IEEE TRANSACTIONS ON SYSTEMS, MAN, ANDCYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 36, NO. 5, SEFTEMBER 2006 6l

Evolutionary Computation in
Bioinformatics: A Review

Sankar K. Pal, Fellow, IEEE, Sanghamitra Bandyopadhvyay, Senior Member, [EEE, and Shubhra Sankar Ray

Abstract—This paper provides an overview of the application
of evolutionary algorithms in certain bioinformatics tasks. Differ-
ent tasks such as gene sequence analysis, gene mapping, deoxyri-
honucleic acid (DNA) fragment assembly, gene finding, microar-
ray analysis, gene regulatory network analysis, phylogenetic trees,
structure prediction and analysis of DNA, ribonucleic acid and
protein, and molecular docking with ligand design are, first of all,
described along with their hasic features. The relevance of using
evolutionary algorithms to these problemsis then mentioned. These
are followed by different approaches, along with their merits, for
addressing some of the aforesaid tasks. Finally, some limitations of
the current research activity are provided. An extensive hibliogra-
phy is included.

Index Terms—Biocomputing, data mining, evolutionary algo-
rithm, molecular hiology, soft computing.

I. INTRODUCTION

WER the past few decades, major advances in the field
0 of molecular biology, coupled with advances in genomic
lechnologies, have led to an explosive growth m the biological
information generated by the scientific community. This deluge
of genomic information has, in turn, led 1o an absolute require-
ment for compuleneed databases o store, organiee, and index
the data, and for specialized tools o view and analyze the data.

Bioinformatics can be viewed as the we of computational
methods to make biological discoveries [1]. 1L is an imterdisci-
plinary field involving biology, computer science, mathematics,
and statistics to analyeze biological sequence data, genome con-
tent and arrangement, and to predict the function and structure
of macromolecules. The ulimate goal of the field is 1o enable
the discovery of new biological insights as well as w create a
global perspective from which unifying principles in biology
can be denved [2]. There are three imporant subdisciplines
within bivinformatics.

1y Development of new algorithms and models w assess dif-

ferent relationships among the members of a large bio-
logical data set i a way that allows rescarchers o access
existing mfommation, and o submit new mfommation as
they are produced.

2y Analysis and mterpretaton of various types of data in-

cluding nucleotide and amino acud sequences, protein do-
mains; and protein structures.
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3) Development and implementation of wols that enable ef-
ficient access and management of different types of infor-
AL,

Recenty, evolutionary algorithms (EAs), a class of randomuzed
search and opumization technigques guided by the pnnciples of
evolution and natural genetics, have been gaining the attention
of researchers for solving bioinformatics problems. Genetic al-
gonthms (GAS) [3H[9] evolutionary strategies (ES ), and genetic
programming {GP) are the major components of EAs. OF these,
GAs are the most widely used. GAs are efficient, adaptive, and
robust search processes, producing near optimal solutions, and
have a large amount of implicit parallelism. Data analysis wools
used earlier in bioinformatics were mainly based on statistical
technigues such as regression and estimation. The role of GAs in
biomformatics gained significance with the need to handle large
data sets i biology in a robust and computationally efficient
ITLATIET.

This paper provides a survey of the various evolutionary-
algonthm-based technigues that have been developed over the
past few years for different bioinformatics tasks. First, we de-
scribe the basike concepls of biomfommatics along with their
biological basis. Methodology for applying GAs o bioinfor-
matics tsks 15 also mentioned in Section 1L In Section 111, var-
ious bioinformatics tasks and different evolutionary algorithms
based methods available w address the bioinformatics tasks are
explained. Finally, conclusions and some future research direc-
tions are presented in Section 1Y,

II. Basic CONCEPTS IN BIOINFORMATICS AND RELEVANCE
OF EVOLUTIONARY ALGORITHMS

First, we miroduce the basic biological concepts required o
understand the various problems in bioinformatics, and then we
descrbe the relevance of EAs in bioinformatics with particular
emphasis on their application of GAs.

A, Basic Units of Cell Biology and Bivinformatics Tasks

Deoxynbonucleic acid (DNA) and proteins are biologieal
macromolecules built as long linear chains of chemical compo-
nents. A DNA strand consists of a large sequence of nucleotides,
or bases. For example there are more than three billion bases in
human DNA sequences. DNA plays a fundamental role in differ-
ent biochemical processes of living organisms in two respects.
First, it contains the templates for the synthesis of proteins,
which are essential molecules for any organism [ 10]. The sec-
ond role in which DNA is essential to life is as a mediom o
transmil hereditary information (namely, the building plans for
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Fig. 1. Various parts of DNA.
proteins) from generation to generation. Proteins are responsible
for structural behavior.

The units of DNA are called nucleotides. One nucleotide con-
sists of one nitrogen base, one sugar molecule (deoxyribose),
and one phosphate. Four nitrogen bases are denoted by one
of the lewers A (adenine), C (cytosine), G (guanine), and T
(thymine). A linear cham of DNA 1s paired to a complementary
strand. The complementary property stems from the ability of
the nucleotides o establish specilic pairs (A-T and G-C). The
pair of complementary strands then forms the double helix that
was first suggested by Watson and Crick in 1933, Each strand,
therefore, carnes all the information, and the biochemical ma-
chinery guarantees that the information can be copied over and
over again, even when the “original”™ molecule has long since
vanished.

A gene is primarily made up of a sequence of triplets of the
nucleotides (exons ). Introns (noncoding sequence) may also be
present within the gene. Not all portions of the DNA sequences
are coding. A coding zone indicates that it is atemplate for a pro-
tein. As an example, for the human genome, only 3%-3% of the
sequence are coding: e, they constitute the gene. The promoter
is a region before each gene in the DNA that serves as an indica-
ton w0 the cellular mechanism that a gene 18 ahead. For example,
the codon AUG i a protein which codes for methionine and sig-
nals the stan of & gene. Promoters are key regulatory sequences
that are necessary for the initiation of ranscaption. Transcrip-
ton 15 process nowhich nbonucleie acid (RNA) 1 formed (rom
a gene, and through translation, amincacids are formmed from
RMNA. There are sequences of nucleotides within the DNA that
are spliced out progressively in the process of tanscription and
ranslation. A comprehensive survey of the research done in this
field is given in [11]. In brief, the DNA consists of three types
of noncoding sequences (see Fig. 1) as follows:

1y Imtergenic regions: Regions between genes that are ig-

nored during the process of transcription.

2y Intragenic regions (or Introns): Regions within the genes

that are spliced out from the transcribed RNA 1o yield the
building blocks of the genes, referred 1o as Exons.

3y Pseodogenes: Genes that are transcribed into the RNA and

stay there, without being translated, due to the action of a
nucleotide sequence.

Frowems are polypeptides, formed within cells as a linear
chain of ammo acids [10]. Amino acid molecules bond with
ecach other by eleminating water molecules and forming
peptides. 20 different amino acids (or “residues™) are available,
which are denoted by 20 different letters of the alphabet. Each of
the 20 armino acids 15 coded by one or more triplets (or codons)
of the nucleotides making up the DNA. Based on the genetic
code, the linear string of DNA is translated into a linear string of
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Fig.2. Coding of amino acid sequence from DMNA sequence.

aming acids; Le., a protein via mRNA (messenger RNA) [10].
For example, the DNA sequence GAACTACACACGTGTAAC
codes for the amino acid sequence ELHTCN {shown in Fig. 2).
Three-dimensional (3-D) molecular structure 15 one of the
foundations of structure-based drug design. Ofen, data are
available for the shape of a protein and a drug separately, but
not for the two together. Docking is the process by which two
molecules fit together in 3-D space. Ligands are small molecules
such as acandidate drog and are used for docking 1o their macro-
maolecular targets (usoally proteins, sometimes DNAJ.
Different biological problems considered within the scope
of bivinformatics involve the study of genes, proteins, nucleic
acid structure prediction, and molecular design with docking. A
broad classification of the vanous bioinformatics tasks s given
as follows,
1y alignment and comparson of DNA, RNA, and protein
SEQUETICES:

2} gene mapping on chromosomes;

3y gene linding and promoter dentification from DNA
SEQUETICES:

4) interpretation of gene expression and microarray data;

5) gene regulatory network identification;

6} construction of phylogencte rees for studying evolution-

ary relationship;

T DNA structure prediction;

8 RNA structure prediction;

9y protein structure prediction and classification;

1y molecular design and molecular docking.

