


202 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 3, SEPTEMBER 1997

Fig. 1. A fitness evaluation model in a natural individual. The genotype
undergoes a noisy decoding and interaction with the environment to generate
a phenotype. Note that this model is greatly simplified. The real world is much
more complex due to the effects of pleiotropy and polygeny. Pleiotropy is the
effect where a single gene affects multiple phenotypic characters. Polygeny is
the effect where a single phenotypic character is affected by multiple genes
[16].

in the chromosomes. During this decoding process there may

be some perturbations, for example, caused by an abnormal

temperature, a nutritional imbalance, existence of injurious

matter, etc. (see Fig. 1). Stated loosely, if the individual

has low fitness due to these perturbed phenotypic features,

then the individual will not survive to produce offspring.

Thus individuals and reproductive populations having “good”

genotypic material would become extinct if they were highly

sensitive to perturbations of phenotypic features. On the other

hand, in noisy environments, reproductive units which are

robust to these perturbations would have a better chance of

surviving. We develop the GAs/RS with an aim to locating

robust solutions by using this sort of natural genetic metaphor.

GAs/RS uses the effect of perturbation of the phenotypic pa-

rameters while evaluating the functional values of individuals.

Approaches which give consideration to the existence

of noise in calculating the fitness values are discussed

in [17]–[19]. These efforts are mainly directed toward

studying noisy fitness functions, i.e., noise is added to the

fitness function. If is a phenotypic

parameter vector, the evaluation function, and a

scalar noise, then the fitness of the individual will be

[17]–[19]. On the other hand, when we aim to

detect robust solutions, it can be understood from the natural

phenomena that noise is added during the process of decoding

the genotypic codes to the phenotypic parameters (Fig. 1).

Hence, to add noise to the phenotypic parameter i.e., to

use an evaluation function of the form appears

reasonable, where is a random vector.

The solutions thus determined are expected to be more robust

against perturbations or noise having the appropriate tested

distribution.

Fig. 2. Schematic model of the GAs/RS3 where N is the population size.

Let be a genotypic string (or chromosome) which gen-

erates the phenotypic parameter . Then the model of the

GAs/RS becomes as shown in Fig. 2. Here, it should be noted

that adding noise in the form may appear like a

mutation operation on a real-valued coding, but actually it is

operationally different from mutation, since it does not have

any direct effect on individual strings. The perturbations are

used only for judging the quality of a solution and for selection.

III. MATHEMATICAL MODEL

This section describes a simple mathematical model of the

GAs/RS Although there are differences between high- and

low-dimensional problems, we consider to be one dimen-

sional to demonstrate the effect of adding noise more clearly

and denote and by and , respectively. Extension to

the multidimensional case is discussed in Section VI.

A. Formulation of the Effective Evaluation

Function for the GAs/RS

Consider the schema theorem of the simple GA using

a proportional payoff selection scheme and a single-point

crossover [1]

(1)

where represents a schema in population ,

is the average fitness of representatives of in ,

denotes the average fitness of the individuals in , is the

crossover probability, is the mutation probability, is

the defining length of , is the order of , is the string

length, and is the expected number of representatives

of schema at generation Here the population size is

assumed to be large. When , the average fitness

of the individuals in can be described as

(2)
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where provides the distribution of parameter in the

population. In a similar manner, can be described as

(3)

where provides the distribution of parameter in

schema in the population.

Now, consider the schema theorem corresponding to the

GAs/RS where fitness is evaluated in the form

(4)

Here, can also be described as in (2)

(5)

where it is assumed that and are mutually independent,

is the continuous density function of having defined

mean value, and is set as

(6)

Similarly, can be represented as

(7)

Comparing (2) (the average fitness of the whole population

for simple GA’s) with (5) (the effective average fitness of the

whole population for GAs/RS , and (3) (the average fitness

of representatives of for simple GA’s) with (7) (the average

fitness of representatives of for GAs/RS we can confirm

that corresponds to .

