


ing. In this article, an aggregation pheromone density based clustering algorithm is proposed which is inspired
by the aggregation behavior found in ants and other social insects.

The social insects’ behavior such as finding the best food source, building of optimal nest structure, brood-
ing, protecting the larva, guarding, etc. show intelligent behavior on the swarm level [9]. A swarm behavior is
not determined just by the behavior of individuals, but the interactions among individuals play a vital role in
shaping the swarm behavior [9]. Computational modeling of swarms’ behavior is found to be useful in various
application domains like, function optimization [38,39], finding optimal routes [6], scheduling [8], image and
data analysis [42]. Different applications originated from the study of different types of swarms. Among them,
most popular ones are ant colonies [18,39] and bird flocks [9]. ant colony optimization (ACO) [7] and aggre-
gation pheromone systems (APS) [38,39] are computational algorithms modeled on the behavior of the ant
colonies. ACO [7] algorithms are designed to emulate ants’ behavior of laying pheromone on the ground while
moving to solve optimization problems. Pheromone is a type of chemical emitted by an organism to commu-
nicate between members of the same species. Pheromone, which is responsible for clumping or clustering
behavior in a species and brings individuals into closer proximity, is known as aggregation pheromone. Thus,
aggregation pheromone causes individuals to aggregate around good positions which in turn produce more
pheromone to attract individuals of the same species. In APS [38,39], a variant of ACO, this behavior of ants
is used to solve real parameter optimization problems. A model for solving continuous optimization problems
[35] was also proposed as an extension of ant colony optimization (ACO) problem.

In the present article an aggregation pheromone based algorithm (APC) is proposed for data clustering. In
order to show the effectiveness of the proposed algorithm we have considered 11 benchmark data sets and four
performance (cluster validity) measures. Results are compared with two standard popular clustering algo-
rithms (namely, average linkage agglomerative hierarchical clustering and k-means) and with an ant-based
clustering, ATTA-C [15]. Experimental results justify the potentiality of the proposed APC method both in
terms of the clustering quality as well as execution time for most of the data sets.

The article is organized in seven sections. Section 2 gives a short survey of related research. Section 3
describes the proposed method. Other chosen methods, used for comparison, are briefly described in Section
4. Section 5 describes the performance (cluster validity) measures. Experimental results are provided in Section
6. Finally, Section 7 concludes the paper.

2. Related work

Numerous abilities of ants have inspired researchers for designing various clustering techniques [5,23]. Sev-
eral species of ants cluster their corpses into ‘‘cemeteries” in an effort to clean up their nests. Experimental
work illustrates that ants group corpses, which are initially randomly distributed in space, into clusters, within
a few hours. It seems that some feedback mechanism (using local density or similarity of data items) deter-
mines the probability that an ant will pick up or drop a corpse. Such behavior is used as a model to design
algorithms for clustering data [3].

The earliest model using this concept was proposed by Deneubourg et al. [5] where a population of ants,
moving randomly on a grid, was allowed to pick up or drop corpses (data points) so as to cluster them.

Lumer and Faieta [23] further generalized this method and proposed an algorithm known as Ant Colony
Clustering, which was applied for exploratory data analysis. In both of these works, data movements were
implemented through the ants’ movement requiring extra information storage and computational burden
as the ants make idle movement while carrying no data object. Moreover, in this model, ants carrying isolated
corpses (data items) make everlasting move since they never find a proper location to drop them. This con-
sumes a large amount of computation time.

To speed up convergence and to reduce parameter settings, Monmarché et al. [25,26] proposed an interest-
ing hybridization of this algorithm with k-means [37] algorithm, and named it as AntClass. They compared it
with traditional k-means [37] and ISODATA [1] clustering algorithms on various data sets using classification
error as evaluation criterion. Although AntClass algorithm gives satisfactory results, the computation time is
high. In AntClass algorithm, objects (data points) are scattered randomly on the grid board. As a result, the
objects in a high density region may be dispersed in different cells and it may need longer time for the ants to
collect similar objects into one cell.
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In another attempt to speed up this process, Liu et al. [22] proposed DBAntCluster algorithm, in which the
data distribution property is incorporated into the Ant Colony Clustering algorithm. Here, first the high den-
sity clusters are found by DBSCAN [10] algorithm and the clusters so formed are scattered on the grid board
as a special kind of objects together with the single objects in the data set. Afterwards, Ant Colony Clustering

algorithm is used to cluster the data objects on the grid board.
To enable an unbiased interpretation of the solutions obtained using ant based clustering algorithms,

Handl et al. [14,15] proposed a method to determine suitable parameter settings across different test sets. They
also suggested a technique to convert the spatial embedding generated by the ant algorithms, which implicitly
contains clusters, to an explicit partitioning of the data set. They used different analytical measures to evaluate
the results, on synthetic and real data sets, obtained by k-means [24], agglomerative average linkage clustering
[41] and one dimensional self organizing map [19], and showed that the ant-based algorithms perform well.

Ramos et al. [30,31] developed an ant clustering system called ACLUSTER, for textual document clustering
and retrieval of digital images. Unlike Ant Colony Clustering algorithm as developed by Lumer and Faieta
[23], here ants do not move randomly, rather they move according to some transition probabilities depending
on the spatial distribution of the pheromone across the environment. This eliminates the need of short term
memory which was required earlier in Lumer and Faieta model [23] for storing past movements of ants. They
used the combination of following two independent response threshold functions, associated with different
environmental conditions (i) number of objects in an area, and (ii) their similarity.

