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further incorporated into different types of neural network techniques like multi-layer perceptron, self-organizing map,

support vector machines, etc., to develop efficient granular neural networks for discovering the patterns in the object.

Different types of granular neural network architectures are described in [3]. Herbert and Yao [12] proposed a granular

computing framework for hierarchical self-organizing maps, where training is performed using a bidirectional update

propagation method. Mitra and Pal [5] developed a self organizing neural network architecture as a fuzzy classifier. A

knowledge based unsupervised network, called Rough SOM, is developed in [4] for discovering underlying clusters in a given

data. Here, rough sets are used to encode theweights as well as to determine the size of the network, and fuzzy sets are used

for discretization of feature space. Lingras et al. [14] proposed an adaption of self-organizing maps, based on the properties

of rough sets, to find interval set representation of clusters of web users on three educational web sites. Investigations have

also been carried out in integrating fuzzy sets and rough sets to handle uncertainty and provide a high degree of flexibility

[11,20,21,9,10].

In this article, we propose a network by integrating fuzzy sets, fuzzy rough sets and the Kohonen self-organizing map

(SOM) [13], where two facets of natural computation, viz, granulation and self organization are integrated. A preliminary

version of this investigation is reported in [18]. In this investigation, fuzzy sets are used to develop linguistic input vectors

or information granules, fuzzy rough sets are used to extract the crude domain knowledge about data in the form of

rules, using a fuzzy reflexive relation, and SOM is used for clustering the data by integrating fuzzy sets and fuzzy rough

sets. Here, the significance of the fuzzy reflexive relation is that it measures the similarity between any two patterns in a

universe. There is also a possibility of outliers to be present in the data due to noise. This is effectively reduced by using the

concept of fuzzy rough sets based on the fuzzy reflexive relation. The concept of an information granule is incorporated,

in our methodology, in two different ways: (i) each feature value of data is defined as an information granule in terms of

low, medium or high using fuzzy sets and (ii) by using an user defined α-value (α-cut), between 0 and 1, to generate the

granulation structures (information granules). These granulation structures, when presented to a decision table, help in

extracting domain knowledge about the data in the form of rules. These rules are encoded into SOM and they are used as

network parameters (initial connectionweights). The resultant network is called a fuzzy rough granular self-organizingmap

(FRGSOM) and it consists of two layers: input layer and SOM’s output layer. The arrangement of the nodes in the input layer

and SOM’s output layer of the network, incorporation of rules into the network, and training of the network are as follows:

The number of nodes in the input layer is determined by a 3n-dimensional linguistic vector (low, medium and high),

describing a n-dimensional pattern, using fuzzy sets. The number of nodes in the SOM’s output layer is considered to be the

same as the expected number of clusters. The nodes are then arranged in a two-dimensional grid. The connection weights

between nodes in the input layer and nodes in the SOM’s output layer are initialized by dependency factors. The initial

knowledge based network (FRGSOM) is trained through the competitive learning process of the conventional SOM. After

completion of the training process, the network determines the underlying granulation structures/clusters of the data. These

are formed at the nodes of the SOM’s output layer in a topological order.

We also propose a new entropy measure, called fuzzy rough entropy, based on the lower and upper approximations

of a set, and provide some of its properties. In general, in real life data sets, pattern classes have overlapping boundaries,

resulting in uncertainty with respect to class belongingness of patterns. The uncertainty can be handled by defining degrees

of membership of the patterns, belonging to lower and upper approximations of a set, corresponding to each cluster. Several

researchers have defined entropy measures, based on fuzzy set theory and rough set theory, in the past few years. Sen and

Pal [22] proposed different classes of entropy measures using fuzzy rough sets. Entropy measure is also determined in [23],

using fuzzy rough sets with T -norms, to quantify the uncertainty in T -generalized fuzzy rough sets. In this investigation, the

lower and upper approximations are defined by the concept of fuzzy rough sets. We use the proposed entropy measure to

quantify the uncertainty in each cluster. The performance of FRGSOM and some related clustering methods like rough self-

organizingmap (Rough SOM), fuzzy self-organizingmap (FSOM) and self-organizingmap (SOM) is then evaluated, based on

the proposed fuzzy rough entropy, β-index [31] and Davies–Bouldin index (DB-index) [30] for different real life data sets,

viz., Telugu vowel data, medical data and microarray data.

The paper is organized as follows: we describe the methodology of FRGSOM in Section 2. A new fuzzy rough entropy

measure is proposed, based on the concept of fuzzy rough sets, and its properties are discussed in Section 3. In Section 4,

a brief description of the various real life data sets, that are used in our experiments, is given. The FRGSOM is compared

with Rough SOM, FSOM and SOM on these data sets and using the proposed fuzzy rough entropymeasure, β-index [31] and

Davies–Bouldin index (DB-index) [30]. Finally, Section 5 concludes this investigation.

2. Proposed fuzzy rough granular self-organizing map

Here, we describe the process of integrating fuzzy sets and fuzzy rough sets with SOM [13] in order to develop the

proposed FRGSOM. The main steps of our methodology are:

1. Represent input vector of SOM in terms of fuzzy granules:

The input vector of SOM is described in terms of fuzzy granules low,medium and high, using the concept of fuzzy sets.

The procedure of defining the fuzzy granules using fuzzy sets is explained in Section 2.1.

2. Granulate the linguistic input data based on α-cut: The linguistic input data is granulated in two phases. While the first

phase computes the pairwise similarity matrix among the patterns using t-norm and implication operator, the second
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phase generates the granulation structures. The value of α, used to generate granulation structures, is chosen between 0

to 1 in the second phase. The complete procedure of defining granular structures is explained in Section 2.2.

3. Introduce the concept of fuzzy rough sets to extract domain knowledge of data: The granulation structures are first labeled

according to decision class information and then presented to a decision table. Based on the decision table, a fuzzy reflex-

ive relation is defined tomeasure a feature-wise similarity between two patterns in the universe, thereby approximating

each such structure using lower and upper approximations. The lower approximation is used to define a positive degree

of a pattern in a universe and a dependency degree of a conditional attribute. The lower approximations, positive degrees,

and dependency degrees are then used to extract the domain knowledge about the data. These are discussed in detail in

Section 2.3.

4. Incorporate the domain knowledge in SOM:

The domain knowledge is encoded in the form of connection weights between the nodes of the input layer and the

nodes of the output layer of self-organizing map (SOM). The knowledge encoding procedure and the network configura-

tion of the FRGSOM are explained with an example in Section 2.4.

5. Train the FRGSOM and cluster the data:

The FRGSOM is trained with the competitive learning of SOM and the data is clustered. These are explained in

Section 2.5.

2.1. Input vector representation of SOM in terms of fuzzy granules

In general, human minds can perform a wide variety of physical and mental tasks without any measurement or com-

putation. Familiar examples of such tasks include parking a car, driving in heavy traffic, and understanding speech. For

performing such tasks, one needs perceptions of size, distance, weight, speed, time, direction, smell, color, shape, force, etc.