From the above derivation, we may conclude, for ,

that the average number of instances of each schema in the

GAs/RS increases or decreases depending on instead

of and thus the solution under GAs/RS evolves so as

to maximize instead of maximizing the actual objective

function . Hereafter we call the effective evaluation

function of in the GAs/RS . As is easily understood,

is equivalent to the expected value of over

If we assume to be symmetric, i.e., , then

can be rewritten as

(8)

Thus the effective evaluation function for the GAs/RS can

be formulated. In practice, the population size must be finite.

Fig. 3. Relationship between the reduction factor R(w=�) and w=� where
2w is the width of a peak and � is the standard deviation of the zero mean
Gaussian noise. As the ratio w=� increases, the reduction factor converges
asymptotically to 1.0.

If the population is sufficiently large, then this may yield

approximate characteristics as indicated in (8). In general,

the sufficiency of the population size will depend on the

distribution of the noise. Hereafter, (8) is used for further

discussion.

Here we must note that in practice is unknown, and

thus cannot be calculated using mathematical formulas.

So as to analyze the effect of noise mathematically, we

have assumed that is known completely. For computer

implementation this information is not required.

B. Relationship Between Noise Parameter and Peak Reduction

In this subsection, the appropriate size of a Gaussian

noise to be added is estimated depending on the actual function

when we assume the width of the sharp peak to be known. For

the sake of simplicity, the peaks of functions are represented

by rectangles, and for illustration one rectangle is defined as

having height and width as follows:

otherwise.
(9)

The peak of this function is spread from to . The

effective evaluation function corresponding to this is obtained

from (8) as

(10)

where is the distribution function of the standard normal

distribution defined by

(11)

By setting the derivative of the function to zero, the peak

point is obtained at and the peak value, max , is

obtained as

(12)
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Fig. 4. Relationship between the actual function f(x) and the effective evaluation function F (x): The addition of more variable noise reduces the
effective height of the peak.

Here, is the reduction factor. Fig. 3 plots the reduc-

tion factor versus . Fig. 4 shows the relationship between

function and function for

and . Figs. 3 and 4 confirm that addition of Gaussian noise

to phenotypic parameters reduces the effective height of the

peaks and the effect is greater as the value of become larger.

This can also be supported by a simple Fourier analysis given

in Appendix A.

The amount of noise to be added can be estimated given

the width and the reduction factor of the peak.

Let be the width of a sharp peak. If takes values in

the range then has values in the range [0.5,

0.25] and the reduction factor is between 0.197 and 0.383 (see

Fig. 3). Thus, can be roughly estimated when the allowable

width of the sharp peaks and their reduction factors are given.

IV. EMPIRICAL STUDY

To introduce the utility of the GAs/RS we studied two

one-dimensional functions. A simple GA (hereafter we refer

to it as SGA) was used with stochastic universal sampling

[20]. GA parameters were kept constant for all the simulations

with mutation probability crossover probability

population size maximum number of

function evaluations 5000, and phenotypic parameter is

encoded by a 30-bit string (Gray coded). These values follow

many standard implementations in the literature. We performed

30 simulations for each experiment with randomly initializing

the population.

1) Function Consider a function [Fig. 5(a)], which

has one broad peak and one sharp peak, defined as

otherwise.

(13)

The parameter range is . We took

. Fig. 5(b) shows the convergence process

of the mean value of parameter in the population with

function evaluations. The SGA converged at , the

center of the highest peak. In contrast, the GAs/RS converged

to the center of the broad peak . It can be observed

from Fig. 5(b) that at the initial stage of searching, the

population moved toward the highest peak, but then quickly

turned attention to the broad peak. This phenomenon may be

explained as follows. In the early stage of evolution, the effect

of adding noise is low since the diversity of the population

is greater. As the search process proceeds, noise gradually

affects and moves the population. Fig. 6 shows a typical

distribution of the individuals in the population after 5000

function evaluations for both the SGA and the GAs/RS In

each case, the population converged to reside in a single peak.

2) Function Function [Fig. 7(a)] has five unequal

peaks in the range and is a variant of the function

used in [10]. It is defined as

otherwise.