To improve performance, stability and convergence of the Ant Colony Clustering algorithm of Lumer and
Faieta [23], Vizine et al. [40] proposed An Adaptive Ant Clustering Algorithm with (i) a progressive vision field
that allows ants to see over a wider area, (ii) pheromone heuristics to promote reinforcement for dropping of
objects at more dense regions of the grid, and (iii) cooling schedule of the parameters that controls the prob-
ability of ants picking up objects from the grid. They evaluated their algorithm on a number of well-known
benchmark data sets as well as on a real world bioinformatics data set. The modified model is found to have
significant improvement over the results obtained with Ant Colony Clustering algorithm.

Another approach for ant colony based clustering is proposed by Runkler [32]. The paper shows how objec-
tive function based clustering models such as hard and fuzzy c-means can be optimized using a particular
extension of simplified ant optimization algorithm. Candidate solutions (in original ant system) that violate
any acceptability condition are stored in a tabu list and are then excluded from the solution generation.
The contributions of the algorithm are (i) a simplified version of ACO algorithm, (ii) a fuzzification of
ACO algorithm and (iii) an application of both the algorithms to the minimization of hard and fuzzy cluster-
ing models.

The ACO algorithm for data clustering proposed by Shelokar et al. [33] states that a set of concurrent dis-
tributed agents collectively discovers a sensible organization of objects for a given data set and each agent dis-
covers a possible partition of objects in a given data set. The level of partitioning is measured subject to some
(Euclidean distance) metric. Information associated with an agent about clustering of objects is accumulated
in the global information hub (pheromone trail matrix) and is used by the other agents to construct possible
clustering solutions and improve them iteratively.

Zhang et al. [43] applied an ant colony optimization algorithm to cluster analysis. Ant colony algorithm has
many advantages but it has the shortcomings of getting stuck at local optima. To overcome this problem they
applied particle swarm optimization and proposed an improved clustering algorithm which avoids early
convergence.

In a very recent work Sinha et al. [34] proposed ant colony based hybrid optimization for the data cluster-
ing. ACO technique along with simulated annealing, tournament selection, tabu search and density distribu-
tion are used to solve clustering problem. Tournament selection is used to find the fittest path for the ants to
visit. Tabu search restricts the movement of artificial ants to avoid using the same path again and again.

A very recent comprehensive review on ant-based and swarm-based clustering is done by Handel and
Meyer [17].

Most of the ant-based clustering algorithms, developed till now, are inspired by the ants’ property of piling
up the corpses to clean the nest. Besides nest cleaning, many functions of aggregation behavior have been
observed in ants and ant like agents [2,28,36]. These include foraging-site marking and mating, finding shelter
and defense. For example, after finding safe shelter, cockroaches produce a specific pheromone with their
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excrement, which attracts other members of their species [36]. Based on the similar property i.e., ants need to
find comfortable and secure environment to sleep, Chen et al. [4] proposed Ant Sleeping Model which makes
ants to group with those that have similar physiques. They defined a fitness function to measure the ants’ sim-
ilarity with their neighbors. They stated that when an ant’s fitness is low, it has a higher probability to wake up
and stay in active state. Thus an ant will leave its original position to search for a more secure and comfortable
position to sleep. Since each individual ant uses only a little local information to decide whether to be in active
state or sleeping state, the whole ant group dynamically self organizes into distinctive, independent subgroups.
Using similar concept Tsutsui et al. [38,39] used Aggregation Pheromone Systems for continuous function opti-
mization where aggregation pheromone density is defined by a density function in the search space.

In an interesting work Gutjahr [12] showed that for a particular ACO algorithm its current solutions con-
verge to an optimal solution with probability exactly one.

As mentioned above, many functions of aggregation behavior have been observed in ants and ant like
agents. Inspired by this behavior found in ants and other similar agents, in our earlier work preliminary
attempts are made for solving clustering [20], image segmentation [11], and change detraction [21] problems
with encouraging results.

3. Proposed methodology

As mentioned in the introduction, aggregation pheromone brings individuals into closer proximity. This
group formation nature of aggregation pheromone is being used as the basic idea of the proposed technique.
Here each ant represents one data. The ants move with an aim to create homogenous groups. The amount of
movement of an ant towards a point is governed by the intensity of aggregation pheromone deposited by all
other ants at that point. This gradual movement of ants in due course of time results in formation of groups or
clusters. Fig. 1 depicts the block diagram of the proposed aggregation pheromone density based clustering
(APC) method.

The first step of the proposed methodology aims to form clusters using aggregation behavior of ants. At
each location of a data point, an ant is placed. The amount of pheromone deposited by an ant at a particular

Fig. 1. Block diagram of the proposed scheme.
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location depends on its distance from it. Less is the distance, more is the deposition of pheromone. Thus aggre-
gation pheromone density at a particular location depends on the number of ants in its closer proximity. More
is the number of ants in its closer proximity, the higher is the aggregation pheromone density. The ants are
allowed to move in the search space to find out the points with higher pheromone density. The movement
of an ant is governed by the amount of pheromone deposited at different points of the search space. More
the deposited pheromone, more is the aggregation of ants. This leads to the formation of homogenous groups
or clusters. The number of clusters so formed might be more than the desired number of clusters. So as to
obtain the desired number of clusters, in the second step agglomerative average linkage algorithm [41] is
applied. Finally, the clustering results obtained are validated by using cluster validity measures. In this article
four different cluster validity measures are used namely, Rand [37], Jacard [37], S_dbw [13] and Beta [29].