But a fundamental difference between such measurements on the one hand and perception on the other hand is that the

measurements are crisp numbers, whereas perceptions are fuzzy numbers or, more generally, fuzzy granules [15].

A fuzzy granule is a group of patterns defined by the generalized constraint form “X isr R” , where, ‘R’ is a constrained

relation, ‘r’ is a random set constraint and a combination of probabilistic and possibilistic constraints, and ‘X’ is a fuzzy set

valued random variablewhich takes the values low,medium and high. Using fuzzy-set theoretical techniques, a pattern point

x, belonging to the universe U , may be assigned a grade of membership with a membership function, µA(x), to a fuzzy set

A. This is defined as

A = {(µA(x), x)}, x ∈ U, µA(x) ∈ [0, 1]. (1)

In Eq. (1), the membership values are defined by the π-membership function, with range [0, 1] and x ∈ Rn, and is defined

as [16]

π(x, C, λ) =
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(

1−
‖x−C‖2

λ

)2

, for λ
2
≤ ‖x− C‖2 ≤ λ,

1− 2

(

‖x−C‖2
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)2

, for 0 ≤ ‖x− C‖2 ≤
λ
2
,

0, otherwise,

(2)

where λ > 0 is a scaling factor (radius) of the π function with C as a central point, and ‖ · ‖2 denotes the Euclidean norm.

2.1.1. Choice of parameters of π functions for numerical features

Let {Fij}, for i = 1, 2, . . . , s; j = 1, 2, . . . , n; represent a set of s patterns with n features for a given data set, and Fjminm

and Fjmaxm
denote theminimum andmaximum values along the jth feature, considering all the s patterns. In general, real-life

data contains outliers which can affect the parameters, center and scaling factor of π-membership function. The effect of

outliers can be reduced by taking an average of feature values of all the patterns (s patterns) along the jth feature, Fj. It is

considered as the center of the linguistic termmedium and denoted by rmj
. Then, the average values (along the jth feature Fj)

of the patterns, having the label values in the ranges [Fjminm
, rmj

) and (rmj
, Fjmaxm

], are defined as the means of the linguistic

terms low and high, and denoted by rlj and rhj , respectively. Similarly, considering the patterns having label values in the

ranges [Fjminm
, rmj

) and (rmj
, Fjmaxm

], along the jth axis, we define Fjminl
= Fjminm

, Fjmaxl
= rmj

, Fjminh
= rmj

, and Fjmaxh
= Fjmaxm

.

The center C and the corresponding scaling factor λ for linguistic terms low, medium and high, along the jth feature, Fj, are

as defined in [17].

2.1.2. Incorporation of granular concept

An n-dimensional pattern can be represented as a 3n-dimensional linguistic vector [5]. If Fi1, Fi2, . . . , Fin represent the n

features of the ith pattern Fi, then the fuzzy granule of the features is defined as

−→
F i = [µlow(Fi1)(

−→
F i), µmedium(Fi1)(

−→
F i), µhigh(Fi1)(

−→
F i), . . . , µhigh(Fin)(

−→
F i)], (3)

where µ indicates the value of the π-membership function along each feature axis, and corresponds to a fuzzy granule low,

medium or high.
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2.2. Granulation of linguistic input data based on an α-cut

Here, we recall some preliminaries on granulations based on rough sets, fuzzy sets and fuzzy rough sets. Then, the

proposed granulation of linguistic data, based on an α-cut, is explained. In rough sets, the granulation structure is typically

a partition of the universe. For preliminaries on granulations, based on rough sets, one may refer to [6–8].

In fuzzy sets, patterns belong to a set, and a couple of patterns belong to a relation with a given degree. A fuzzy relation

R in U is a mapping U × U → [0, 1], where a mapping is expressed by a membership function R(x, y) of a relation R, i.e.,

R = {((x, y), R(x, y)) | (R(x, y)) ∈ [0, 1], x ∈ U, y ∈ U}. For each y ∈ U , the R-foreset of y is a fuzzy set Ry, defined by

Ry(x) = R(x, y), for all x ∈ U .

In fuzzy rough set theory, a similarity between any two patterns in U is modeled by a fuzzy relation R, which is defined as

R(x, x) = 1 (reflexive),

R(x, y) = R(y, x) (symmetry), and

T (R(x, y)R(y, z)) ≤ R(x, z) (T -transitivity),

for all x, y, z in U . Given a t-norm (or a T -norm), if R does not satisfy symmetry and T -transitivity properties then R is called

a fuzzy reflexive relation (fuzzy T -equivalence relation). In general, for the fuzzy T -equivalence relation, we call Ry a fuzzy

T -equivalence class (fuzzy equivalence granule) of y. The following fuzzy logical counterparts of connectives [19] are used in

generalization of lower and upper approximations in fuzzy rough set theory. For all x and y ∈ [0, 1], an operator T , mapping

from [0, 1]2 to [0, 1], satisfies T (1, x) = x. We use TM and TL to represent t-norms, and these are defined as

TM(x, y) = min(x, y), (4)

TL(x, y) = max(0, x+ y− 1) (Lukasiewicz t-norm). (5)

On the other hand, a mapping I : [0, 1] × [0, 1] → [0, 1] satisfies I(0, 0) = 1, I(1, x) = x for all x ∈ [0, 1], where I is an

implicator. For all x, y ∈ [0, 1], the implicators IM and IL are defined as

IM(x, y) = max(1− x, y), (6)

IL(x, y) = min(1, 1− x+ y) (Lukasiewicz implicator). (7)

Algorithm 1. Similarity Matrix

1. Input: x(i, k), i = 1, 2, . . . , s;
2. k = 1, 2, . . . , 3n.
3. /*a set of 3n-dimensional granular data*/

4. Output:m(i, j), i, j = 1, 2, . . . , s.
5. /*a similarity matrix*/

6. Method:

1: for i← 1 to s do

2: for j← 1 to s do

3: for k← 1 to 3n do

4: X ← x(i, k);
5: Y ← x(j, k);

/* Use Eq. 5 */

6: l1 ← 1− X + Y ;

7: l2 ← 1− Y + X;

8: I1 ← (l1 < 1)?l1 : 1;
9: I2 ← (l2 < 1)?l2 : 1;

10: /* Use Eq. 7 */

11: M(k)← ((I1 + I2 − 1) > 0)?(I1 + I2 − 1) : 0;
12: end fork

13: for k← 1 to 3n do

14: m(i, j)← min[M(k)];
15: end for k

16: end for j

17: end for i

Algorithm 2. Granulation Structures

1. Input: x(i, k), i = 1, 2, . . . , s;
2. k = 1, 2, . . . , 3n. /*linguistic input data*/
3. m(i, j), i, j = 1, 2, . . . , s.
4. /*a similarity matrix*/

5. α /*a real value between 0 to 1*/
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6. Output: p /* number of groups*/

7. array(p) /*number of patterns in each group*/

8. U(i1, j1, k), i1 = 1, 2, . . . , p;
9. j1 = 1, 2, . . . , p(i1), /*granulation structures*/

10. Method:

1: p← 0;

2: for i← 1 to s do

3: /*use < continue > statement*/

4: array(p)← 0;

5: p← p+ 1;

6: for j← 1 to s do

7: if m(i, j) > α then

8: /*use < continue > statement*/

9: flag(j)← 1;

10: g(p, array(p))← j;

11: end if

12: end for j

13: end for i

14: for i1 ← 1 to p do

15: for j1 ← 1 to p(i1) do
16: val← g(i1, array(j1));
17: for k← 1 to 3n do

18: U(i1, j1, k)← x(val, k);
19: end for k

20: end for j1
21: end for i1

2.2.1. Determination of granulation structures

As mentioned earlier, the linguistic input data is granulated to find the granulation structures of the data in two phases,

using two different algorithms. While the first phase computes a pairwise similarity matrix of the size s × s, where s is

the total number of patterns (see Algorithm 1), the second phase generates the granulation structures (see Algorithm 2).