(14)

As shown in Fig. 7(a), the global optimum is located at

with the functional value 1.0. There are four sharp

peaks. The third peak is broad compared to others and is

located at with functional value 0.715. The effective

width of the four sharp peaks can be estimated as follows.

Although these four peaks have unequal heights defined by

the exponential coefficient in (14), the main shape can be

approximate by where is the peak height.

Express the effective peak by a rectangle with width and

height Then may be estimated by letting the area of one
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(a)

(b)

Fig. 5. Convergence process for function fa where (a) shows the original
function fa and (b) shows the variation of mean (over the population) value
of x with function evaluations.

bell shape (covered by and axis) be equal

to the area of the rectangle. Thus for the first bell shape the

width is obtained as

(15)

Since the functional form is the same for all other bell shapes,

the effective width of all of these are the same and is 1/32.

Referring to Fig. 3, can be chosen in (0, 0.65] so as to

reduce the effective functional value by more than 50%. We

chose . Thus,

was used (from Fig. 3, we can see the value of reduction factor

for the sharp peaks is about 0.4). In this context it

may be mentioned that we estimated the width of the effective

peaks just for illustration. In practical problems, the maximum

allowable width of a peak to be considered as a sharp peak

must be given.

Fig. 7(b) shows a convergence process of the mean value of

parameter in the population with trials. The SGA converged

at , the center of the highest peak. The GAs/RS

converged to the robust peak zone. As before, we

can observe from Fig. 7(b) that the population moved initially

toward the highest peak but then approached the broad peak.

Fig. 8 shows a typical distribution of the individuals in the

population after 5000 function evaluations for both the SGA

and the GAs/RS . From the figure, we can say that for the

(a)

(b)

Fig. 6. A typical distribution of the individuals in function fa after 5000
function evaluations for (a) the SGA and for (b) the GAs/RS3.

GAs/RS the population practically converged to the broad

peak, as all but one individual resided within its bounding

width.

V. DETECTION OF MULTIPLE ROBUST SOLUTIONS

Even if there is more than one robust solution, the proposed

GAs/RS would normally find only one. This sort of problem

with finite populations is known in evolutionary computation

as genetic drift [8], [10]. One approach to find more than

one robust solution is to combine the GAs/RS with the

sharing scheme of Goldberg and Richardson [9] using a

sharing parameter to control the extent of sharing

and a distance metric involving an index When

the proximity of the individuals (distance) is defined in the

decoded parameter space, it is called phenotypic sharing and

when it is defined in the genotypic space (Hamming distance),

it is termed genotypic sharing.

Here, we employed phenotypic sharing. Consider a function

(Fig. 9) which has two broad peaks and one sharp peak

defined as

otherwise.

(16)

We used and . With regard to noise size

(i.e., standard deviation), we took , the same value as

used for function in Section IV. Other parameters for the

GAs/RS remained unchanged.
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(a)

(b)

Fig. 7. A typical convergence process for function fb where (a) shows the
original function fb and (b) shows the variation of mean (over the population)
value of x with function evaluations.

Fig. 9 shows a typical distribution of the individuals in the

population after 5000 trials by the SGA, the GAs/RS and

the GAs/RS with the sharing scheme. The GAs/RS always

converged to either of the two robust peaks. Fig. 9(b) is an

example when the population converged to the left robust

peak. On the other hand, the GAs/RS with the sharing scheme

converged the population to both broad peaks stably as shown

in Fig. 9(c).

VI. EXTENDING TO MULTIPLE DIMENSIONS

A. Calculation of Reduction Factor for Multidimensions

It is of interest to determine how the calculation of the re-

duction factor scales up for higher dimensional search spaces.

First consider a two-dimensional evaluation function and rep-

resent it by Then the effective evaluation function

of for can easily be formulated

in a similar manner as (8) and is obtained as follows:

(17)

where and are the density functions of noise added

to the phenotypic parameters and , respectively. Now

we emulate a peak in two-dimensional search space by the

following two-dimensional rectangular or box function having

(a)

(b)

Fig. 8. A typical distribution of the individuals in function fb after 5000
function evaluations for (a) the SGA and for (b) the GAs/RS3.

height in the axis and width

in the axis, which is a direct extension of

the rectangular function represented by (9) in Section III

otherwise.
(18)

As in Section III, again assume zero mean Gaussian noise

for and with standard deviation and respectively.