3.1. Aggregation pheromone density based clustering

Consider a data set of n patterns x1; x2; x3; . . . ; xn and a population of n-ants a1; a2; a3; . . . ; an where an ant
ai represents the data pattern xi. Each individual ant emits pheromone in its neighborhood. The intensity of
pheromone emitted by an individual ant ai (located at xi) decreases with its distance from xi. Thus the pher-
omone intensity at a point closer to xi is more than those at other points that are farther from it. To achieve
this, the pheromone intensity emitted by ant ai is modeled by a Gaussian distribution. The pheromone inten-
sity deposited at x by an ant ai (located at xi) is thus computed as

Dsðai;xÞ ¼ exp
�

dðxi ;xÞ
2

2d2 ð1Þ

where d denotes the spread of Gaussian function and dðxi; xÞ is the Euclidean distance between xi and x. Total
aggregation pheromone density at x deposited by the entire population of n ants is computed using Eq. (2)

DsðxÞ ¼
X

n

i¼1

exp
�

dðxi ;xÞ
2

2d2 : ð2Þ

Now, an ant ai which was initially at location xi moves to the new location x
0
i (computed using Eq. (3)) if the

total aggregation pheromone density at x0
i is greater than that at xi. The movement of an ant is governed by

the amount of pheromone deposited at different points in the search space; and is defined as

x
0
i ¼ xi þ g �

NextðaiÞ

n
ð3Þ

where

NextðaiÞ ¼
X

n

j¼1

ðxj � xiÞ � exp
�

dðxj ;xi Þ
2

2d2 ð4Þ

with g (a proportionality constant) as the step size. This process of finding a new location continues until an
ant finds a location where the total aggregation pheromone density is more than its neighboring points. Once
the ant ai finds out such a point x0

i
, then that point is assumed to be a new potential cluster center, say Zj

(j ¼ 1; 2; . . . ;C;C being number of clusters); and the data point with which the ant was associated earlier
(i.e., xi) is assigned to the cluster so formed with center Z j. Also the data points that are within a distance
of d=2 from Z j are assigned to the newly formed cluster. On the other hand, if the distance between x

0
i
and

the existing cluster center Zj is less than 2d and the ratio of their densities is greater than threshold_density
(a predefined parameter), then the data point xi is allocated to the cluster having cluster center at Zj. Higher
value of density ratio represents that the two points are of nearly similar density and hence should belong to
the same cluster. The pseudo code of the proposed aggregation pheromone density based clustering (APC)
algorithm is given below.
Pseudo Code

Initialize d, threshold density, g
C ¼ 0
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for i ¼ 1 : n do
if (the data pattern xi is not already assigned to any cluster)
Compute DsðxiÞ using Eq. (2).
label 1:

Compute new location x
0
i
using Eq. (3).

Compute Dsðx0
i
Þ.

//End of label
if (Dsðx0

i
Þ > DsðxiÞ)

Update the location of ant ai (at xi) to x
0
i

and goto label 1.
end of if

if ðC ¼¼ 0Þ //If no cluster exists
Consider x0

i as cluster center Z1 and increase C by one.
Assign all the data points within a distance of d=2
from x

0
i to the newly formed cluster.

else

for j ¼ 1 : C

if ðminðDsðx0
i
Þ;DsðZjÞÞ=maxðDsðx0

i
Þ;DsðZjÞÞ > threshold density

and dðx0
i
;ZjÞ < 2dÞ

Assign x
0
i to Zj.

else

Assign x
0
i as a new cluster center say, ZCþ1 and

increase C by one.
Assign all the data points that are within a distance of d=2
from x

0
i to the newly formed cluster ZCþ1.

end of if

end of for

end of if

end of if (if the data pattern xi . . .)
end of for

3.2. Merging of clusters

In the proposed method (described above), we have applied the APC algorithm on the whole data set in
only one pass. The number of clusters produced (depending on the parameter values) may be more than
the desired number of clusters. To obtain the desired number of clusters, we applied the average linkage
agglomerative hierarchical clustering algorithm (average linkage in short) [41] for merging them. In this sense
the two steps are applied in combination (one after another in only one iteration). In other words the algo-
rithm stops after one generation only.

4. Methods compared with

After describing our proposed clustering algorithm APC in the previous section, we are now in a stage to
briefly describe the other methods with which the results are compared. We selected two popular conventional
clustering techniques (average linkage agglomerative hierarchical clustering and k-means algorithm) and an ant-
based method namely, adaptive time-dependent transporter ants for clustering (ATTA-C) [15] for this purpose.

4.1. k-Means

Starting with k randomly-chosen patterns or k randomly defined points inside the hypervolume containing
the data set, the k-means algorithm [24] repeatedly (i) (re)assign each pattern (data item) to the closest cluster
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center and (ii) (re)computes the current cluster centers (i.e., the average vector of each cluster in data-space). It
terminates when no more reassignments of the data points take place. In this way, the intra-cluster variance,
that is, the sum of squares of the differences between data items and their associated cluster centers, is locally
minimized.

We have used the batch version of the k-means algorithm, that is, cluster centers are recomputed only after
reassignment of all data items. k-Means is run repeatedly (20 times) using random initialization of the cluster
centers and the average result is listed in Table 2.

4.2. Average linkage agglomerative clustering

As a second method, an agglomerative hierarchical clustering algorithm based on the average linkage met-
ric [41] is used. The algorithm starts with the finest partitioning possible (i.e., singletons) and, in each iteration,
merges the two least distant clusters. The distance between two clusters Ci and Cj is computed as the average
dissimilarity between all possible pairs of data elements i and j with i 2 Ci and j 2 Cj. The algorithm termi-
nates when the desired number of clusters has been obtained. The algorithm is executed for 20 runs and the
average result is reported Table 2.