Descripions of these tasks and their implementation in evo-
luttonary computing (or genetic algorithmic) fmmework ane
provided in Section 111 Before that, the relevance of GAs in
bioinformatics is explained.

B. Relevance of Genetic Algorithms in Bioinformatics

Genetic algorithms [3[6], a biologieally inspired technol-
ogy, are randomized search and optimization wehnigues guided
by the principles of evolution and natural genetics. They are
efficient adaptive, and robust search processes, producing near
optimal solutions, and have a large degree of implicit paral-
lelism. Therefore, the application of GAs for solving certain
problems of biomformatics, which need optimization of com-
putation requirements, and robust, fast and close approximate
solutions, appears 1o be appropriate and natural [4]. Momreover,
the errors generated in expenments with brommformates data
can be handled with the robust characteristics of GAs. To some
extent, such errors may be regarded as contributing 1o genetic
diversity, a desirable property. The problem of inegrating GAs
and bioinformatics constitutes a new research area.

GAsare executed iteratively on a set of coded solutions, called
population, with three basic operators: selection/reproduction,
crossover, and mutation. They use only the payofl (objective
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function) information and probabilistic tmnsiion rules for mov-
ing to the next iteration. They are different from most of the
normal optimization and search procedures in four ways:

1) GAs work with the coding of the parameter set, not with
the parameters themselves.

2y GAs work simultaneously with multiple points, and not a
single point.

3 GAs search via sampling (2 blind search) using only the
payoll information.

4y GAs search using stochastic opermtors, nol deterministc
rules.

A GA typically consists of the following components:

1) a population of binary strings or coded possible solutions
i biologically referred 1o as chromosomes);

2y a mechanmism o encode a possible solution (mostly as a
binary stnng);

3) objective funcuon and associated fitness evaluation
Lo hnigues;

4 selectionfreproducton procedure;

5) geneuc operators (crossover and mutation);

6) probabilities to perfonm genetic operations.

OfF all the evolutionarily inspired approaches, GAs seem par-
tcularly suited to implementation using DNA, prolen, and
other bioinformatics tasks [12]. This is because GAs are gener-
ally based on manipulating populations of bitstrings usmg both
crossover and poimbwise mutation.

The maim advantages vsing GAS are as follows.

1y Several tasks in biomformatics mvolve optimization of
different criteria (such as energy, alignment score, and
overlap strength), thereby making the application of GAs
more natural and appropriate.

2) Problems of bioinformatics seldom need the exact opti-
mum solution; rather, they require robust, fast, and close
approximale solutions, which GAs are known o provide
efficienty.

3y GAs can process, i parallel, populations billions limes
larger than 1s vsual for conventional computation. The
usual expectation 15 that larger populations can sustam
larger ranges of genetic varation, and thus can generate
high-fitness ndividuals in fewer generations.

4y Laboratory operations on DNA mherently mvolve emmors.
These are more tolerable in executing evolutionary al-
gorithms than in executing determimistic algorithms. (To
some extent, emmors may be regarded as contnbuting 1o
genctic diversity—a desirable property.)

C. Example

Let us now discuss with an example the relevance of GAs in
bivinformatics. Most of the ordering problems in bioinformat-
ics, such as sequence alignment problem, fragment assembly
problem (FAP), and gene maping (GM), are quite similar 1o
traveling salesman problem (TSP best-known NP-hard ordering
problem) with notable differences. The TSP can be formally
defined as follows: Let 1, 2,..., n be the labels of the n cities
and ' = r, _” be an n o« nocost matrix where ¢; ; denotes the
cost of raveling fromcity 7 to city j. The TSP is the problem of
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Fig. 3. Alignment of DNA frgments,

finding the shortest closed route among r cities, having as iput
the complete distance matrix among all cities. A symmetne TSP
(STSP) instance 1s any mstance of the TSP such that o; ; = ¢
for all ciies 7, 7. An asymmetne TSP (ATSP) instance 15 any
instance of the TSP that has at least one pair of cities such that
Cij # ;i The ATSP 1s a special case of the problem on which
we restrict the input 1o asymmetric instances. The total cost A
of a TSP tour is given by

n—1

Aln) = Zr.',_,_,.l + it 1- (1)
i=1
The objective is to find a permutation of the n cities which has
minmum cost.

The FAP deals with the sequencing of DNA. Currently,
strands of DNA longer than approximately 500 base pairs cannot
routinely be sequenced accurately. Consequently, for sequenc-
mg larger strands of DNA, they are first broken mto smaller
pieces. In the shotgun sequencing method (Lo which this work
applies), DNA is first replicated many times, and then individ-
ual strands of the double helix are broken randomly into smaller
fragments. The assembly of DNA fragments into a consensus
sequence corresponding Lo the parent sequence consttutes the
“fragment assembly problem™ [ 10]. It is a permutation problem,
similar to the TSP, but with some important differences (circular
tours, noise, and special relationships between entities) [ 10]. It
15 NP-complete in nature.

Note that the fragmenting process does not retain either the
ordering of the fragments on the parent strand of DNA or the
strand of the double helix from which a particular fragment
came. The only information available in assembly stage is the
base pair sequence for cach fmgment. Thos, the ordering of the
fragments mustrely primanly on the similarity of fragments and
how they overlap. Animportant aspect of the general sequencing
problem is the precise determination of the relationship and ori-
entation of the fragment. Once the fragments have been ordered,
the final consensus sequence s generated from the ordering. Ba-
sic steps with four fragments are shown below as an example
in Fig. 3. Here, the fragments are aligned in a fashion so that
in cach column all the bases are the same. As an example, the
base in the sixth column 1s selected, after voting, as G o make
the consensus sequence TCACTGGCTTACTAAG,

Formulation of the FAP as a TSP wing GA: although the
endpoints of the tour of TSP are irelevant since its solution is a
circular tour of the cities, in the case of FAP, the endpoints are
relevant as they represent fragments on opposite ends of the par-
ent sequence. Moreover, the cities inthe TSP are not assumed to
have any relationship other than the distances, and the ordering
is the final solution to the problem. In FAP, the ordering referred
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o as “beads on a stnng,” 15 only an mtermediate step; the layout
process uses the overap data wo position the bases within the
fragments relative 1o each other. Here, GAs can be applied. A
way of using it in FAP is explained as follows.

Step 1) Let1,2, ... Jorvns n represent the ndices of n frag-
ments in the spectrum of fragments. Pairwise re-
lationship (similardty) of a fragment with all other
fragments {oligonucleotides) is calculated and kept
m an 7 ¥ nomatnx. Dynamic progrumming gives
best alignment between two sequences (fragments).
In this method, each possible orientation is tned for
the two fragments, and the overlap, orientation, and
alignment are chosen o maxomize the similarty be-
tween fragments.

All the indices of fragments are then ordered ran-
domly with no repetition. Let fy, fa, ...,  rh fu
be such an ordering of a sequence of n fragments,

Step 2)

where f; = j means that fragment j (in the fragment
sel) appears in position ¢ of the ordering. The fimess
function of this ordered sequence can be computed
using

fn—1
P= Z Wi i (2)
=1

where W, is the pairwise overlap strength (similar-
ity) of fragments ¢ and § in the ordered sequence, as
obtaimed m the n = 0 matrix.

Such an ordered sequence provides a genetic repre-
sentation of an individual chromosome in GA.

In this way, P ordered sequences are generated,
where P is the size of the population of GA.