Then the effective evaluation function of (18) is

obtained in the same manner as in (10) as

(19)

In a similar manner, when we approximate a peak of any func-

tion in an -dimensional search space by an -dimensional hy-

perbox function having height width

in the axis, its effective function is as follows:

(20)

where is the standard deviation of the Gaussian noise added

to the phenotypic parameter . From (20) we can calculate

, the reduction factor for an -dimensional search space,
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(a)

(b)

(c)

Fig. 9. A typical distribution of the individuals in function fc after 5000
function evaluations for (a) the SGA, for (b) the GAs/RS3, and for (c) the
GAs/RS3 with sharing. Sharing allows the population to converge to multiple
broad peaks.

as follows:

(21)

where

(22)

The reduction factor is the product of the reduction factor

in each dimension [see (20), (21), and (12)].

(a)

(b)

Fig. 10. A typical distribution of the individuals in function fb2 after 5000
function evaluations for (a) the SGA and for (b) the GAs/RS3.

B. Experimental Results on a Multidimensional Function

We used the following two-dimensional evaluation function

, which is a direct extension of the function (14), to

observe the effect of GAs/RS for a multidimensional function.

This function has 25 peaks as shown in Fig. 10. The central

peak is broad compared to the other 24 peaks and is located

at with functional value 0.715. The highest

sharp peak is located at with functional value

1.0. Here the noise size was which is the

same as used earlier in the one-dimensional function The

value of the reduction factor for the sharp peaks can be

calculated from (21) as 0.16

Fig. 10 shows a typical distribution of the individuals in the

population after 5000 function evaluations by both the SGA
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and GAs/RS . The SGA always converged to the highest peak

as shown in Fig. 10(a). In contrast, the GAs/RS consistently

moved the population to the broad peak as shown in Fig. 10(b).

VII. SUMMARY

The basic concept of the GAs/RS (genetic algorithms

with a robust solution searching scheme), which extends the

application of GA’s to domains that require detection of robust

solutions, was proposed in the present paper. Perturbations are

given on the phenotypic features while evaluating the func-

tional value of individuals. A mathematical model of GAs/RS

has been developed and described using simple one- and two-

dimensional functions. A guideline to determine the amount of

noise to be added has also been given. The effectiveness of the

GAs/RS was demonstrated by maximizing functions having

broad and sharp peaks. By taking suitable noise sizes it has

been shown that the GAs/RS can converge the population

to the robust solution against perturbation of the parameters.

A consideration on combining the GAs/RS with the sharing

scheme was also made, and it was found that this approach

can be effective when we want to detect more than one robust

solutions on different peaks.

Future work will focus on analyzing the behavior of

GAs/RS on more complex problems where many peaks

interact, evaluating GAs/RS on real-world problems, and

extending the GAs/RS for ordered representation based

problems such as required in a scheduling system. So as

to have a rough empirical estimate of , various types of

fitness evaluation techniques will also be adopted.

APPENDIX A

EFFECT OF NOISE ON THE HEIGHT OF PEAKS

Here we give a simple Fourier analysis of the effective eval-

uation function described by (8) to study its relationship

with the original evaluation function and noise density

function . We recapitulate that high frequencies in the

Fourier domain correspond to sharp peaks in the functional

domain. Let , and be the Fourier transform

of functions , and , respectively. Then, since

(8) has the form of a convolution integral we get

(23)

When we assume to be a Gaussian noise then

(24)

We see from above that decreases as increases. Thus,

the magnitude of high frequency is reduced, i.e., addition of

Gaussian noise to phenotypic parameters reduces the height of

sharp peaks more. Also from (24) this effect is strengthened as

the value of increases. This results also support the analysis

in Section III-B.
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