4.3. Adaptive time-dependent transporter ants for clustering (ATTA-C)

Starting with the basic generic ant algorithm derived from those presented in [5,16,23]. Handl et al. pro-
posed an algorithm called adaptive time-dependent transporter ants for clustering (ATTA-C) [15] to improve
and overcome the pitfalls of the previous works such that it can (i) return an explicit partitioning of data by an
automatic process, and (ii) work robustly with the same parameter settings across different data sets. As in the
earlier works [5,16,23], here also ants are represented as agents that move around the environment, a square
grid, in random. Objects (data items) are randomly scattered in this environment and ants can pick up an
object, move it and drop it. The probability of picking up and dropping of objects in the ATTA-C algorithm
are defined as:

P pickðiÞ ¼
1:0 if f ðiÞ 6 1:0;
1

f ðiÞ2
otherwise;

(

ð5Þ

P dropðiÞ ¼
1:0 if f ðiÞ P 1:0;
1

f ðiÞ4
otherwise;

(

ð6Þ

where f ðiÞ is given as

f ðiÞ ¼ max 0:0;
1

n2

X

j2L

1�
disði; jÞ

a

� �

 !

: ð7Þ

Here, disði; jÞ is a dissimilarity function between points in the data-space, n2 is the size of the local neighbor-
hood L, and a is a scaling parameter which determines the percentage of data items on the grid that are clas-
sified as similar. Apart from the newly defined ‘picking–drooping’ probabilities and neighborhood function,
few other modifications on ‘short term memory with look-ahead’, ‘radius of perception’, ‘time varying neigh-
borhood function f ðiÞ’ and ‘cluster retrieval’ are made in ATTA-C. Note that ATTA-C has many parameters.
The authors have designed some techniques to set them for optimal performance. In our implementation also
we have followed the same settings. For more details of the ATTA-C method please see [15].

5. Performance evaluation measures

In order to evaluate the performances of the above described clustering algorithms, in this article we have
used four (two external and two internal) cluster validity measures [37]. External cluster validity measures
evaluate the results of clustering algorithm based on a pre-specified structure of the data set, i.e. it takes into
account the class label information to validate the results. In this article two external validity measures namely
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Rand and Jacard [37] are used. Internal cluster validity index, measures the fit between the partition imposed
by a clustering algorithm and data itself; class label and other prior information are not used in internal indi-
ces. In this article, S_dbw [13] and beta [29] measures are used to validate the clustering results. Following is a
description of these validity measures:

� Rand coefficient ðRÞ: It determines the degree of similarity between the known correct solution reflecting its
class label (group) and the solution obtained by a clustering algorithm [37]. It is defined as

R ¼
SSþDD

SSþ SDþDSþDD
: ð8Þ

SS, SD, DS, DD represent the number of possible pairs of data points i and j where,
SS: both the data points belong to the same cluster and same group.
SD: both the data points belong to the same cluster but different groups.
DS: both the data points belong to different clusters but same group.
DD: both the data points belong to different clusters and different groups.
Value of R is in the range [0,1] and higher the value of R, better is the clustering.

� Jacard coefficient ðJÞ: It is the same as rand coefficient except that it excludes DD and is defined as

J ¼
SS

SSþ SDþDS
: ð9Þ

Value of J lies in the interval [0,1] and higher the value of J, better is the clustering.
� S_dbw: S_dbw index with C number of clusters is based on cluster compactness in terms of intra-cluster
variance and inter cluster density [13]. It is defined as

S dbwðCÞ ¼ ScatðCÞ þDenðCÞ; ð10Þ

where ScatðCÞ represents the intra-cluster variance and is defined as

ScatðCÞ ¼
1

C

X

C

i¼1

krðZ iÞk=rðsÞ; ð11Þ

the term rðsÞ is the variance of the data set and rðZ iÞ is the variance of cluster Ci. Inter-cluster density,
DenðCÞ, is defined as

DenðCÞ ¼
1

C � 1

X

C

i¼1

X

C

j¼1;j 6¼i

denðuijÞ

maxfdenðZ iÞ; denðZjÞg

 !

; ð12Þ

where Z i and Zj are centers of clusters Ci and Cj, respectively and uij is the mid point of the line segment
joining Z i and Zj. The term denðuÞ is defined as

denðuÞ ¼
X

x2Ci[Cj

f ðx; uÞ: ð13Þ

The function f ðx; uÞ is defined as

f ðx; uÞ ¼
0 if dðx; uÞ > stdev;

1 otherwise;

�

ð14Þ

where, stdev is the average standard deviation of C clusters and is defined as

stdev ¼
1

C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

C

i¼1

krðZ iÞk

v

u

u

t ð15Þ

and dðx; uÞ is the Euclidean distance between x and u.Lower the value of S dbw, better is the clustering.
� Beta index (b): It computes the ratio of total variation and within class variation [29], and is defined as
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b ¼

PC

i¼1

Pni
j¼1ðX ij � XÞ

2

PC

i¼1

Pni
j¼1ðX ij � X iÞ

2
ð16Þ

where X is the mean of all the data points and X i is the mean of the data points that belong to cluster Ci;X ij is
the jth data point of ith cluster and ni is the number of data points in cluster Ci. Since the numerator is a con-
stant for a given data set, the value of b is dependent only on the denominator. The denominator decreases
with homogeneity in the formed clusters. Therefore, for a given data set, higher the value of b, better is the
clustering.

6. Experimental results

Performance of the proposed algorithm has been evaluated using eleven real benchmark data sets taken
from the machine learning repository [27].