Algorithm 1 is used to define a pairwise similarity matrix among the linguistic input data, using fuzzy logic connectives

(see Eqs. (5) and (7)). The similarity matrix is then used to develop the granulation structures based on an α-value, where

the value of α is chosen between 0 and 1. The method of determining granulation structures (i.e., p groups in Algorithm

2) is shown in Algorithm 2. The resultant structures (p groups) can be viewed as partitions or clusters. These partitions

are arranged in decreasing order according to the size of the group. Here, the size is defined by the number of points in a

group. It may be noted that, for different α-values, between 0 to 1, the number of granulation structures will be different.

We performed experiments with different α-values and for every α-value, we select the top c groups, based on their size,

in all p groups where c represents the user defined number of clusters. The compactness of the first c groups, for every

α-value, are then calculated using the proposed fuzzy rough entropy (FRE) (defined in Section 3) and the granulation

structures, corresponding to a particular α-value, which provide the lowest average FRE, are accepted. These are presented

to a decision system S to extract the domain knowledge (explained in Section 2.3).

2.3. Introduce the concept of fuzzy rough sets to extract domain knowledge about data

Let the number of patterns in all the c-groups, obtained using the selectedα-value, be denoted by r . These r patterns from

c-groups, represented by {x1, x2, . . . , xr}, are then presented to a decision system S = (U, A ∪ {d}), where U represents

the universe and A represents the attributes, say {a1, a2, . . . , a3n}. Here, each attribute is constructed by considering the

corresponding dimension, from the 3n-dimensional linguistic vectors (see Eq. (3)), for all the patterns. The decision attribute

d is defined as Xk, where k = 1, 2, . . . , c. The value of Xk, corresponding to a pattern, is assigned according to its group. Each

Xk can be treated as a decision class. Each pattern xi in U is classified by its decision classes. The fuzzy reflexive relation Ra,

between any two patterns x and y in U , with respect to a quantitative attribute a ∈ A, is defined as

Ra(x, y) =
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if a(x) ∈ Rd(Xk1), a(y) ∈ Rd(Xk2), and k1 6= k2,

(8)
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where k1 = 1, 2, . . . , c; k2 = 1, 2, . . . , c , and σak1
and σak2

represent the standard deviation of decision classes Xk1 and Xk2 ,

respectively. In Eq. (8), a(x) and a(y) ∈ Rd(Xk1) imply that the patterns x and y belong to decision class Xk1 with respect to a

decision attribute {d}, where a ∈ {d}. On the other hand, a(x) ∈ Rd(Xk1) and a(y) ∈ Rd(Xk2) imply that the patterns x and y

belong to two different decision classes, Xk1 and Xk2 , respectively.

When a qualitative attribute a ∈ {d}, then the relation Rd between any two patterns x and y ∈ U , with respect to the

attribute ‘a’, is defined as follows:

Defining decision classes using fuzzy sets:

The decision system S contains c-decision classes of a decision attribute. Assume that the 3n-dimensional vectors Okj

and Vkj, j = 1, 2, . . . , 3n, are the mean and standard deviation, respectively, of the patterns belonging to the kth class in the

given decision system. The weighted distance of a pattern
−→
Fi , i = 1, 2, . . . , r , from the kth decision class is defined as

Zik =

√

√

√

√

n
∑

j=1

[

Fij − Okj

Vkj

]2

, for k = 1, 2, . . . , c, (9)

where Fij is the value of the jth component of the ith pattern. Note that, when the value of a feature for all the patterns

in a class is the same, then the standard deviation will be zero. In that case, we consider Vkj = 0.000001 (for the sake of

computation) so that the weighting distance Zik becomes high and the membership value of the ith pattern, belonging to

the kth class along that feature, becomes low. The membership value of the ith pattern in the kth class is defined as [24]

µk(
−→
F i) =

1

1+
(

Zik
fd

)fe
, (10)

where fe and fd are fuzzifiers. Itmay be noted thatwhen a pattern has differentmembership values then its decision attribute

becomes quantitative. It can be shown in two different ways, namely,

(1) the membership values of all patterns in the kth class to its own class is defined as

Dkk = µk(
−→
F i), if k = l, (11)

where µk(
−→
F i) represents the membership value of the ith pattern to the kth class, and

(2) the membership values of all patterns in the kth class to other classes is defined as

Dkl = 1, if k 6= l (12)

where k and l = 1, 2, . . . , c . For any two patterns x and y ∈ U , with respect to an attribute a ∈ {d}, the fuzzy decision classes

are defined as

Ra(x, y) =

{

Dkk, if a(x) = a(y),
Dkl, otherwise.

(13)

Here, Dkk represents the membership value of each pattern
−→
F i belonging to the same class (k = l), and Dkl represents an

integer value ‘1’ for all the patterns from other than the kth class (k 6= l).

The lower and upper approximations of a fuzzy set A ⊆ U , with a reflexive relation R under the fuzzy logic connectives,

Eqs. (5) and (7), are defined as [21],

(R ↓ A)(y) = inf
x∈U

I(R(x, y), A(x)), and (14)

(R ↑ A)(y) = supx∈UT (R(x, y), A(x)), (15)

respectively, for all y in U . For any B ⊆ A, the fuzzy positive region can be defined, based on the B-indiscernibility relation

RB, for x ∈ U , as

POSB(y) =

(

⋃

x∈U

RB ↓ Rdx

)

(y), (16)

for all y in U . The degree of dependency of γ , on the set of attributes B ⊆ A, is defined as

γB =

∑

x∈U

POSB(x)

|U|
, (17)

where | · | denotes the cardinality of a set U , and the value of γ is 0 ≤ γ ≤ 1.
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Table 1

Data set.