GA s applied with this population and the followng
opeTalions.

Step 3)
Step 4)

Selection: Fitness of each sequence is evaluated as in
(2), and sequences with higher fitness are selected
with roulette wheel.

Crossover: Crossover is performed between two ran-
domly selected sequences for a given crossover
rate.

Mutation: For a given mutation rate, only that muta-
tion operator can be applied for which there will be
no repetition of fragment indexes in the sequence.

Elitist model: A new population s created at each
generation of GA. The sequence with highest
fitness from the previous generation replaces
randomly a sequence from this new generation,
provided the fitness of the fitest sequence in the
previous generation is higher than the best fimess
in this current generation.

Step 3) The best sequence of indices with maximum F value
is obtained from the GA. From this sequence of in-
dices, the corresponding sequence of fragments is
obtained using the overapping information in the
X onomatnx of Step 1),

Step 6) This alignment of fragments s examined to deter-
ming the places where mmsertion or deleton error

likely occwrred, and gaps or bases are then imserted
or deleted into the fragments to oblain their best
possible alignment. The resulting sequence 15 calked
COMSCTISUS SEUEnee.

Note: The neighboring fragments in the resulling sequence
are assumed w be maximally overlapped—thereby ensunng in-
clusion in the resulting sequence as many fragments as possible.
The finess function GA evaluating an individual selects the best
substring of oligonucleotides, or the chromosome; Le., the one
composed of the most fragments, provided its length is equal to
the given length of the reference DNA sequence.

Different GA operators for the assembly of DNA sequence
fragments associated with the Human Genome project was stud-
wed in [13]. The sorted order representation and the pemmutation
representation are compared on problems ranging from 2-34 K
base pairs (KB). It is found that edge-recombination crossover
used in conjunction with several specialized operators perfonmns
the best. Other relevant investigations for solving FAP using
GAs are available in [ 14] and [ 15].

III. BIOWNFORMATICS TASKS AND APPLICATION OF EAs

We now describe the different problems and associaled tasks
involved in bioinformatics, their requirements, and the ways in
which computational models can be formulated o solve them.
The classified tasks (as mentoned in Section 1-A) are fimst
explamed in this section, followed by a description of how GAs
and other evolutionary technigues are applicd in solving them.

A, Alignment and Comparison of DNA, RNA | and
FProtein Sequences

Analignment is a mutual placement of two or more sequences
which exhibit where the sequences are stmilar, and where they
differ. These include alignment and prediction of DNA, RNA,
protein sequences, and fragment assembly of DNA. An optimal
alignment 15 the one that exhibits the most correspondences and
the fewest differences. 1t is the alignment with the highest score,
but which may or may not be biologically meaningful. Basically,
there are two types of alignment methods: global alignment and
local ahignment. Global alignment [16] maxmmizes the num-
ber of matches between the sequences along the entire length
of the sequence. Local alignment [17] gives a highest scoring
to local match between two sequences. Global alignment in-
cludes all the characters in both sequences from one end 1o
the other, and is excellent for sequences that are known to be
very similar. If the sequences being compared are not similar
over ther entire lengths, but have shont stretches within them
that have high levels of similarity, a global alignment may miss
the alignment of these important regions, and local alignment
is then used 1o find these intemal regions of high similarity.
Pairwise comparison and alignment of protein or nucleic acid
sequences is the foundation upon which most other bioinformat-
1cs tools are built. Dynamic programming (DP) 1s an algonthm
that allows for efficient and complete companson of two (or
more) biological sequences, and the techmigue 15 known as the
Smith-Waterman algorithm [17]. It refers o a programmatic
technigue or algonthm which, when implemented comrectly,
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effectively makes all possible pairwise compansons belween
the characters (nucleotide or amino acid residues) m two bio-
logical sequences. Spaces may need o be inserted within the
sequences for alignment. Consecutive spaces are defined as a
gap. The final result s a mathematically, bul not necessarily
biologically, optimal alignment of the two sequences. A simi-
lanty score 15 also generated o describe how similar the two
sequences are, given the specific parameters used.

A multiple alignment arranges a set of sequences in a manner
that positions thought to be homologous are placed ina common
column. There are different conventions regarding the scoring
of a multiple alignment. In one approach, the scores of all the
mduced pairwise alignments contained in a multple alignment
are simply added. For a linear gap penalty, this amounts 1o scor-
ing each column of the alignment by the sum of pair (SP-) scores
m this column [10]. Although 1t would be biologically mean-
ingful, the distinctions between global, local, and other forms of
alignment are rarely made in a multiple alignment. A full set of
optimal pairwise alignments among a given set of sequences will
generally overdetermine the multiple alignment. If one wishes
o assemble amultiple alignment from pairwise alignments, one
has w avold “closing loops,” Le., one can put together pamrwise
alignments as long as nonew pairwise alignment 1s included toa
set of sequences which s already pan of the muluple alignment.

Methods: GAs are used o solve the problem of multiple
sequence alignment. Before we describe them, it may be men-
toned that other optimization methods, such as simulated an-
nealing [18] and Gibbs sampling [19], are also wsed i this
regard. Simulated annealing can sometimes be very slow, al-
though it works well as an alignment improver. Gibbs sampling
15 good m finding local multple alignment block with no gaps,
but 15 not suitable in gapped siluatons.

1t was first described in Sequence Alignment by Genetic Al-
gorithm (SAGA) [20] how 1o use GA 1o deal with sequence
alignments i a general manner (without DP), shortly before
a similar work by Zhang et af. [21]. The population 1s made
of alignments, and the mutations are processing programs that
shuffle the gaps using complex methods. In SAGA, each indi-
vidual (chromosome) 15 a muluple alignment of sequences. The
population size 15 100 and there 15 no wentical individoal m
it. To create one of these alignments, a random offset is cho-
sen for all the sequences (the typreal mnge 15 from 050 for
sequences 200 residues long) and each sequence 15 moved 1o
the right, according to its offset. The sequences are then padded
with null signs in order to have the same length. The fitness of
each individual {alignment) is computed as the score of the cor-
responding alignment. All the individuals are mnked according
o their fitness, and the weakest are replaced by new children.
Only a portion (e.g., 50%) of the population are replaced dur-
ing each generation. Two types of crossover, lwo Lypes of gap
insertion mutation, 16 types of block shuffling mutation, one
block searching mutation, and two local optimal rearmangemet
mutation operators are used in SAGA. During mitialization of
the program, all the operators have the same probability of
being used, equal o 1/22. An automatic procedure (dynamic
schedules, proposed by Davis [22]) for selecting operator has
been implemented in SAGA. In this model, an operator has a

1]

probability of being used that is a funcion of the efficiency it
has recently (e.g.. ten last generations) displayed at improving
alignments. The credit an operator receives when perdoming an
improvement is also shared with the operators that came before,
and may have played a mole in this improvement. Thos, each
time a new individual is generated, if it yields some improve-
ment on its parents, the operator that is directly responsible for
its creation gets the largest part of the credit (e.g., 30%). Then
the operator(s) responsible for the creation of the parents also
gel their share of the remaining credit (50% of the remaining
credit; e, 25% of the ongimal credit), and so on. This report
of the credit goes on for some specified number of generations
ez, 43 After a given number of generations (e.g., 10) these
results are summarized for cach of the operators. The credit of
an operator & equal to s total credit divided by the number of
children it generated. This value 15 taken as usage probability
and will remain unchanged until the next assessment, len gener-
ations later. To avoid the eady loss of some operators that may
become useful later on, all the operators are assigned a mini-
mum probability of being used (the same for all them, typically
equal to half their original probability, ie., 1/44). The automat-
ically assigned probabilities of usage at different stages in the
alignment give a direct measure of usefulness or redundancy
for a new operator. SAGA is stopped when the search has been
unable to improve for some specified number of generations
(typically 100). This condition 1s the most widely vsed when
working on a population with no duplicates.