6.1. Description of data sets

A summery about the data sets is given in Table 1. Wine data has 178 instances of three types of wine with
thirteen features. Wisconsin Breast Cancer (WBC) data contains 699 instances distributed in two categories
described by nine features of which 16 instances with the missing values are ignored. Sonar data has 208
instances described by 60 attributes distributed in two classes. Thyroid data set has 215 instances of patients
with five features describing whether patient is euthyroidism, hypothyroidism and hyperthyroidism (three clas-
ses). Glass data set has 214 instances describing six categories of glass on the basis of nine features. Zoo data
has 101 instances of animals described by 16 features categorizing animals into seven classes. Lymphography
data has 148 instances described by 18 features, distributed in four classes. Balance scale data was generated to
model the psychological experimental results. It has 625 instances described by four features, distributed in
three classes. Ionosphere is a radar data which consist of 351 instances each with 34 continuous features dis-
tributed in two class namely ‘‘good” and ‘‘bad”. This radar data was collected by a system in Goose Bay, Lab-
rador. This system consists of a phased array of 16 high-frequency antennas with a total transmitted power of
the order of 6.4 kilowatts. The targets were free electrons in the ionosphere. ‘‘Good” radar returns are those
showing evidence of some type of structures in the ionosphere. ‘‘Bad” returns are those that do not; their sig-
nals pass through the ionosphere. Image data (training) set has 210 instances drawn randomly from a database
of seven outdoor images each having 19 attributes. The images were hand-segmented to create a classification
for every pixel. Vowel (deterding data) having 990 instances with 10 features is a dataset for speaker indepen-
dent recognition of the eleven steady state vowels of British English.

Table 1

Summary of the data sets from machine learning repository

Data set N D C

Wine 178 13 3

WBC 683 9 2

Sonar 208 60 2

Thyroid 215 5 3

Glass 214 9 6

Zoo 101 16 7

Lymphography 148 18 4

Balance scale 625 4 3

Ionosphere 351 34 2

Image 210 19 7

Vowel 990 10 11

N is the total number of data in the data set, D and C represent dimensionality and number of clusters, respectively.
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6.2. Role of parameters

The proposed algorithm has three parameters namely g, threshold_density and d.
Here g is the step size. The smaller the step size, more will be the time taken to traverse the search space.

The performance of the algorithm in terms of validity measures is found to remain almost constant for a wide
range [0.1–1.9] of g. A typical illustration of the variation of the performance measures and execution time
(scaled properly) with respect to g is shown in Fig. 2 for wine data set (keeping threshold_density fixed at
0.9, and average d value 0.1625). We have reported results of the experiments with step size g ¼ 1, as the per-
formance is found to be constant over a wide range around it.

If the ratio of pheromone density of a data point and an already formed cluster center (within 2d distance)
is higher than the threshold_density then that point is assigned to the corresponding cluster. This assumes that
two close points having nearly similar pheromone density should belong to the same cluster. High thresh-

old_density value indicates that pheromone densities of two points (within 2d) should be very close to come
in the same cluster. Less threshold_density value indicates that the two close points may reside in the same clus-
ter even if their pheromone densities are not very similar. If the threshold_density value is high, it is likely to
form large number of clusters in the first phase (before merging the clusters); and if it is less, the number of
clusters formed (in the initial phase) may be small. We have executed the algorithm taking different values over
the range [0.6–0.9] and on the average 0.9 was found to be a suitable value. For typical illustration of the var-
iation of the performance measurers and execution time with respect to threshold_density (keeping g ¼ 1, and
d value 0.1625) is shown in Fig. 3 for Wine data.

Fig. 2. Performance of APC for wine data with different g.

Fig. 3. Performance of APC for wine data with different threshold_density.
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The algorithm is executed for different d (spread of the Gaussian) values in the range (0–1]. We determined
a stable range of d for which we got stable compact clusters (i.e. validity measures are stable over this range of
d as shown in Table 2). Stability of the results over that range can also be seen from the smaller values of stan-

Table 2

Validity indices and execution time by the proposed APC, average linkage, k-means and ATTA-C algorithms

Data set Method Rand Jacard S_dbw Beta Time

Wine APC 0.683959 #3 0.444159 #2 0.433861 #2 5.311533 #2 0.008 #1

(0.0107) (0.017803) (0.057047) (0.58403) (0.002959)

Average linkage 0.626166 0.424734 0.473072 #3 4.508244 #3 0.05 #3

(2.05E�08) (0) (0) (0) (0.006666667)

k-Means 0.716982688 #2 0.412723938 #3 0.381642813 #1 7.374456625#1 0.013333333 #2

(0.00669725) (0.00302375) (0.06943525) (0.1851735) (0.005163978)

ATTA-C 0.839787 #1 0.6311651 #1 1.2207669 1.0121842 7.2

(0.03464) (0.03752059) (0.402096991) (0.006183323) (0.4)

WBC APC 0.93184 #2 0.88276 #2 0.016397 #1 2.451556 #2 0.398125 #2

(0.00608) (0.009517) (0.001192) (0.012503) (0.053667886)

Average linkage 0.892161 0.823086 0.017919 #3 2.406911 #3 2.4 #3

(0) (0) (0) (0) (0.094074439)

k-Means 0.925883143 #3 0.873357 #3 0.016584286 #2 2.506990143 #1 0.027142857 #1

(0.0107) (0.017803) (0.057047) (0.58403) (0.0048795)

ATTA-C 0.942603 #1 0.8996373 #1 1.6410922 1.0018367 13.9

(0.00269844) (0.00478045) (0.572984678) (0.001470227) (0.7)

Sonar APC 0.505435 #1 0.46113 #1 0.128912 #1 1.141451 #2 1.043333333 #3

(0) (6.84E�09) (0) (3E�05) (0.141503828)

Average linkage 0.503205 #3 0.459357 #2 0.146779 #2 1.137581 #3 0.109310345 #2

(0) (6.664E�09) (2.36E�09) (0) (0.010327161)

k-Means 0.501377889 0.335044333 #3 0.240741556 #3 1.289221222 #1 0.041666667 #1

(0.000765815) (0.002139166) (0.058815934) (0.000878814) (0.007527727)