U a b c d

1 −0.4 −0.3 −0.5 1

2 −0.4 0.2 −0.1 2

3 −0.3 −0.4 0.3 1

4 0.3 −0.3 0 2

5 0.2 −0.3 0 2

6 0.2 0 0 1

2.4. Incorporation of domain knowledge in SOM

In this section, we first describe how the decision table can be used to explain the concept of granulation by partition

and fuzzy rough set approximations, based on a fuzzy reflexive relation. Based on this principle, knowledge about the data

is extracted and incorporated into the self-organizing map (SOM). It is then used for competitive learning. The knowledge

encoding procedure is as follows:

Knowledge encoding procedure:

Let us recall the aforesaid decision table S = (U, A ∪ {d}) with its set of conditional attributes, decision attributes, set

of patterns, and labeled values of patterns corresponding to 3n-dimensional conditional attributes. The following steps are

applied to the decision table S = (U, A ∪ {d}) for extracting the domain knowledge about data.

Step 1. Generate a fuzzy reflexive relational matrix by using the fuzzy reflexive relation (see Eq. (8)) on all possible pairs of

patterns and obtain additional granulation structures based on the relational matrix.

Step 2. Use a fuzzy reflexive relational matrix to compute the membership value (belonging to lower approximation, using

Eq. (14)) of every pattern of a concept, for each conditional attribute with respect to decision classes (using Eq. (13)).

Step 3. Calculate the fuzzy positive region (using Eq. (16)) of every pattern for each conditional attribute.

Step 4. Calculate the degree of dependency (using Eq. (17)), of each conditional attribute, corresponding to patterns within

the concept, with respect to each decision class. Assign the resulting dependency factors as initial weights between

the input layer nodes and c-number of output layer nodes in SOM, where c represents the user defined number of

clusters.

2.4.1. Example

Let us consider an example data set [20], and two granulation structures, shown in Table 1. Each conditional attribute

(feature) in Table 1 is transformed into a 3-dimensional granular space using Eq. (3). Then the resulting decision table is

shown in Table 2. We apply the concept of fuzzy rough sets based on the fuzzy reflexive relation on the example data set

to determine the initial weights of the FRGSOM. The fuzzy membership values of the patterns (using Eqs. (11) and (12)) are

presented under the decision columns Dkk and Dkl in Table 2. Two typical examples of fuzzy reflexive relational matrices,

resulting from conditional attributes L1 and M1, are as follows:

RL1(x, y) =













1 0.938 0.184 1 0.194 0.194
0.938 1 0.246 0.938 0.256 0.256
0.184 0.246 1 0.194 1 1

1 0.938 0.184 1 0.194 0.194
0.184 0.246 1 0.194 1 1

0.184 0.246 1 0.194 1 1













RM1
(x, y) =













1 0.702 0.793 1 0.908 0.793
0.702 1 0.908 0.702 0.611 0.908
0.793 0.908 1 0.793 0.702 1

1 0.702 0.793 1 0.908 0.793
0.908 0.611 0.702 0.908 1 0.702
0.793 0.908 1 0.793 0.702 1













.

Similarly, the fuzzy reflexive relational matrices RH1
(x, y), RL2(x, y), RM2

(x, y), RH2
(x, y), RL3(x, y), RM3

(x, y), and RH3
(x, y) can

be determined for the remaining attributes. We then calculate a membership value of an pattern, belonging to the lower

approximation, using the values in the decision columns Dkk and Dkl corresponding to the decision classes X0 = {1, 3, 6}
and X1 = {2, 4, 5} in Table 2.
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Table 2

Decision table.

U L1 M1 H1 L2 M2 H2 L3 M3 H3 d Dkk Dkl

1 0.87 0.39 0 0.92 0.92 0 0.12 0.34 0 1 0.25 1

3 0.5 0.69 0 0.38 0.73 0 0.12 0.87 0 1 0.29 1

6 0 0.60 0.87 0 0.81 0.12 0 0.87 0.92 1 0.21 1

2 0.87 0.39 0 0 0.26 0.12 0 0.98 0.38 2 0.21 1

4 0 0.30 0.5 0.92 0.92 0 0 0.87 0.92 2 0.32 1

5 0 0.60 0.87 0.92 0.92 0 0 0.87 0.92 2 0.30 1

The membership value of pattern 1, belonging to the lower approximation (using Eq. (14)), with respect to the decision

class X0 = {1, 3, 6} is

(RL1 ↓ Rdx)(1) = inf
x∈U

I{RL1(x, 1), Rd(x, 1)},

= min{I(1, 0.251714), I(0.938, 0.297584), I(0.184, 0.219859), I(1, 1), I(0.194, 1), I(0.194, 1)},

= min{0.251714, 0.359490, 1, 1, 1, 1},

= 0.251714.

For the remaining patterns, the membership values belonging to the lower approximation are
(RL1 ↓ Rdx)(3) = 0.297584, (RL1 ↓ Rdx)(6) = 0.219859, (RL1 ↓ Rdx)(2) = 0.251714, (RL1 ↓ Rdx)(4) = 0.219859, and

(RL1 ↓ Rdx)(5) = 0.219859.
The membership value of pattern 1, belonging to the lower approximation (using Eq. (14)), with respect to the decision

class X1 = {2, 4, 5}, is

(RL1 ↓ Rdx)(1) = inf
x∈U

I{RL1(x, 1), Rd(x, 1)},

= min{I(1, 1), I(0.938, 1), I(0.184, 1), I(1, 0.210388), I(0.194, 0.321112), I(0.194, 0.300009)},

= min{1, 1, 1, 0.210388, 1, 1},

= 0.210388.

Similarly, for the remaining patterns, themembership values belonging to the lower approximation are (RL1 ↓ Rdx)(3) =
0.271536, (RL1 ↓ Rdx)(6) = 0.300009, (RL1 ↓ Rdx)(2) = 0.210388, (RL1 ↓ Rdx)(4) = 0.300009, and (RL1 ↓ Rdx)(5) =
0.300009.

Hence, the positive regions (using Eq. (16)) of patterns in the concept {1, 3, 6},with respect to decision classX0 = {1, 3, 6},
are defined as follows:

(RL1 ↓ Rdx)(1) = max{0.251714, 0.210388},

= 0.251714.

For the remaining patterns, the positive regions are
(RL1 ↓ Rdx)(3) = 0.297584, (RL1 ↓ Rdx)(6) = 0.300009.
Similarly, the positive regions of patterns in the concept, {2, 4, 5}, with respect to decision class X1 = {2, 4, 5}, are
(RL1 ↓ Rdx)(2) = 0.251714, (RL1 ↓ Rdx)(4) = 0.300009, and (RL1 ↓ Rdx)(5) = 0.300009.
The dependency degree of the attribute L1 with respect to decision class x0 = {1, 3, 6} is

γ{L1}(x0) = (0.251714+ 0.297584+ 0.300009)/3,

= 0.283102.

The dependency degree of the attribute L1 with respect to decision class x1 = {2, 4, 5} is

γ{L1}(x1) = (0.251714+ 0.300009+ 0.300009)/3,

= 0.283911.