Other approaches [23]-[25] are similar 10 SAGA where, a
population of multiple alignment evolves by selection, combina-
tion, and mutation. The main difference between SAGA and re-
cent algorithms has been the design of better mutation operators.
A simple GA, applied in a straightforward fashion to the align-
ment problem, was not very successful [20]. The main devices
which allow GAs toefficienty reach very high quality solutions
are the use of 2 1) a large number of mutation and crossover oper-
ators, and 2) ther automatic scheduling. The GA based methods
are not very efficient at handling all types of situations. So it is
necessary o invent some new operators designed specifically for
the problem, and to slot them into the existing scheme. Most of
the mvestigations using GAs lor sequence alignment are on dif-
ferent data sets and results are compared with thatof CLUSTAL
W [26], s0 a clear comparison between the GA based methods
15 not possible. A hybrid approach [27], [28], uses the searching
ability of GAs for finding match blocks, and dynamic program-
ming for producing close 1o optimum alignment of the match
blocks. This method is faster and produces better results than
pure GA and DP based approaches. Here, the population size 15
determined as ¢ = mn /100, where m is the average sequence
length and n is the number of sequences.

In [29], it was pointed out that the combination of high-
performance crossover and mutalion operators does not always
lead 1o a high performance GA for sequencing because of the
negative combination effect of those two opertors. A high-
performance GA can be constructed by utilizing the positive
combination effect of crossover and mutation.

Other relevant investigations for solving multiple sequence
alignment using GAS are available in [30]-[34].
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B. Gene Mapping on Chromosomes

Gene mapping isdefined as the determination of relative posi-
tions of genes on a chromosome, and the distance between them.
A gene map helps molecular biologists o explore a genome. A
primary goal of the Human Genome Project s 1o make a se-
res of descriptive diagram maps of each human chromosome
al increasingly finer resolutions. Two types of gene maps, viz.,
eytogenetic map and linkage map are generally used. A cylo-
genelic map, also known as a physical map, offers a physical
picture of the chromosome. In a cytogenetic map, the chromo-
somes are divided into smaller fragments that can be propagated
and characterized, and then the fragments are ordered {mapped)
o cormespond to their respective locations on the chromosomes.
A genetic linkage map shows the relative locations (order) of
specific DNA markers along the chromosome.

Since EAs have been used for determming the genetic linkage
map, it 15 described here brnefly. The genetic markers ina link-
age map are generally small, but precisely defined sequences and
can be expressed as DNA regions (genes ) or DNA segments that
have no known coding function but whose inhertance pattem
can be followed. DNA sequence differences are especially use-
ful markers because they are plentiful and easy 1o charcterize
precisely [10]. A linkage map is constructed by the following:

1y producing successive generations (chromosomes) of cer-

tain organisms through crossover (recombination), and

2) analyzing the observed segregation percentages of cerain

characteristics in each chromosomal data to find the actual

gene omder.
A linkage map shows the order and relative distance between
genes, but has two drowbacks [10]. Fiest, 1t does not tell the
actual distance of genes, and second, if genes are very close,
one can not resolve their order, because the probability of sepa-
ration is so small that the observed recombinant {requencies are
all zerm. The closer two genes are, the lower the probability that
they will be separated dunng the DNA repair or replication pro-
cess, and hence the probability 1s greater that they will be inher-
ited together. For example, suppose a certain stretch of DNA has
been completely sequenced, giving us a sequence 5. 1 we know
which chromosome 5 came from, and if we have a physical map
of this chromosome, we could try o find one of the map’s mark-
ers in 5. I the process succeeds, we can locate the position of
5 in the chromosome. The best erterion to quantify how well a
map explains the data set 1s the multipoint maximum likelihood
iexploiting the data on all markers simultaneously ) of the map.
Given a probabilistic model of recombination for a given family
structure, a genetic map of a linkage group, and the set of avail-
able observations on markers of the linkage group, we can define
the probability that the observations may have occurred given the
map. This is termed the likelihood of the map. The likelihood is
only meaningful when compared 1o the likelihood of othermaps.

The problem of finding a maximum likelihood genetic map
can be desceribed as a double optimization problem. For a given
gene order, there is the problem of finding recombination prob-
abilities (crossover probabilities) that yield a maximum multi-
point likelihood; then, one must find an order that maximizes
this maximum likelthood. The first problem 1s solved by us-
mg the expectation maximization (EM) algorithm. The second

problem is more difficult, because the number of possible orders
to consider for N markers is N1/2. This type of combinatorial
problem can be handled efficiently by evolutionary algorithms.
The problem of finding an order of genes that maximizes the
maxmnum multipoint ikelihood 1s equivalent 1o the symmet-
e TSP One can simply associate one imagmary city o each
marker, and define as the distance between two cities the inverse
of the elementary contribution o the log-likelihood defined by
the corresponding pair of markers.

Methods: The method of genetic mapping described in [35]
is embodied in a hybrid framework that relies on the statisti-
cal optimization algorithms (e.g., expectation maximization) 1o
handle the continuous vanables (recombination probabilities),
while GAs handle the ordering problem of genes. The efficiency
of the approach lies eritically in the inroduction of greedy local
search in the fitness evaluation of the GA, using a neighborhood
structure mspired by the TSP A population size ranging from
25-25() has been used for number of markers between 10249,

In gene mapping problem, Gunnels ef all [36] compared GAs
with simulated annealing (SA), and found that the GA-based
method always converges 1o a good solution faster smce its
population-based nature allows it w0 take advantage of the extra
information to construct good local maps that can then be used
to construct good global maps.

In canonical GAs with the fixed map itisdifficult to design the
map withoul a priori knowledge of the solution space. This is
overcome in [37], where GAs using a coevolutionary approach
are ulilized for exploring not only within a part of the solution
space defined by the genoty pe-phenotype map, but also with the
map itsell. Here, the genotype-phenotype map is improved adap-
tively during the searching process for solution candidates. The
algorithm is applied to three-bit deceptive problems as a kind of
typical combinatorial optimization problem. The difficulty with
canonical GAs can be controlled by the genotype-phenotype
map, and the output shows fairly good performance.

Relevant vestigation for gene mapping using GAs 15 also
available n [38].

. Gene Finding and Promoter fdentification From
DNA Seguences

Automatic identification of the genes from the large DNA
sequences 1s an important problem in bioinformmatics [39]. A
cell mechanism recognizes the beginning of a gene or gene
cluster with the help of a promoter and is necessary for the
initiation of tanscription. The promoter is a region before each
gene in the DNA that serves as an indication o the cellular
mechanism that a gene 1$ ahead. For example, the codom AUG
iwhich codes for methionine) also signals the stat of a gene.
Recognition of regulatory sites in DNA fragments has become
particularly popular because of the increasing number of
completely sequenced genomes and mass application of DNA
chips. Expermental analyses have identified fewer than 10% of
the potential promoter regions, assurming that there are at least
30 00N promaoters in the human genome, one for each gene.

Methods: Using GA, Kel er al. [40] designed sets of appro-
priate oligonucleotide probes capable of identifying new genes
belonging o a defined gene family within a ¢cDNA or genomic
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library. One of the major advantages of this approach is the
low homology requirement to identify functional families of
sequences with little homology.

Levitsky et af. [41] described a method for recognizing
promoter regions of eukaryolic genes with an application on
Drosophila melanogaster. 1s novelty es inrealizing the GA 1o
search for an optimal partition of a promoter region nto local
nonoverlapping fragments, and selection of the most significant
dinucleotide frequencies for the fragments.