ATTA-C 0.503952 #2 0.2679469 1.8015625 1.0092761 7.5

(0.00265762) (0.030215022) (0.093667614) (0.00279416) (0.5)

Thyroid APC 0.65288 #1 0.597341 #1 0.047246 #1 1.479933 #2 0.002258065 #1

(0.00336) (0.002282) (0.002974) (0.008716) (0.001250237)

Average linkage 0.59035 0.559214 #3 0.050921 #2 1.415431 #3 0.074 #3

(0) (0) (0) (0) (0.009660918)

k-Means 0.649559 #2 0.58201 #2 0.1983725 #3 2.20653 #1 0.0125 #2

(0.013106) (0.013866) (0.018987) (0.004330127) (0.0051)

ATTA-C 0.646594 #3 0.4105863 1.6272899 1.0133998 6.5

(0.0462011) (0.08173289) (0.210468759) (0.008589679) (0.5)

Glass APC 0.406123 #3 0.275178 #1 0.002501 #2 1.636239 #1 0.004117647 #1

(0.038737) (0.009883) (0.000384) (0.015958) (0.002072997)

Average linkage 0.329648 0.260468 0.001431 #1 1.540538 #2 0.086451613 #3

(0) (0) (0) (0) (0.007549122)

k-Means 0.704737333 #1 0.267611333 #3 0.117370833 #3 1.523335167 #3 0.025 #2

(0.01228682) (0.029821924) (0.04787766) (0.025309007) (0.005773503)

ATTA-C 0.635352 #2 0.2699384 #2 0.5645105 1.009839 6.8

(0.0395196) (0.035816068) (0.55729423) (0.004897855) (0.4)

Zoo APC 0.881584 #2 0.573162 #2 0.001847 #2 5.5889 #1 0.006190476 #1

(0) (0) (0) (0) (0.003400129)

Average linkage 0.86495 #3 0.542282 #3 0.001845 #1 5.291049 #2 0.011875 #3

(0) (1.184E�08) (3.78E�11) (0) (0.004031129)

k-Means 0.79976883 0.375798833 0.002015 #3 4.104749 #3 0.0096 #2

(0.031156935) (0.044865432) (0.000092) (0.781289623) (0.004383273)

ATTA-C 0.892775 #1 0.6867155 #1 0.0096144 1.026992 6.2

(0.0231966) (0.054153267) (0.000203227) (0.016850339) (0.4)

(continued on next page)
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dard deviation (in Table 2). Average value and standard deviation (shown within bracket) of the chosen range
of twenty d values (for which result of Table 2 is reported) for different data sets is listed in Table 3. If we use
single validity measure then d value (or a range d values) for which we would get the best result (in terms of
that validity measure used) should be taken as the best value. If best result is obtained for a range of d values
then any value of d from that range or the average of that range should be taken as the parameter value.

6.3. Analysis of results

To find out the effectiveness of the proposed algorithm, experiments were carried out on the previously
mentioned eleven benchmark real life data sets. To show the robustness of the algorithms, clustering results
are validated using four different cluster validity indices (two external and two internal) as described in Section
5. It is worth mentioning here that any validity measure can be used for this purpose. The results obtained by
the proposed APC algorithm are compared with those of average linkage, k-means and ATTA-C algorithms.
Table 2 gives the average values of different performance indices obtained with different chosen (as mentioned

Table 2 (continued)

Data set Method Rand Jacard S_dbw Beta Time

Lymphography APC 0.614384 #1 0.369351 #1 0.003851 #3 1.916803 #3 0.039230769 #3

(0.002264) (0.000783) (1.03E�06) (0.00087) (0.008448942)

Average linkage 0.610682 #2 0.363923 #3 0.00355 #2 1.998636 #1 0.02826087 #2

(0) (1.279E�08) (7.55E�11) (4.74E�08) (0.003875534)

k-Means 0.600248167 #3 0.333394833 0.00351983 #1 1.980279333 #2 0.02 #1

(0.03257126) (0.056337114) (0.000201322) (0.199353963) (0.007071068)

ATTA 0.578689 0.3675606 #2 0.879269183 1.003955052 7.1

(0.0523961) (0.037358412) (0.494974512) (0.00685122) (0.538516)

Balance Scale APC 0.609262 #1 0.330169 #1 0.901128 #2 1.393878 #3 6.012272727 #3

(0) (6.84E�09) (0) (0) (0.72733651)

Average linkage 0.579846 #3 0.297528 #2 1.191576 1.428571 #1 2.004285714 #2

(0) (8.374E�09) (0) (0) (0.091206805)

k-Means 0.583722875 #2 0.296938 #3 0.9260325 #3 1.4255955 #2 0.036 #1

(0.008168474) (0.008163296) (0.053084263) (0.002709547) (0.013416408)

ATTA-C 0.574682 0.2248602 0.9007734 #1 1.0115528 15.9

(0.0371669) (0.074779323) (0.311370431) (0.003955764) (6.18789)

Ionosphere APC 0.59009 #1 0.547399 #1 0.001413 #1 1.311353667 #2 2.251904762 #3

(1.11E�16) (0) (2.17E�19) (4.71E�07) (0.076851743)

Average linkage 0.54009 #3 0.538399 #3 0.076896 #2 1.002976 #3 0.364545455 #2

(2.27E�16) (0) (2.83E�17) (0) (0.044798732)

k-Means 0.587725 #2 0.4323255 0.619633 #3 1.3404645 #1 0.04751 #1

(0.001288199) (0.001365705) (0.004046335) (1.34E�05) (0.005)

ATTA-C 0.539776 0.539776 #2 NA 1 93.9

(1.11E�16) (1.17E�16) (3.11288)