The dependency degrees for the remaining attributes with respect to each decision class are as follows:

γ{M1}(x0) = 0.314289, γ{M1}(x1) = 0.298190,
γ{H1}(x0) = 0.267812, γ{H1}(x1) = 0.290945,
γ{L2}(x0) = 0.303748, γ{L2}(x1) = 0.273292,
γ{M2}(x0) = 0.389971, γ{M2}(x1) = 0.456389,
γ{H2}(x0) = 0.273292, γ{H2}(x1) = 0.273292,
γ{L3}(x0) = 0.732064, γ{L3}(x1) = 0.219859,
γ{M3}(x0) = 0.475454, γ{M3}(x1) = 0.308170,
γ{H3}(x0) = 0.766670, and γ{H3}(x1) = 303823.
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Let us now define the initial structure of FRGSOM for the above said example data set in Table 2. The data has nine input

features (conditional attributes), so the number of input layer nodes of the FRGSOM is set to nine. The number of output

layer nodes of the FRGSOM is set to two as it is assumed that there are two granulation structures in this data. The aforesaid

dependency degrees, corresponding to the decision class X0, are used as initial connection weights between the nine input

layer nodes to the first node in the SOM’s output layer. Similarly, the dependency degrees, corresponding to the decision

class X1, are used as initial connection weights between the nine input nodes to the second output node. The network is

then trained through a competitive learning of SOM for clustering of the input data, as explained in the next section.

2.5. Train the FRGSOM and cluster the data

In this section, first we provide a brief description of the conventional self-organizing map (SOM) [13], and then we

explain the training process of the proposed FRGSOM.

Let x = x(t) ∈ Rn denote a sequence of input vectors and {wij(t), i = 1, 2, . . . ,N; j = 1, 2, . . . , n} denote a set of

network parameters (initial connection weights), where t is the time coordinate, N is the number of nodes in the output

layer, and n represents the dimension of the input vector as well as the number of nodes in the input layer. Initially, the

network parameters in SOM are chosen as small random numbers. At each successive instant of time, t , an input vector xj(t)
is randomly presented to the network. The Euclidean distance, di, between the input vector, xj(t), and weight vector, wij(t),
is computed as

di = ‖xj(t)− wij(t)‖
2. (18)

The winning neuron obtained in the output layer, denoted by a, is determined by

a = argmin{di}, i = 1, 2, . . . ,N. (19)

The nodes in the output layer are arranged in a two-dimensional lattice. The neighborhood set, say Na, around the winning

neuron a, is defined in [13] as

Na(t) = exp

(

−‖ra − rc‖
2

2σ(t)2

)

, (20)

where rc and rc represent the coordinates of winning node a and a node c within the neighborhood Na, respectively. Here,

σ(t) is the width of the neighborhood set and is decreased with every iteration. The value of σ is chosen as in [13]. Now, the

weights of neurons within the neighborhood set, Na, are updated and neurons outside Na are left intact. The updated weight

of any neuron is defined as

wij(t + 1) = wij(t)+ Nai(t)α(t)(xj(t)− wij(t)), j = 1, 2, . . . , n, (21)

where α is a learning parameter, chosen between 0 and 1, and i represents the number of neurons within the neighborhood

set Na. Eq. (21) updates the weights of the winning neuron and its neighborhood neurons. The updated weights are more

likely to become similar to the input patterns, which are presented to the network during training.

In the proposed FRGSOM, the input data is first transformed into 3-dimensional granular space using Eq. (3). During

the training process of FRGSOM, instead of choosing the initial connection weights in SOM as small random numbers they

are determined using the concept of fuzzy rough sets, explained in Section 2.4. The FRGSOM is then trained through the

competitive learning process using Eq. (21). After completion of the competitive learning, FRGSOM is able to partition the

granular input data into the groups/clusters (granulation structures) in a topological order. Here, the input data is partitioned

by FRGSOM in a topological order in the sense that the weight updates of the neighborhood neurons, of a winning neuron,

cause the whole output space to become approximately ordered [13].

3. Fuzzy rough entropy measure

The performance of clustering methods is evaluated using a newly defined entropy measure along with some of the

existing ones and the results are reported. Before defining the proposed entropy measure, we explain the concept behind it.

Let us consider, as an example, three clusters, say, C1, C2 and C3. Let p1, p2 and p3 denote the number of patterns belonging

to C1, C2 and C3, respectively. It may be noted that the data used for evaluation of the clusters, based on fuzzy rough

entropy measure, is defined in terms of membership values using Eq. (2), where the parameters in Eq. (2) are considered

corresponding to a linguistic termmedium to reduce computational complexity.

Let Xi denote the ith set, with all the patterns, corresponding to the cluster Ci, i = 1, 2 and 3. That is, for i = 1, X1 = p1.

The entropy measure for a cluster Ci is defined based on the roughness values of the set Xi, which is as follows:
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Table 3

An example decision table for a set X1 corresponding to a cluster C1 .

Patterns Conditional Decision Fuzzy decision Fuzzy decision

Attributes Attribute classes classes

corresponding to

a linguistic termmedium

(u1) (A) (d) (Ekk) (Ekr )

p1 a1 class 1 E11 , for k = 1 E12 , for k = 1, r = 2

a2 ,

p2, p3 . . . ,

an class 2 E22 , for k = 2 E21 , for k = 2, r = 1

3.1. Roughness of a set X1 in a universe U

Let Si = (ui, A ∪ {d}) be a decision system corresponding to a cluster Ci, i = 1, 2 and 3. For i = 1, S1 = (u1, A ∪ {d})
represents the decision system for the set X1, where A = {a1, a2, . . . , an} represents the conditional attributes, and d

(d /∈ A) represents a decision attribute. Here, universe u1 = p1 ∪ p2 ∪ p3. The patterns, p1, are labeled with an integer value

‘‘1’’, representing the decision class 1, and all other patterns, p2 ∪ p3 are labeled with an integer value ‘‘2’’, representing the

decision class 2. The methodology, say Procedure 1, of defining roughness of the set X1, using the concept of fuzzy rough

sets, is as follows:

Procedure 1:

(S1) For a quantitative attribute a ∈ A, we calculate the fuzzy reflexive relation using Eq. (8).

(S2) For a qualitative decision attribute a ∈ {d}, we define a fuzzy way of decision classes for the patterns p1 and p2 ∪ p3.

(S3) Let the n-dimensional vectors Okj and Vkj, j = 1, 2, . . . , n, denote the mean and standard deviation of the data for the

kth class of the decision system S1. The weighted distance of a pattern
−→
Fi from the kth class is defined by Eq. (9), where

k = 1 and 2 (decision class 1 and decision class 2). The membership values of the ith pattern to the kth class is defined

by Eq. (10).

(S4) The values of the patterns corresponding to the decision classes are defined in terms of average membership values.

Average membership values are defined in two ways, namely, (1) by computing the average of the membership values

over all the patterns in the kth class to its own class (k = 1), and assigning it to each pattern,
−→
F i, in the kth decision

class (k = 1), and (ii) by computing the average of the membership values over all the patterns in the kth class (k = 1)

to the other class (k = 2), and assigning it to each pattern
−→
F i in the other decision class (k = 2). So the average

membership value of all the patterns in the kth class to its own class is defined as

Ekk =

mk
∑

i=1

µk(
−→
F i)

|mk|
, if k = r, (22)

where r represents the total number of classes.