The method of prediction of eukaryotic Pol I promoters from
DMNA sequence [42] takes advantage of a combination of ele-
ments similar 1o neural networks and GAs 1o recognize a set of
discrete subpatterns with vanable separmtion as one patlern: a
promaoter. The neural networks use, as mput, a small window of
DMNA sequence, as well as the output of other neural networks.
Through the vse of GAs, the weights n the neural networks ane
optimized o discriminate maximally between promoters and
M PTOMOWE TS,

D Interpretation of Gene Expression and Microarray Data

Gene expression 15 the process by which a gene’s coded in-
formation is converted into the structures present and operating
mn the cell. Expressed genes include those that are trinscribed
mto mRNA and then translated into protemn, and those that ane
ranscribed o RNA but not tanslated ito protemn (e.g.. trans-
fer and nbosomal RNAs). Not all genes are expressed, and gene
expression involves the study of the expression level of genes
in the cells under different conditions. Conventional wisdom is
that gene products which mteract with each other are more hikely
to have similar expression profiles than if they do not [43].

Micmarray technology [44] allows expression levels of thou-
sands of genes 1o be measured at the same tme. A microarry
15 Lypically a glass (or some other matenal) shde, on w0 which
DMNA molecules are attached at fixed locations (spots). There
may be tens of thousands of spots on an array, cach containing
a huge number of identical DNA molecules (or fragments of
identical molecules), of lengths from twenty to hundreds of nu-
cleotides. Each of these molecules ideally should identify one
gene or one exon in the genome. The spots are either printed on
the microarrays by a mbol, or synthesized by photolithography
{as in computer chip productions), or by ink-jel printing.

Many unanswered and important questions could potentially
be answered by correctly selecting, assembling, analyzing, and
mierpretmg microamay data. Clustenng is commonly used m
microarnyy expenments o idently groups of genes that shane
similar expressions. Genes that are similarly expressed are of-
len coregulated and are mvolved in the same cellular processes.
Therefore, clustering suggests functional relationships between
groups of genes. It may also help in identifying promoter se-
quence elements that are shared among genes. In additon, clus-
ering can be used to analyze the effects of specific changes
m experimental conditions, and may reveal the full cellular re-
sponses triggered by those conditions.

A good solution of the gene ordering problem (1.e., linding
optimal order of DNA microarray data) will have similar genes
grouped together, in clusters. A notion of distance must thus be
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defined in order w measure similanty among genes. A simple
measure 15 the Evclidean distance (other options are possible
using Pearson cormelation, absolute correlation, Speanmman rank
correlation, etc.). One can thus construct a matnx of imtergene
distances. Using this matrix one can calculate the total distance
between adjacent genes and find that permutation of genes for
which the total distance 15 minimized [similar to what 15 done
in the TSP using GA (Section 11-B)].

Methods: Finding the optimal order of microarray data is
known to be NP complete. Tsai eral. [45] formulated this as the
traveling salkesman problem and the applied family competition
GA (FCGA), 1o solve it The edge assembly crossover (EAX) 15
combined with the family competition concept and neighbor join
mutation (M1). In [46], a modified EAX and N are used in EA
for efficiently optimizing the clustering and ordering of genes,
ranging i size from 147 o 6221, Chromosomes in EAs are
represented as a permutation of genes. The size of the population
is assumed to equal o the number of genes in problems that
involved fewer than 1000 genes, and half of the number of gens
in larger problems. Fitness of chromosomes are evaluated from
(1) and distance matrix is formed using pearson correlation.
Crossover and mutation rates are set to one. Mimarmy data
analysis is a competitive field, and no decisive measure of the
performance of methods is available, so methods using EAs for
microarray are compared in the TSP framework [46].

Garibay er af. [47] introduced a proportional GA (PGA) that
reles on the existence or nonexistence of genes o determine
the information that is expressed. The information represented
by a PGA individual depends only on what 1s present in the
individuoal, and not on the order in which 1t 15 present. As a
result, the order of the encoded information is free to evolve in
response 1o Factors other than the value of the solution.

E. Gene Regulatory Network Identification

Inferring a gene regulatory network from gene expression
data obtained by DNA microarray is considered one of the
most challenging problems in the field of bioinfomatics [48].
Animportant and interesting question in bology, regarding the
vanation of gene expression levels, 15 how genes are regulated.
Smee almost all cells in a particular organism have an identical
genome, differences in gene expression, and not the genome
content, are responsible for cell differentiation during the life of
the organmsm.

For gene regulation, an important role 15 played by a type
of proteins called transeription factors [10]. The transcription
factors bind to specific parts of the DNA, called transcription
factor binding sites (i.e., specific, relatively short combinations
of A, T, Cor G), which are located in promoter regions. Specific
promoters are associated with particular genes and are generally
not too far from the respective genes, although some regulatory
effects can be located as far as 30 000 bases away, which makes
the definition of the promoter difficult.

Transcription factors control gene expression by binding to
the gene’s promoter and either activating (switching on) the
gene or repressing it (switching it off). Transcoption factors
are gene products themselves, and therefore, in turn, can be
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controlled by other transenption factors. Transcription factors
can control many genes, and some (probably most) genes are
controlled by combinations of transcrption factors. Feedback
loops are possible. Therefore, we can talk about gene regulation
networks. Microarmys and computational methods are playing
a major role in attempts o reverse engineer gene networks from
various observations.

Methods: In gene network inference problem the objective
is 1o predict a regulating network structure of the inleracting
genes from the observed data; e, expression pattern. The gene
expressions are regulated i discrete state transitions such that
the expression levels of all genes are updated simultaneously.
In [49], each real valued chromosomes (in GAS) represents the
expression level of all the genes. Each gene has a specific ex-
pression level for another gene; so, for N genes there are N2
expression levels. Fitness of the chromosomes are evaluated by
absolute error with generated expression pattem (The sum of all
expressions) from the targel expression patlern. A population
size of 2500, 5000, and 7000 are taken for 5, 7, and 10 genes,
respectively. The GA mn for 150 generations with a crossover
and mutation rate of 0.99 and 0,01, respectively. Relevant in-
vestigations using GASs are also avalable in [50]-[53].

F. Construction of Phylogenetic Trees for Studving
Evedutionary Relatonship

All species on earth undergo a slow transformation process
called evolution. To explain the evolutionary history of today's
species and how species relate 1o one another in terms of com-
mon ancestors, trees are constructed whose leaves represent
the present day species, and mterior nodes which represent the
hypothesized ancestors. These kind of labeled binary trees are
called phylogenetic trees [ 10]. Phylogenetic analysis 15 vsed 1o
study the evolutionary relationship.

Phylogenes are reconstructed based on compansons between
present-day objects. The tenm object 15 used to denote the units
for which one wants to reconstruct the phylogeny. Input data re-
quired for constructing phylogeny are classilied into two main
categories [ 10]. 1) Discrete character, such as beak shape, num-
ber of fingers of presence or absence of a molecular restriction
site. Each character can have a finite number of states. The data
relative w0 these characters are placed in an objects chamctler
matrix called character state matrix. 2) Comparative numerncal
data, called distances between objects. The resultng matrix 15
called a distance matrix.

Given data (chamcter state matrix or distance matrix) for n
taxa (objects), the phylogenetic tree reconstruction problemisto
find the particular permutation of taxa that optimize the critena
idistance). The problem is equivalent to the problem of TSP
One can simply associate one maginary city o each taxa, and
define as the distance between two cities the data obtained from
the data matrix for the corresponding pair of taxas.

Methods: Exhanstive search of the space of phylogenetic trees
is generally not possible for more than 11 taxa, and so algorithms
for efficiently searching the space of trees must be developed.
Phylogeny reconstruction is a difficult computational problem,
because the number of possible solutions (permutations) in-

creases with the number of included 1axa (objects) [34]. Branch-
and-bound methods can reasonably be applied for up to about 20
Laxa, so scientsts generally rely on heunste algorithms, such as
stepwise-addition and star-decomposition methods. However,
such algorithms generally involve a prohibitive amount of com-
putation time for large problems and often find trees that are only
locally optimal. Heunstic search strategies using GAs [54]-{57]
can overcome the alorementoned problems by faster recon-
struction of the optimal trees with less computing power.