Image APC 0.862411222 #1 0.338175778 #1 0.000838556 #1 1.692828167 #2 0.006086957 #1

(0.003467698) (5.69E�05) (0.000135563) (0.013630157) (0.00570212)

Average linkage 0.187924 #3 0.138458 0.691172 #3 1.014351 #3 0.085217391 #3

(0) (0) (2.27E�16) (0.008458221)

k-Means 0.809896167 #2 0.271159833 #2 0.2123788 #2 4.513256167 #1 0.045 #2

(0.019176258) (0.018531849) (0.104964638) (2.003526003) (0.005773503)

ATTA-C 0.177937 0.1413311 #3 NA 1 98.6

(0.105238) (0.004825319) (0.1851735) (4.52106)

Vowel APC 0.8806112 #1 0.23302732 #1 0.00036288 #1 2.17061968 #2 0.288461538 #1

(0.014916901) (0.005286738) (4.73E�06) (0.041176309) (0.045667696)

Average linkage 0.117874 0.089694 0.054676 #3 1.011381 #3 7.106666667 #3

(1.44E�17) (2.87E�17) (1.44E�17) (0) (0.569275856)

k-Means 0.865609444 #2 0.163830111 #2 0.000377444 #2 2.668702444 #1 0.478 #2

(0.002669295) (0.003860012) (3.94E�06) (0.020342263) (0.17207517)

ATTA-C 0.665422 #3 0.1180951 #3 0.324236556 1.004958556 11.7

(0.231287) (0.01423177) (0.969693167) (0.001977096) (0.458258)
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above) d values and their corresponding standard deviations (shown in bracket) for each of the data sets
obtained by APC. Corresponding results for other algorithm (over 20 runs) like average linkage, k-means
and ATTA-C algorithms are also shown in the same table.

The CPU (execution) time, in seconds, needed by the algorithms are also given in the table for comparison.
Rank of each algorithm is given depending on its performance index and the execution time (separately) using
‘#’ symbol followed by corresponding rank (from 1 to 3). For example ‘#1’ indicates the best result with
respect to either the corresponding performance index or execution time.

All the experiments are performed in a HP Proliant (ML350G4P) terminal with Xeon (3.2 GHz clock speed
800 MHz FSB with one 2MB L2 Cache memory) processor and in Linux environment. Implementation of the
algorithms is done in C and C++.

Note that the average number of ‘automatically’ formed clusters and their standard deviation (shown in
bracket) by the ATTA-C algorithm is shown in last column of the Table 3.

It is apparent from Table 2 that in terms of external validity measures (Rand and Jacard index) perfor-
mance of the proposed APC algorithm is better for most of the data sets (namely Sonar, Thyroid, Lymphog-
raphy, Balance scale, Ionosphere, Image and Vowel) whereas ATTA-C gives better result for Wine, WBC and
Zoo data sets. Only for Glass data set k-means algorithm outperforms other three methods in terms of Rand
index; and for Jacard index APC performs the best.

With respect to S_dbw measure the performance of the APC algorithm is the best (compared to other three
methods) for six data sets (WBC, Sonar, Thyroid, Ionosphere, Image and Vowel) and 2nd best for Wine,
Glass, Zoo and Balance Scale data sets (in these cases performance of the APC is very much comparable
to those with the best one). Lower value of S_dbw shows that the clusters formed are compact and well sep-
arated. It is to be noted that for Ionosphere and Image data sets, as the number of clusters detected by the
ATTA-C method is (refer Table 3) one, S_dbw measure tends to 1/0 and therefore is denoted by NA (not
applicable); whereas beta measure becomes 1.

In terms of the beta validity measure, for most of the cases (seven data sets) k-means algorithm outperforms
the other three methods. In these cases APC’s performance is the 2nd best and for Zoo and Glass data sets it is
the best. For Lymphography and Balance Scale data sets, average linkage algorithm performs better com-

Table 3

Average value and standard deviation (shown in bracket) for different values of d for APC method together with number of clusters

formed by ATTA-C for different data sets

Data set Chosen d for APC Number of clusters formed by ATTA-C

Wine 0.1625 2.9

(0.00591608) (0.3)

WBC 0.284571429 2

(0.011685767) (0)

Sonar 0.36 2.9

(0.006204837) (0.3)

Thyroid 0.291 3.8

(0.008514693) (0.4)

Glass 0.093 3.5

(0.007937254) (0.67082)

Zoo 0.185 3.2

(0.006204837) (0.4)

Lymphography 0.3295 2.6

(0.007648529) (0.663325)

Balance Scale 0.1105 7.9

(0.006493587) (2.73679)

Ionosphere 0.256 1

(0.006055301) (0)

Image 0.448 1

(0.00735980) (0.3)

Vowel 0.1625 5.1

(0.00591608) (2.16564)
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pared to other three. In short, APC’s performance for most of the data set is very close to the best result in
terms of the beta measure.

On an average, for most of the data sets, in terms of all the cluster validity measures, APC either outper-
forms the other methods or is close to the best results produced by the other algorithms.

Note that from the experimental result it is clear that ATTA-C method fails to automatically detect appro-
priate number of clusters (see Table 3) for several data sets.

In terms of the execution time proposed APC algorithm performs better for six data sets (Wine, Thyroid,
Glass, Zoo, Image and Vowel) compared to other three algorithms, whereas k-means algorithm takes less exe-
cution time for five cases (WBC, Sonar, Lymphography, Ionosphere and Balance Scale data sets).

As a whole, experimental results on a large number of real world data sets justify the potentiality of the
proposed APC algorithm both in terms of solution (clustering) quality as well as execution time compared
to other algorithms.