The average membership values of all the patterns in the kth class (k = 1) to the other decision class (say, k = 2)

are defined as

Ekr =

mk
∑

i=1

µr(
−→
F i)

|mk|
, if k 6= r, (23)

where |mk| indicates the number of patterns in the kth class. For a qualitative attribute ‘a’ ∈ {d}, the fuzzy decision

classes are defined as

Ra(x, y) =

{

Ekk, if a(x) = a(y),
Ekr , otherwise,

(24)

for all x and y in u1.

A detailed description of defining the decision classes, in a fuzzy way, of the data can be found in [17]. A decision table

S1 along with fuzzy decision classes, for a set X1 corresponding to a cluster C1, is shown in Table 3, as an example.

Let x0 = {p1} and x1 = {p2 ∪ p3} denote two subsets of the universe u1. For each conditional attribute (feature)

a ∈ A, we now compute the membership values of the patterns in the subset x0, for belonging to the lower and the upper

approximations of X1, using Eqs. (14) and (15), respectively. Thereafter, for each conditional attribute a ∈ A, we calculate

the sum of weighted membership values of all the patterns in a subset x0 in two ways:
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(i) bymultiplying themembership value of a pattern y to a subset x0, with its membership value, for belonging to a lower

approximation of X1. For x ∈ u1, it is denoted by LS, and is defined by

LS =
∑

y∈x0

m(y)(R ↓ Ax)(y), (25)

wherem(y) represents themembership value of a pattern y to a subset x0, and (R ↓ Ax)(y) represents its membership value,

for belonging to a lower approximation of X1, corresponding to a conditional attribute a ∈ A.

(ii) by multiplying the membership value of a pattern y in a subset x0, with the membership value, for belonging to a

upper approximation of a pattern y in a subset x0. For x ∈ u1, it is denoted by US, and is defined as

US =
∑

y∈x0

m(y)(R ↑ Ax)(y). (26)

For a conditional attribute a ∈ A = {a1, a2, . . . , an}, the LS and US then become LSai and USai for i = 1, 2, . . . , n. Therefore,
the roughness of the set X1 corresponding to the cluster C1 is defined as

R(X1) = 1−

n
∑

i=1

LSai

n
∑

i=1

USai

. (27)

Here, R(X1) quantifies the uncertainty in terms of roughness in the set X1, corresponding to a cluster C1.

The fuzzy rough entropy (FRE) of a cluster C1, based on the roughness measure defined in Eq. (27) of the set X1, is defined

as

FRE(C1) = −R(X1)loge(R(X1)/e). (28)

For the remaining clusters Ci, i = 2 and 3, we apply the same procedure for defining the FRE. Therefore, the fuzzy rough

entropy (FRE) of a cluster Ci is defined as

FRE(Ci) = −R(Xi)loge(R(Xi)/e) (29)

where i = 1, 2, . . . , c , and the average fuzzy rough entropy is defined as

FRE =
1

c

(

c
∑

i=1

FRE(Ci)

)

. (30)

The fuzzy rough entropy measure, FRE(Ci), i = 1, 2, . . . , c , satisfies the following properties:

1. Nonnegativity: FRE(Ci)≥ 0 iff R(Xi) ≥ 0.
2. Continuity: For all the values of R(Xi) ∈ [0, 1], FRE(Ci) is a continuous function of R(Xi).
3. Sharpness: The value of FRE(Ci) is zero when (R ↓ A)(y) = (R ↑ A)(y), for y ∈ Xi.
4. Maximality and normality: When lower approximation of the set, Xi, is zero then the roughness value of the set is equal

to 1. This implies that the entropy measure FRE(Ci) attains the maximum value of unity.
5. Resolution: For any C∗i ≤ Ci⇒ FRE(C∗i )≤ FRE(Ci).
6. Monotonicity: FRE(Ci) is a monotonic increasing function of R(Xi).

As FRE(Ci), i = 1, 2, . . . , c satisfies all the above mentioned properties, the average fuzzy rough entropy (FRE) also

satisfies them. A lower value of FRE for a cluster indicates that the cluster is good (in terms of compactness). It may noted

that a symmetry property is not discussed here because we do not consider the compliment of the set Xi, while defining the

entropy measure of each cluster.

4. Time complexity

In this section, we discuss about the time complexity of FRGSOM involving 3-dimensional linguistic vectors, Algorithms

1 and 2, fuzzy decision classes, initial connection weights and SOM. The time complexity of FRE and FRGSOM with FRE is

also provided.

Time complexity of 3n-dimensional linguistic data:

Considering the procedure for transforming an n-dimensional data into a 3n-dimensional linguistic data (see Sections 2.1,

2.1.1 and 2.1.2), the total time complexity is O(ns + n + nl + n + nh + n + s(3n)), where ns + n, nl + n, and nh + n refer

to the time complexities for defining the centers and scaling factors of all the features corresponding to the linguistic terms

medium, low and high, respectively and s(3n) is the complexity for transforming n-features into 3n-dimensions of s patterns.

Here, s, l and h represent the total number of patterns along three feature axes, corresponding to linguistic termsmedium low

and high, respectively. Therefore, the asymptotic time complexity is O(s(3n)) as s(3n) is greater than each of the remaining

terms. Note that s is also the total number of patterns.
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Time complexity of Algorithm 1:

The time complexity of Algorithm 1 is O(s2(3n + 3n)) where s is the total number of patterns and 3n is the number of

features. Here, the complexity involved with the two consecutive innermost for loops (see steps 3 to 12 and 13 to 15 in

Algorithm 1 in Section 2.2) is O(3n+ 3n) and the complexity O(s2) is related with the two outermost nested for loops (see

steps 1 and 2 in Algorithm 1). Hence, the asymptotic time complexity of Algorithm 1 is O(s2(3n)).

Time complexity of Algorithm 2:

The time complexity of Algorithm 2 is O(s2 + ppc(3n)), where s is the number of patterns, p is the number of clusters,

pc is the number of patterns within the cth cluster, and 3n is the number of features. Here, the complexity involved with

two nested for loops (see steps 2 and 6 in Algorithm 2 in Section 2.2) is O(s2) and the complexity O(ppc(3n)) is related with

three nested for loops (see steps 14, 15 and 17 in Algorithm 2 in Section 2.2).

Time complexity of fuzzy decision classes:

In computing fuzzy decision classes, considering the weighted distances, the membership values of the patterns in the

classes, and themembership values of all patterns to the decision classes, the time complexity isO(crc(3n)+crc+cr), where

c is the number of decision classes, rc is the number of patterns in the cth class, r is the number of patterns in all the decision

classes, and 3n is the number of features. Hence, the asymptotic time complexity is O(crc(3n)+ cr), where crc(3n) > crc .

