algorithm. Module3 is an unexplainable
combination of CACNA [calcium channel, voltage-depen-
dent, L type) proteins and BST1 (bone marrow stromal cell
antigen 1) proteins that our algorithm has divided sepa-
rately in  two modules (module [(CW075)2  and
{Coon7a ) ). Ideally, moduled should be included in mod-
ule?. Module5 is roughly equivalent to module C0/245
when we do not consider 2/3 nodes that are different
between these two modules. Thus, most of the modules
obtained by Newman’'s method are not clearly showing a
particular function of the network or behavior of a family
of proteins.

The case becomes more complex when we try to analyze
the MAPK signaling pathway of . sapiens by comparing
modules obtained by application of both these algorithms.
As mentioned earlier, MAPK signaling pathway as such is
a combination of three specialized pathways, ie., classic
MAPK., JNK and p38. By applying our algorithm, we
eet all total 18 modules that have separated these pathways
optimally without mixing up parts of the specialized path-
ways in a module for e-value of 3. With Newman’s method,
we have tried to analyze the 10 modules obtained for
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Fig. 200 Humancaleinm signaling pathway aler modularization with Mewman’s algorithm [1]. Modes present in different modules are marked diferently.

threshold value of 0.01 for AQ. Out of them modulke?2, 5, 7
and 8 are singleton modules. It is difficult to assign a func-
tion to such modules found in a network where more than
one nodes bring forward a function in most of the cases.
Module3 is similar to module Ras, except the fact that it
has some far placed nodes that cannot be explained from
biological point of view. The rest modules have nodes that
are responsible for more than one functions. Moreover, all
the nodes responsible for a single function are not present
in a single module, making them unexplainable for a par-
ticular biological function.

One interesting fact is that while our algorithm tries to
create the modules by centralizing the mostly connected
nodes in a network, Newman's algorithm is depicting them
as singleton modules, which is not acceptable from biolog-
ical point of view. Thus the proposed algorithm, unlike

MNewman's algorithm [1], is able to create biologically sig-
nificant modules for the aforesaid signal transduction path-
ways. Moreover, we can think a signal transduction
pathway as a black box operating with many layers, where
we only know, through laboratory experiments, the input
and output of each layer. But what exactly happens inside
the black box and the way these layers co-ordinate is diffi-
cult to grasp. Probably the task will be easier if we try to
understand the mechanism of the black box layer by layer
and try to trace a particular input through various layers of
the black box till we reach the output. Here our created
modules are equivalent to layers of the black box. Now it
may happen that a particular input may or may not be
involved with all the nodes of intermediate layers of the
black box. Likewise, in a signal transduction pathway,
the input signal may not involve all the nodes present in



| Ear

L. Nayvak, BK. De ! Journal of Biomedical Informatics 40 (2007 ) 726-749 47

T . . .
o YEECTE 0090909090900 000 [ .= SHFRED
£ WUk~ . )
g | m 2 =
0 i L MY .
ETMNY. .
Vpazez] ®(* " :
E ¥ B
# -
T
e . -
i APZHL | * o .
s
3 AP e P05
= ] [eow . .
$o : ; e
NF1 LY A
- TPH7..|pusFia
L]
o pusar ] o . e

. 2
AF2 d
- 3
APD
AFKEI P Snge
By » &
" a
. ATF2
pusera| o LK
KT3,., [ reaz
& il
= |0
. -
A o ELk4
i & [ooima
T 5 - WA
MEFZC
s e oL
PRPAC MAFE . -
sPer.] 4
paerrar ]
reoral i atrs | w
o [T el
£ - "
.
.
L]
L]
- . . = . k i
T e N Ll
- n L] [

§

Madule1 Medule 4
Hedes of

Simgleten madule 19
madules * o+ Madule & are left

£l [ ]
Meduis 3 L ® | Wedule s

i

Fig. 21. Human MAPK signaling pathway after modularization with Mewman's algorithm [1] for threshold value of 001 for AQ. Modes present in
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nedes belong to module 0,

Table 7

Modules obtained from human MAPK signaling pathways by applying Newman's algorithm [1] with varving threshold value of A0

Threshold value Mumber of Dreseription

[or AL mosdules

OLO0000001 - i 75 singleton modules, 5 modules each with 2 nodes, & modules with 2, 3,5, 6, B 9 and 15 nodes, respectively

000001

LCITH 3R I singleton mod ules, 13 modules each with 2 nodes, B mod ules each with 3 nodes, 2 modules each with 4 nodes,
5 modules with 5, 6, B 9 and 15 nodes, respectively

0001 28 4 singleton modules, 2 modules each with 2 nodes, 3 modules each with 8 nodes, 4 modules each with 9 nodes,
2 modules each with 15 nodes, 3 modules with 5 6 and 12 nodes, respectively

0.0l 1] 4 singleton modules, 2 modules each with 30 nodes, 4 modules with 2, 6, 23 and 36 nodes, respectively

0.1 2 2 modules with 53 and 78 nodes, respectively

With different values of threshold for A0, different number of modules of varving size are obtained from human MAPK signaling pathway.
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Table &

Mod ules eblained rom dilferent networks by Mewman's algorithm [1]

Mod ule Module size

e Example Human calcium Human MAPK
network signaling pathway signaling pathway
{Fig. 1) {Fig. 5) {Fig. 1)

Modulel 8 15 [

Module2 2 13 |

Moduled 9 9 3

Moduled 4 5 30

Modules 3 12 |

Mol uless 2

Mod ule? |

Mod uler |

Mod uled n

30

Mo ule 100

The column Module size gives the number of nodes present in each
module Tfound in the individual networks.

all the modules. These ideas may lead to a better design of
an artificial system that can successfully mimic biological
pathways.

5. Conclusions

In this paper we have developed an algorithm for mod-
ularizing signal transduction pathways. The algorithm has
been applied to calcium and MAPK signaling pathways of
various species for comparing the levels of development of
these pathways in these species. We have successfully con-
ferred biclogical significance to the modules obtained from
human calkcium signaling pathway for complexity level (¢-
value) of 3. The comparative study indicates gradual
increase in development of calcium signaling pathways
starting from P. troglodyies to H. sapiens via C. familiaris,
8. sevofa, B tawrws, M. musculus and R norvegicus. We
have also got some significant modules from MAPK sig-
naling pathway of H. sapiens for c-value of 3. The compar-
ative study of MAPK signaling pathways among the taken
7 species shows gradual development of the pathway from
P iroglodvies to H sapiens via 8 serofa, P troglodyies, B
tawrus and R norvegicus.

When a pathway is difficult to analyze as a whole in cer-
tain species, or certain module(s) of it is(are) only func-
tional for a set of species, modularized study is quite
helpful. For example, in module [ W76 )2 of human cal-
cium signaling pathway is consistent among our taken set
of species in varying size (Table 3), while other modules
are not. So one can ignore the other modules and compare
module [ CONI76 )2 of human calcium signaling pathway
with that of other species instead of comparing the whole
pathway to get a comparative view among them. Given a
very large network, these kinds of inferences may save time
and cost of wet lab experiments by avoiding less important
verifications.

The superior performance, in terms of biological signif-
icance, of the proposed algorithm over an existing commu-
nity finding algorithm of Newman [1] has been analyzed in

details for these two pathways. As an extension of our
work we are considering to analyze other signaling path-
ways for different species, including those obtained by com-
bination of various pathways e.g., networks responsible for
certain kind of cancer by the algorithm developed here.
Moreover, finding an optimal value of ¢ automatically
forms a part of further investigation.
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