In [57], each chromosome in GA 15 encoded as a permutation
of 15 taxas (the same as TSP); and selection, crossover, and mu-
tation operations are performed o minimize the distance among
the taxas. Here, each taxa 1s an amino acid sequence taken from
the GenBank, and distance between them 1s computed as an
alignment score using CLUSTAL W [26]. The GA population
consisted of 20 tral trees. A crossover probability of 0.5 and
mutation probability of 0.2 has been used. Optimal trees are
obtained afier 138 generations. The only difference with TSP is
that the end points of the chromosome GA are relevant in phy-
logenetie trees as they represent the starting and the end points
of evolutionary relationship. GAs has also been wsed [38] for
automatic seli-adjustment of the parameters of the optimization
algonthm of phylogencic trees.

. DNA Swructure Prediction

DNA structure plays an important roke i a varety of biolog-
ical processes. Different dinucleotde and trinucleotide scales
have been described 1o capture varous aspects of DNA struc-
ture including base stacking energy, propeller twist angle, pro-
tein deformability, bendability, and position preference [39].
three-dimension DNA structure and 11s organization into chro-
matin fibres isessential for its functions, and is applied in protein
binding sites, gene regulation, tnplet repeat expansion diseases,
ele. DNA structure depends on the exact sequence of nucleotides
and largely on interactions between neighboring base pars. Dil-
ferent sequences can have different intrnsic structures. Periodic
repetitions of bent DNA in phase with the helical pitch will
cause DNA o assume a macroscopically curved structure. Flex-
ible or inrinsically curved DNA is energetically more favorable
Lo wrap around histones than rignd and unbent DNAL

The curvature of a space line 15 defined as the derivative,
dt fdl, of the tangent vector , along the line [, Its modulus is
the inverse of the curvature radius, and its direction is that of
the main normal to the curve [61]. In the case of DNA, the lne
comresponds o the helical axis and the curvature 15 a vectorial
function of the sequence. The curvature represents the angular
deviation (|('(n)]) between the local helical axes of the nth and
{n + 1)th base pairs (Fig. 4). Under similar extemal conditions,
the intrinsic curvature function represents the differential
behavior of different DNA tracts and corresponds to the most
stable superstructure. The physical origin of curvature is still a
matter of debate [60]; it 1s, however, a result of the chemical and,
consequently, stereochemical, inhomogeneity of the sequence,
which gives rise 1o different macroscopic manifestations. These
manifestations change with the thenmodynamic conditions such
as pH, the tonic foree, the kind of counterions, and obviously the
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lemperature as a result of perturbations on the intrinsic curvatune
depending on the sequence-dependent bendability. Therefore,
it is generally useful to chamctenze a DNA superstructure with
the so-called intrinsic curvature function [60].

Methods: The 3-D spatial structure of a methylene-acetal-
linked thymine dimer present inoa 10 basepair (bp) sense—
antisense DNA duplex was studied in [62 ] with a GA designed 1o
interpret nuclear Overhauser effect (NOE) inter-proton distance
restraints, Trial solutions (chromosomes in GAs) are encoded
on bit stnngs which represents torsion angles between atoms.
From these torsion angles, atomic coordinates, needed for the
fitness function are caleulated usmyg the DENISE program. The
problem is to find & permutation of torsion angles (eight Lorsion
angles for each nucleotide in DNA) that minimizes the alomic
distance between protons of neucleotides. The GA minimizes
the difference between distances i the tnal structures and dis-
tnece restraints for a set of 63 proton-proton distance restraints
defining the methylene-acetal-linked thymine dimer. The tor-
stom angles were encoded by Gray coding and the GA population
consisted of 100 trial structures. Uniformmn crossover with aprob-
ability of 0.9 and mutation rate of 0.04 was used. It was demon-
strated that the bond angle geometry around the methylene-
acetal linkage plays an important roke in the optimization.

A hybnd techmigue involving  artificial neural networks
(ANN) and GA is described in [63] for optimization of DNA
curvature charmeterized in terms of the reliability (RL) value. In
this approach, first an ANN approximates (models) the nonlin-
ear relatonshipls) existing between its imput and output example
data sets. Next, the GA searches the inpul space of the ANN
with a view to optimize the ANN output. Using this method-
ology, a number of sequences possessing high RL values have
been obtained and analyzed 1o verily the existence of features
known 1o be responsible for the occurrence of curvature.

H. RNA Structure Prediction

An RNA molecule is considered as a sting of n characters
R =wryra---ry, such that ri= A, C, G, UL Typically n is in the
hundreds, but could also be in thousands. The secondary struc-
twre of the molecule is a collection 5 of a set of stems and each
stemn consisting of a set of consecutive base pairs (v ) (e.g.,
GU, GC, AU). Here, 1 <4 < j < n and (r; and '.l'_l.:l are con-
nected through hydrogen bonds. If (v, r; )25, in principle we
should require that v, be a complement to v, and that j — 4 =,
for a certain threshold ¢ (because it s known that an BNA
molecule does not fold too sharply on itself). With such an as-
sumption [10], the total free energy E of a structure S is given
by

Els)= Y. alr,my) (3)

[ri,r; |ES

where ao(ry, ;) gives the free energy of base pair (v, ;). Gen-
erally, the adopted convention is (e, ;) << ), if 7 # 7, and
alri,ri) = 0,ifi = j.

Attempts to predict automatically the RNA secondary struc-
wre can be divided m essentially two general approaches. The
first involves the overall free energy minimization by adding

[

contributions from each base pair, bulged base, loop, and other
clements [64]. EAs are found w be suitable for this purpose.
Chromosomes m EAs are encoded 1o represent the RNA sirue-
ture and fitness of each chromosome is evaluated in terms of free
energy (3). The second type of approach [63] is more empirical
and it involves searching for the combination of nonexclusive
helices with a maximum number of base pairings, satisfying the
condition of a tree like structure for the bio-molkecule. Within
the latter, methods vsing dynamie programming (DP) are the
most common [65], [66]. While DP can accumlely compute
the minimum energy within a given thermodynamic model, the
natural fold of RNA is often in a suboptimal energy state and
requires soft computing EAs rather than hard computing DFP.

RNA may enter intermediate conformational states that are
key 1o its functionality. These states may have a significant im-
pact on gene expression. The biologically functonal states of
ENA molkecules may not correspond o ther minimum energy
state, and kmetic barriers may exist that tmap the molecule na
local minimum. In addition, folding often occurs during tran-
scription, and cases exist in which a molecule will undergo
transitions between one or more functional conformations be-
fore reaching its native state. Thus, methods for simulating the
folding pathway of an RNA molecule and locating significant
intermediate states are important for the prediction of RNA
structure and its associated function.

Methods: The possibilities of using GAs for the prediction of
RNA secondary structure were investigated in [67 ] and [68]. The
implementations used a binary representation for the solutions
(chromosomes in GAs). The algorithm, using the procedure of
stepwise selection of the most fit structures (similardy to natural
evolution), allows different models of fitness for detenmining
RNA structures. The analysis of free energies for intermediate
foldings suggests that in some RNAs, the selective evolutionary
pressure suppresses the possibilities for aliemative structures
that could form in the course of wanscription. The algorithm
had inherent incompatibilities of stems due to the binary repre-
sentation of the solutions.

Wiese et al. [69] vsed GAs 1o predict the secondary structure
of RNA molecules, where the secondary structure is encoded as
a permutation similar to path representaton in TSP (each helix
15 associated 1o one mmaginary city) o overcome the imherent
mcompatbilities of binary representation for RNA molecule
structure prediction. They showed that the problem can be
decomposed into a combinatorial problem of finding the subset
of helices from a set of feasible helices keading 10 a minimum
energy [using (3)] in the molecule. More specifically, the algo-
rithm predicts the specific canonical base pairs that will form
hydrogen bonds and build helices. Different combinations of
crossover and mutation probabilities ranging from 0.0 w 1.0 in
increments of .01 and 0.1 were tested for 400 generations with
apopulation size of 700 maximum). Results on RNA sequences
of lengths 76, 210, 681, and 785 nucleotides were provided.
It was shown that the keep-best reproduction operator has
similar benefits as in the traveling salesman problem domain. A
companson of several crossover operators was also provided.