Time complexity of initial connection weights:

The time complexity in computing initial connectionweights, determined by using the concept of fuzzy rough sets shown

in Section 2.4, is described as follows:

The time complexity in computing the fuzzy reflexive relational matrices of sizes r × r (see Step 1 in Section 2.4)

corresponding to all the conditional attributes (3n) is O((3n)r2), where, r is the total number of patterns in all the

classes. In computing membership values of patterns for belonging to lower approximations (see Step 2 in Section 2.4),

we have to compute the fuzzy reflexive relational matrices corresponding to all the conditional attributes (3n) and the

fuzzy decision classes (c). So, the time complexity in computing membership values is O((3n)cr2). The time complexity

in computing positive membership values (see Step 3 in Section 2.4) is O((3n)rc) and in computing dependency factors

of all the conditional attributes (3n), with respect to all the decision classes (c) (see Step 4 in Section 2.4), is O(crc(3n)),
where, rc is the number of patterns within the cth class. Hence, the time complexity of initial connection weights is

O((3n)r2+(3n)cr2+(3n)rc+crc(3n)). Therefore, the asymptotic time complexity of initial connectionweights isO((3n)cr2),
where r2 > r > rc .

Time complexity of SOM:

During training of SOM, for each pattern, the time complexity in computing the distance between the input vector and

weight vector (see Eq. (18) in Section 2.5) is O(Nn), where n represents the number of nodes in the SOM’s input layer and N

represents the number of nodes in the SOM’s output layer. The time complexity in computing the winning neuron for each

pattern in the output layer (see Eq. (19) in Section 2.5) is O(N). The time complexity in updating the connection weights

(see Eq. (21) in Section 2.5) for each pattern is O(Nn). Hence, the time complexity of SOM is O(ts(Nn+ N + Nn)), where, t is

the number of iterations, and s is the number of patterns. Therefore, the asymptotic time complexity is O(tsNn). In FRGSOM,

the number of nodes in the SOM’s input layer is set corresponding to a 3n-dimensional linguistic vector. So, the asymptotic

time complexity of SOM, incorporated in FRGSOM, is O(tsN(3n)).

Time complexity of FRGSOM:

The time complexity of FRGSOMwill involve all the asymptotic time complexities discussed so far. Hence, the worst case

time complexity of FRGSOM is O(s(3n) + s2(3n) + s2 + ppc(3n) + crc(3n) + cr + (3n)cr2 + tsN(3n)) and the asymptotic

time is O(s2(3n)+ (3n)cr2 + tsN(3n)), where s2 > s ≥ ppc and r > rc .

4.1. Time complexity of fuzzy rough entropy (FRE)

In Fuzzy Rough Entropy (FRE) (see Section 3), the time complexity for defining the sets Xi, i = 1, 2, . . . , c , corresponding
to the clusters Ci, i = 1, 2, . . . , c , is O(c2p1cp2cn), where c represents the number of clusters, p1c is the number of patterns

within the cth cluster, p2c is the number of patterns belonging to all other clusters (other than the cth cluster) and n is the

number of features.

Time complexity of fuzzy reflexive relational matrices:

The time complexity in computing the pairwise fuzzy reflexive relational matrices of sizes s × s (see S1 in Section 3),

corresponding to all the conditional attributes (n) and all the clusters (c), is O(cns2), where s = p1c + p2c .

Time complexity of fuzzy decision classes:

For all the clusters, the time complexity in computing 2 fuzzy decision classes (see S3 in Section 3), involving weighted

distances (see Eq. (9)) of patterns p1c and p2c (having n features), is O(c(2(p1c + p2c)n)). In computing the membership

values of the patterns to the 2 decision classes (see S4 in Section 3), the time complexity is also O(c(2(p1c + p2c))). Now,

the time complexity in computing the average of the membership values and assigning the average value to the patterns

corresponding to the 2 fuzzy decision classes (see S4 in Section 3), is O(c(2(p1c + p2c) + 2(p1c + p2c))). Hence, the worst

case time complexity in computing fuzzy decision classes is O(c(2(p1c +p2c)n+2(p1c +p2c)+2(p1c +p2c)+2(p1c +p2c)))
and the asymptotic time complexity is O(c(2(p1c + p2c)n)), where (2(p1c + p2c)n) > (2(p1c + p2c)).

Time complexity of membership values of patterns for belonging to lower and upper approximations:



A. Ganivada et al. / Theoretical Computer Science 466 (2012) 37–63 49

The aforesaid fuzzy reflexive relationalmatrices and the fuzzy decision classeswill be required in computingmembership

values of the patterns p1c for belonging to lower and upper approximations. Considering the fuzzy reflexive relational

matrices of the sizes p1c × s and the fuzzy decision classes of patterns p1c , for all the conditional attributes (n) and all

the clusters (c), the time complexity in computing the membership values of patterns for belonging to lower and upper

approximations is O(cnp1cs), where p1c is the number of patterns in a set x0.

Time complexity of roughness of sets (clusters):

The time complexity of multiplying the actual membership values of the patterns of a set x0, corresponding to a single

attribute and a cluster, with their membership values for belonging to lower approximations, and then taking the sum over

all of them (see Eq. (25) in Section 3) is O(p1c). So for all the attributes it becomes O(np1c). This is also the same for upper

approximations (see Eq. (26) in Section 3). Hence, the time complexity in computing roughness of the sets, which involves

the ratio of lower and upper approximations corresponding to the clusters, is O(cnp1c).

Time complexity of FRE:

The time complexity of average FRE will involve all the complexities mentioned in Section 4.1. Therefore, the worst case

time complexity of average FRE is O(c2p1cp2cn)+ cns2 + c(2((p1c + p2c)n))+ c(n(p1cs))+ cnp1c) and the asymptotic time

complexity of FRE is O(cns2), where s2 > p1c + p2c , s
2 > s, and (cns2) > (c2p1cp2cn).

Time complexity of FRGSOM with FRE:

The asymptotic time complexity of FRGSOM, when used along with FRE, is O(s2(3n)+ (3n)cr2 + tsN(3n)+ cns2).

5. Experimental results

The clustering algorithms like SOM, FSOM, Rough SOM and FRGSOM are implemented in the C language and all the

programs are executed on the Linux operating system installed in a HP computer. The computer is configured with Intel

Core i7 CPU 880 @ 3.07GHZ processor and 16 GB RAM. All the clustering algorithms are tested on three different types of

real-life data sets, namely, Telugu vowel [24], medical [25], and gene expression microarray data sets like Cell Cycle [27],

Yeast Complex [26] and [28], and All Yeast [28].

5.1. Description of data sets

Here, we provide a brief description of the data sets, used in this investigation.

(i) Telugu vowel data:

The Telugu vowel data [24] deals with 871 Indian Telugu vowel sounds. It consists of 871 patterns, and each of these

patterns is described by 3 features and belongs to one of the 6 vowel classes. These classes are denoted by δ, a, i, u, e and o.

Fig. 1 shows the projection of the 871 data points, for each class, in F1–F2 feature plane. It can also be observed from Fig. 1

that there are overlapping class boundaries.

(ii)Medical data set:

The medical data set [25] deals with various Hepatobiliary disorders of 536 patient cases, and it consists 9 features and

4 classes. Fig. 2 shows that the projection of the 536 patterns with the first three consecutive feature values, for each class,

in the F1–F2 feature plane.