7. Conclusions

In this article we have proposed a new algorithm for clustering data based on aggregation pheromone den-
sity, which is inspired by ants’ property to accumulate around points with higher pheromone density. To eval-
uate the performance of the proposed algorithm we have tested it on 11 benchmark data sets with two external
and two internal cluster validity measures. Comparative study of the proposed algorithm with the average
linkage agglomerative hierarchical clustering, k-means clustering and an ant-based clustering algorithm
(ATTA-C) justifies the potentiality of the proposed methodology. Note that ATTA-C has a large number
of parameters to be set. Our earlier work [11,21] on the application of this algorithm shows the usefulness
of the proposed method to handle real world problems like image segmentation and change detection of
remote sensing images.

Experimental results show that the proposed method performs fairly well both in terms of the solution
(clustering) quality and execution time. However, the method has a limitation of specifying the number of
clusters. There are wide scope of research for improvement of the proposed algorithm such that it can auto-
matically detect the appropriate number of clusters.
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[25] N. Monmarché, On data clustering with artificial ants, in: A.A. Freitas (Ed.), AAAI-99 and GECCO-99 Workshop on Data Mining

with Evolutionary Algorithms: Research Directions, Orlando, Florida, 1999, pp. 23–26.

[26] N. Monmarché, M. Slimane, G. Venturini, On improving clustering in numerical database with artificial ants, in: D. Floreano, J.D.

Nicoud, F. Mondala (Eds.), Advances in Artificial life, 5th European Conference ECAL’99, Swiss Federal Institute of Technology,

Lausanne, Switzerland, September, Lecture Notes in Artificial Intelligence 1974, Springer-Verlag, 1999, pp. 626–635.

[27] D.J. Newman, S. Hettich, C.L. Blake, C.J. Merz, UCI repository of machine learning databases. University of California, Irvine,

Department of Information and Computer Sciences, 1998. <http://www.ics.uci.edu/~mlearn/MLRepository.html>.

[28] M. Ono, T. Igarashi, E. Ohno, M. Sasaki, Unusual thermal defence by a honeybee against mass attack by hornets, Nature 377 (6547)

(1995) 334–336.

[29] S.K. Pal, A. Ghosh, B. Uma Shankar, Segmentation of remotely sensed images with fuzzy thresholding and quantitative evaluation,

International Journal on Remote Sensing 21 (11) (2000) 2269–2300.

[30] V. Ramos, J.J. Merelo, Self-organized stigmergic document maps: Environment as a mechanism for context learning, in: E. Alba, F.

Herrera, J.J. Merelo (Eds.), Proceedings of the 1st International Conference on Metaheuristic, Evolutionary and Bio-Inspired

Algorithms, Spain, 2002, pp. 284–293.

[31] V. Ramos, F. Muge, P. Pina, Self-organized data and image retrieval as a consequence of inter-dynamic synergistic relationships in

artificial ant colonies, in: J. Ruiz del Solar, A. Abraham, M. Koppen (Eds.), Soft-Computing Systems-Design, Management and

Applications, Frontiers of Artificial Intelligence and Applications, vol. 87, IOS Press, Amsterdam, 2002, pp. 500–509.

[32] T.A. Runkler, Ant colony optimization of clustering models, International Journal of Intelligence System 20 (12) (2005) 1233–1251.

[33] P.S. Shelokar, V.K. Jayaman, B.D. Kulkarni, An ant colony approach for clustering, Analytica Chimica Acta 509 (2) (2004) 187–195.

[34] A.N. Sinha, N. Das, G. Sahoo, Ant colony based hybrid optimization for data clustering, Journal of Kybernetes 36 (2) (2007) 175–

191.

[35] K. Socha, M. Dorigo, Ant colony optimization for continuous domains, European Journal of Operational Research 185 (3) (2008)

1155–1173.

[36] M. Sukama, H. Fukami, Aggregation arrestant pheromone of the German cockroach, Blattella germanica (L.) (Dictyoptera:

Blattellidae): isolation and structure elucidation of blasttellastanoside-A and B, Journal of Chemical Ecology 19 (1993) 2521–2541.

[37] S. Theodoridis, K. Koutroumbas, Pattern Recognition, third ed., Academic Press, New York, 2006.

2830 A. Ghosh et al. / Information Sciences 178 (2008) 2816–2831



[38] S. Tsutsui, Ant colony optimization for continuous domains with aggregation pheromones metaphor, in: Proceedings of the 5th

International Conference on Recent Advances in Soft Computing (RASC’04), United Kingdom, December 2004, pp. 207–212.

[39] S. Tsutsui, A. Ghosh, An extension of ant colony optimization for function optimization, in: Proceedings of the 5th Asia Pacific

Conference on Simulated Evolution and Learning (SEAL04), Pusan, Korea, 2004.

[40] A.L. Vizine, L.N. de Castro, E.R. Hruschka, R.R. Gudwin, Towards improving clustering ants: an adaptive ant clustering algorithm,

Informatica 29 (2005) 143–154.

[41] E. Vorhees, The effectiveness and efficiency of agglomerative hierarchical clustering in document retrieval. Ph.D. Thesis, Department

of Computer Science, Cornell University, Ithaca, NY, 1985.

[42] X.N. Wang, Y.J. Feng, Z.R. Feng, Ant colony optimization for image segmentation, in: Proceedings of the 4th International

Conference on Machine Learning and Cybernetics, 2005, pp. 5355–5360.

[43] X. Zhang, H. Peng, Q. Zheng, A novel ant colony optimization algorithm for clustering, Proceedings of the 8th International

Conference on Signal Processing(ICSP), vol. 3, IEEE Computer Society Press, 2006.

A. Ghosh et al. / Information Sciences 178 (2008) 2816–2831 2831


	1.pdf
	IS-178-2008-p2816-2831.pdf