A massively parallel GA for the RNA folding problem has
been wsed in [TO]-[72]. The authors demonstated that the
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Fig. 4. Representation of the DNA curvature in terms of angular deviation
between the local belical axes of the turn cemered on the weth and (e 4+ 1)th
hasepairs [6i].

GA with an improved mutation operator predicls more comect
(true-positive) stems and more correct base pairs than could
have been a predicted with DP algonthm.

{. Piotein Structiwe Prediction and Classification

Identical protein sequences result in identical 3-D structunes.
So 1 follows that similar sequences may result m similar stroc-
tures, and this s usually the case. The converse, howewver, 15 not
true: dentical 3-D structures do not necessanly mdicate den-
tical sequences. Lt is because of this that there is a distinction
between “homology™ and “similarity.” There are examples of
proteins i the databases that have nearly dentical 3-D stroc-
twres, and are therefore homologous, but do not exhibit signif-
want (or detectable) sequence similarity. Pairwise comparisons
do not readily show positions that are conserved among a whole
set of sequences and tend to miss subtle similarities that become
visible when observed simultaneously among many sequences.
Thus, one wants to simultancously compare several sequences.

Structural genomics is the prediction of the 3-D structure of
a protein from the primary amino acid sequence [73]. This is
one of the most challenging tasks i bioinformatics. The five
levels of protein structure are described below. Three of them
are illustrated in Fig. 5.

1y Primary structure is the sequence of amino acids that com-
pose the protein.

2) The secondary structure of a protein is the spatial armnge-
ment of the atoms constituting the main protein backbone.
Linus Pauling was the first to develop a hypothesis for
different potential protein secondary struciures. He devel-
oped the a-helix structure and later the F-sheet structure
for different proteins. An o-helix is a spiral armngement
of the protein backbone in the form of a helix with hydro-
zen bonding between side-chains. The F-sheets consist of
parallel or antiparallel strands of amino acids linked 1o
adjacent strands by hydrogen bonding. Collagen 15 an ¢x-
ample of a protein with F-sheets serving as its secondary
structure.

3) The super-secondary structure {or motif) is the local fold-
ing pattern built up from particular secondary structures.
For example, the EF-hand motil’ consists of an o-helix,
followed by a wrn, followed by another a-helix.

4) Tertary structure is formed by packing secondary struc-
tural elements linked by loops and tums into one or severl
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Fig.5. Thmee levels of pmiein structure.

compact globular units called domains; i.e., the folding of
the entire protein chain.

5) A final protein may contain several protein subunits ar-

ranged na quatemary structure.,

Protein sequences almost always fold into the same structure
in the same environment. Hydrophobie imteraction, hydrogen
bonding, electrostatic, and other Van der Waals-type imleractions
also contribute 1o determine the structure of the protein. Many
efforts are underway to predict the structure of a protein, given
its primary sequence. A typical computation of protein folding
would require computing all the spatial coordinates of atoms ina
protein molecule, statimg with an initial configuration and work-
ing up to a final minimume-energy folding configuration [ 10]. Se-
quence similarity methods can predict the secondary and wertiary
structures based on homology o known proteins. Secondary
structure predictions methods include Chou-Fasman [ 73], neu-
rl network [74], [ 73], nearest neighbor methods [76], [77], and
Garnmer—Osguthorpe—Robson [T8]. Tertiary structure prediction
methods are based on energy mmimization, mokcular dynam-
ics, and stochastic searches EAs of conformational space.

Proteins clustered together into families are clearly evolution-
arily related. Generally, this means that parwise residue identi-
ties between the proteins are 30% and greater. Protems that have
low sequence identities, but whose structural and functional fea-
tures suggest that a common evolutionary origin 1s probable, ane
placed together in supedfamilies.

Methods: The work of Unger et al. [79]-[81] is one of the ear-
lier mvestigations that discussed the reduced 3-D lattice protein
folding problem for determining tertiary structure of protein in
a GA framework. In this model, the energy function of protein
chains is optimized. The encoding proposed by Unger ef af. is a
direct encoding of the direction of each peptide from the preced-
ing peptide (five degrees of freedom, disallowing back move).
Pepudes are represented as smgle point units without side
chains. Each peptide is represented by three bits 1o encode five
degrees of freedom. The evaluation function solely evaluates
nonsequential hydrophobe to hydrophobe contacts and 1s stated
as anegative value (—1 per contact) with larger negative values
indicating better energy conformations (thus stating the problem
in terms of minimization). The algorithm begins with a popu-
lation of identical unfolded configurations. Each generation be-
gins with asenes of K mutations being applied to each mdividoal
in the population, where K is equal to the length of the encoding.
These mutations are filtered using a Monte Carlo acceptance al-
gonthm which disallows lethal configurations (those with back
move), always accepls mutations resulting in beter energy, and
accepls mereased energy mutations based upon a threshold on
the energy gain which becomes stricter over lime. One-point



PAL eral: EMOLUTIONARY COMPUTATION [N BIOINFORMATICS: A REVIEW

crossover with an additional random mutation at the crossover
point follows, producing a single offspring for each selected pair
of parents; however, lethal configurations are rejected. In this
situation, the crossover operation is retried for a given pair of
parents until a nonkethal offspring can be located. Offspring are
accepted using a second Monte Cado filter which accepts all
reduced energy confirmations and mndomly accepts imcreased
energy offspring again using a cooling threshold on the energy
gain. The algorithm uses 100% replacement of all individuals
n 4 generation through crossover except the smgle best, elitist,
individual. Test data consisted of a series of ten randomly pro-
duced 27 length sequences and ten randomly produced 64 length
sequences. The algorthm operated on each of the 27 and 64
kength sequence forroughly 1.2 million and 2.2 million function
evaluations, respectvely, using a population size of 200, Per-
formance comparisons were given between the above algorithm
and a pure Monte Caro approach which greatly favored the for-
mer. While the encoding and evaluation function proposed by
Unger and Moult are faidy straightforward, the algorithm differs
from a standard GA approach in several aspects. Most notable
are the nonrandom initialization, the high level of mutation, and
the Monte Carlo filtering of both the mutation and crossover re-
sults, which mesembles typical simulated annealing approaches.

Fatton et all [82] determined tertiary structures of proteins
based on the concept of Unger er af. [36], [40]. They enlarged
the representation from three 1o seven bits per peptide in order
w encode one of the 120 permutations of the five allowable
directions for each. It was shown that the GA indeed appears 1o
be effective for determining the tertiary structure with far fewer
computational steps than that reported by Unger er al.

Natalio er af. [83], [84] investigated the impact of several al-
gorithmic factors for a simple protein structure prediction prob-
kem: the conformational representation, the energy formulation,
and the way in which infeasible conformations are penalized.
Their analysis leads o specific recommendations for both GAs
and other heuristie methods for solving PSP on the HP model.
A dewiled comparison between the work of Unger er af. and
FPatton et al. and an algorithm using GAs o overcome their
limitations has also been presented [84).

A hill-climbing GA for simulation of protein folding has been
described in [83]. The program builds a set of Canesian points
o represent an unfolded polypeptide’s backbone. The dihedral
angles determining the chain’s configuration are stored in an
array of chromosome structures that 1s copied and then mutated.
The fitness of the mutated chain’s configuration is determined by
its radius of gyration. A four-helix bundle was used o optimize
the simulation conditions. The program ran 50% faster than the
other GA programs, and tests on 100 nonredundant structures
produced results comparable to that of other GAs.

In [B6], features are extracted from protein sequences using
a position specific weight matrx. Thereafter, a genetic algo-
rthm based fuzzy clusienng scheme [87] is used for generating
prototypes of the different superfamilies. Finally, supedamily
classification of new sequences is performed by using the near-
est neighbor rule.

Other imvestigations on protein struc lre prediction are avail-
able in [B8 [ 100]. Anoverview and state-of-the-art of the appli-
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cations of EAs only for the protein folding problem is described
in[ 101 ], whereas the relevance of GAsin several biomformatics
tasks 15 discussed in the present article.

S Molecular Design and Molecular Docking

When two molecules are in close proximily, it can be energet-
ically favorable for them to bind together tightly. The molecular
docking problem is the prediction of energy and physical config-
uration of binding between two molecules. A typical application
15 in drug design, in which one might dock a small molecule
that 15 & described drug to an enzyme one wishes w targel. For
example, HIV protease 15 an enzyme m the AIDS virus that 1s
essential to its replication. The chemical action of the protease
Lakes place at a localized actve site on 1ts surface. HIV protease
mnhibitor drugs are small molecules that bmd 1w the active site
in HIV protease and stay there, so that the normal functioning
of the enzyme is prevented. Docking software allows us 1o eval-
uate a drug design by predicting whether it will be successful
in binding ughtly to the actve site m the enezyme. Based on
the success of docking, and the resulting docked configuration,
designers can refine the drug molecule [102].

Molecular design and docking is a difficult optimization prob-
lem, requiring efficient sampling across the entire range of posi-
tional, orientational, and conformational possibilites [ 103]. The
major problem in molecular binding s that the search space 15
viery large and the computational cost imereases tremendously
with the growth of the degrees of freedom. A docking algonthm
must deal with two distinet issues: a sampling of the conforma-
tional degrees of freedom of molecules involved inthe complex,
and an objective function (OF) w assess its quality.

For molecular design, the structure of a flexible molecule
15 encoded by an mteger-valued or meal-valued chromosome in
GA, the ith element of which contains the orsion angle for the
ith rotable bond. The energy for the specified structure {confor-
mation) can be calculated wsing standard molecular modeling
package, and this energy is used as the fimess function for the
GA. GAs ry to identify a set of torsion angle values that min-
mmize the caleulated energy. GA 15 becoming a popular cholee
for the heuristic search method i molecular design and docking
applications [ 104]. Both canonical GAs and evolutionary pro-
gramming methods are found 1o be successful in drug design
and docking. Some of them are described below.

Methods: A novel and robust automated docking method that
predicts the bound conformations (structures) of flexible hig-
ands to macromolecular targets has been developed [ 105]. The
method combines GAs with a scoring function that estimates
the free energy change upon binding. This method applies a
Lamarckian model of genetics, in which environmental adapta-
tions of an individual's phenotype are reverse transceribed o its
genotype and become mheritable traits. Three search methods,
viz., Monie Carlo simulated annealing, a tmditional GA, and
the Lamarckian GA were considered, and ther pedormance
was compared i dockings of seven protein-ligand test systems
having known three-dimensional structure. The chromosome 15
composed of a sting of realvalued genes: three Cartesian co-
ordinates for the ligand translation; four variables defining a
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quaternion specifying the ligand orientation; and one real-value
for each ligand wrsion, in that order. The order of the genes that
encode the torsion angles is defined by the torsion tree created
by AUTOTORS (a preparatory program used 1o select rotatable
bonds in the ligand). Thus, there is a one-to-one mapping from
the ligand’s state variables to the genes of the individuals chro-
mosome. An Individoal’s fimess isthe sum of the mtermolecular
mieraction energy between the hgand and the protem, and the
intramolecular interaction energy of the ligand. In the GA and
LGA dockings, an initial population of 50 random individuals, a
maximum number of 1.5 = 10° energy evaluations, a maximum
number of 27 0 generations, a mutation rate of 002, and a
crossover rate of 080 have been used. Proportional selection
was used, where the average of the worst energy resulls was
caleulated over a window of the previous 10 generations.
Bagchiet al. [106], [ 107] presented anevolutionary approach
for designing a ligand molkecule that can bind 1o the active site
of a target protein. A two-dimensional (2-D) model was consid-
ered. A variable string length genetic algorithm (VGA) was used
for evolving an appropriate arrangement of the basic functional
units of the molecule to be designed. The method is superior to
fixed siring length GA for designing a ligand molecule to target
the human rhinovins strain 14 (causative agent for AIDS).
Chenetal [ 108] denved a population based annealing genetic
algorithm (PAG) vsing GAs and simulated annealing (SA). They
applied 1t to find binding structures for three drug protein molec-
ular pairs, meluding the anti-cancer drug methotrexate (MTX).
All of the binding results keep the energy at low levels, and have
a promising hinding geometrical structure in terms of number
of hydrogen bonds formed. One of the design methods of PAG,
which ncorporates an annealing scheme with the normal prob-
ability density function as the neighbor generation method, was
described in [ 109]. The algorithm was used for computer-aided
drug design. Using a dihydrofolate reductase enzyme with the
anti-cancer drug methotrexate and two analogs of the antibac-
terial drug trimethoprim, PAGs can find a drug structure within
several hours, A similar work 15 available in [110].
Christopher et al. [111] evaluated the use of GAs with local
search in moleculardocking. They imvestigated several GA-local
search hybrds and compared results with those obtained from
simulated annealing in enms of optimization suceess, and abso-
lute suceess in finding the true physical docked configuration.
Other mvestigations  are  available o [104],
[112]-[120]. A survey on the application of GAs for molecular
modeling, docking of flexible ligands into protein aclive siles,

relevant

and for de novoe ligand design is described in [121]. Advantages
and limitations of GAs are mentioned for the aforementioned
tasks. Incontrmst, the present article provides a broader overview
and state-of -the-art of the applications of EAs for several bioin-
formatcs tasks.

IV, CoONCLUSION

The increasing availability of annotated genomic sequences
has resulted mthe introduction of computational genomics and
proteomics, large-scale analysis of complete genomes, and the
proteins that they encode for relating specific genes to diseases.

The rationale for applying computational approaches to facil-
itate the understanding of varous biological processes mainly
includes the followmg:

1y 1o provide a more global perspective in expenmental de-
sign;

2) 1w capitalize on the emerging technology of database-
mining: the process by which testable hypotheses ane
generated regarding the function or structure of a gene
or protein of interest by identifying similar sequences in
betler chametenzed organisms.

GAsappearto be a very powerful artificial intelligence paradigm
to handle these isswes. This article provides an overview of
different bioinformatic s tasks and the relevance of GAs o handle
them efficiently.

Even though the current approaches in biocomputing using
EAs are very helpful i identifying patterns and functions of
proteins and genes, the output results are still far from perdect.
There are three general chame enstics that might appear to limit
the effectivencss of GAs. First, the basic selection, crossover,
and mutation operators are commeon Lo all applications. There-
fore, research is now focussed on designing problem specific
opertors o get better results. Second, a GA requires extensive
experimentation for the specification of several parameters so
that appropriate values can be identified. Third, GAs involve a
large degree of randomness and different runs may produce dif-
ferent results, so it is necessary 1o incorporate problem specific
domam knowledge imto GA o redoce randomness and com-
putational tme and current research 1$ going on n this direc-
tion also. The methods are not only tme-consuming, requiring
UNIX workstations to run on, but might also lead o false in-
terpretations and assumptions due to necessary simplifications.
It is therefore still mandatory to use biological reasoning and
common sense in evaluating the results delivered by a biocom-
puting program. Also, for evaluation of the trustworthiness of
the output of a program, it is necessary 1o understand its mathe-
maticaltheoretical background o finally come up with a useful
and sense-full analysis.

Other potental bioinformatics tasks for which EA can be
used melude the following:

1y chametenzation of protein content and metabolic path-
ways between different genomes;

2) identification of interacting proteins;

3) assignment and prediction of gene products;

4} large-scale analysis of gene expression levels;

5) mapping expression data o sequence, structural and bio-
chemical data.
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