(iii) Gene expression microarray data sets:

For microarray gene expression analysis, data sets like Cell Cycle [27], Yeast Complex [26,28], and All Yeast [28], are

chosen. The genes in these data sets belong to Saccharomyces cerevisiae and are classified into 16, 16 and 18 groups,

respectively, according to the functional annotations of theMunich Information for Protein Sequences (MIPS) [29] database.

Table 4 shows the name of the data sets, number of genes in each data set, the number of time points (attributes), and

the number of top level functional categories (classes) for a particular data set. Microarray data sets are often with missing

gene expression values due to experimental problems. In this investigation, for Cell-Cycle data, out of 653 genes, 19 genes

with missing gene expression values are first eliminated from the data set. Thereafter, the remaining 634 genes, with all

expression values, are used in our experiment. Similarly, for All Yeast data, out of 6221 genes, 6072 genes, with all expression

values, are used in our experiment. The Yeast Complex complex data has no missing gene expression values.

5.2. Results on Telugu vowel data

The Telugu vowel data is first transformed into a 3n-dimensional (n = 3) granular space using Eq. (3). If Fi1, Fi2 and Fi3
represent the 1st, 2nd and 3rd features of the ith pattern Fi, then the fuzzy granules of the features (in terms of low,medium

and high) are quantified as

−→
F i1 ≡

{

µlow(
−→
F i1), µmedium(

−→
F i1), µhigh(

−→
F i1)

}

,

−→
F i2 ≡

{

µlow(
−→
F i2), µmedium(

−→
F i2), µhigh(

−→
F i2)

}

, and

−→
F i3 ≡

{

µlow(
−→
F i3), µmedium(

−→
F i3), µhigh(

−→
F i3)

}

.
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Fig. 1. Vowel data in the F1–F2 plane.

Fig. 2.Medical data in the F1–F2 plane.

Table 4

Summary for different microarray data sets.

Dataset No. of genes No. of time points Classes

Cell Cycle 634 93 16

Yeast Complex 979 79 16

All Yeast 6072 80 18

The transformed data is then used to find a similarity matrix using Algorithm 1. Algorithm 2 (see Section 2.2.1) generates

a different number of groups for different values of α (0.2, 0.25, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8) between 0

to 1. For example, 11 groups were found for α = 0.35. These groups are then arranged in a descending order according to

their size. The numbers of data points in these groups were 238, 211, 181, 94, 87, 31, 12, 8, 6, 2 and 1. Let c = 6 be the user

defined number of clusters. We choose the top 6 groups, based on their size, among all 11 groups and the FRE values for 6

groups and the average FRE value are calculated. Similarly, we do the same process for the remaining values of α. Here, the
average FRE of the first 6 groups is seen to beminimum for α = 0.35. These 6 groups aremost compact and hence presented

to a decision system S. The knowledge about data, in S, is then extracted using the fuzzy rough concepts and incorporated

in FRGSOM. The values of parameters, fd and fe, in Eq. (10), were considered to be 1.

During learning of the FRGSOM, 9 neurons are considered for the input layer as there are 3 input features in the vowel

data and each feature has 3 dimensions. In the output layer of the SOM, we have considered 6 neurons corresponding to

the 6 clusters. The initial connection weights, from the nodes in the input layer to the 6 nodes in SOM’s output layer, are

determined by dependency factors. The resultant network is then trained with competitive learning (see Section 2.5). After

the completion of the learning process, the number of samples, obtained at each of the 6 output nodes of SOM, is shown in

Table 5. For example, 100 data points are obtained at node 1 and 204 data points are obtained at node 6, in the SOM’s output

layer. The description of these clusters, in the form of a confusion matrix, is shown in Table 6.
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Table 5

Alignment of patterns at win-

ning nodes in the output layer of

FRGSOM for Telugu vowel data.

1(100) 2(171) 3(191)

4(62) 5(143) 6(204)

Table 6

Confusion matrix corresponding to data points at the

winning nodes of the FRGSOM for Telugu vowel data.

δ a i u e o

cluster1 43 11 2 3 41 0

cluster2 16 66 0 27 9 53

cluster3 0 0 145 0 46 0

cluster4 0 0 0 45 0 17

cluster5 10 0 25 0 106 2

cluster6 3 12 0 76 5 108

Table 7

Alignment of patterns at win-

ning nodes in the output layer

of SOM with random weights

within −0.5 to 0.5, for Telugu

vowel data.

1(104) 2(178) 3(154)

4(233) 5(156) 6(46)

Table 8

Confusion matrix corresponding to data points at the

winning nodes of the SOM random weights within

−0.5 to 0.5, for Telugu vowel data.

δ a i u e o

cluster1 41 14 2 1 45 1

cluster2 18 62 0 26 12 60

cluster3 0 0 110 0 44 0

cluster4 1 6 0 121 0 105

cluster5 4 0 57 0 94 1

cluster6 8 7 3 3 12 13

From the results in Table 6, obtained with FRGSOM using fuzzy rough sets, the sum of the diagonal elements is found to

be 513. The data points belonging to different clusters and the sum of the diagonal elements are seen to corroborate well

with the actual class description (see Fig. 1).

5.2.1. Comparison of FRGSOM with related algorithms

The performance of the FRGSOM is compared with the related algorithms, like (SOM) [13] and fuzzy self-organizing

map (FSOM). The initial connection weights of SOM are chosen as random numbers within −0.5 to 0.5. In FSOM, an

n-dimensional input vector is transformed into a 3n-dimensional linguistic input vector corresponding to the linguistic

terms low, medium and high (see Sections 2.1, 2.1.1 and 2.1.2). The number nodes in the SOM’s input layer of FSOM is set

equal to a 3n-dimensional linguistic input vector and in the SOM’s output layer, the number of nodes is set equal to the

number of classes. The initial connection weights FSOM are chosen as random numbers within−0.5 to 0.5.

Time complexity of FSOM:

The time complexity of FSOM is O(s(3n)+ tsN(3n)), where s is the number of patterns and 3n is the number of features,

t is the number of iterations and N is the number of nodes in the SOM’s output layer. Here, O(s(3n)) represents the time

complexity for transforming an n-dimensional input vector into a 3n-dimensional linguistic vector and tsN(3n) refers to

the time complexity of SOM, with the number of nodes in the input layer equal to the 3n-dimensional linguistic vector.

Therefore, the asymptotic time complexity of FSOM is O(tsN(3n)).
Tables 7 and 8 show the performance of SOM. The results of FSOM are shown in Tables 9 and 10.

The results in Tables 8 and 10 show that the SOM and FSOM are clustering the data points into 6 groups and the sum of

the diagonal elements is 441 and 502, respectively.
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Table 9

Alignment of patterns at win-

ning nodes in the SOM’s out-

put layer of FSOM with random

weights within −0.5 to 0.5, for

Telugu vowel data.

1(106) 2(176) 3(198)

4(63) 5(137) 6(191)

Table 10

Confusionmatrix corresponding to data points at the

winning nodes of the FSOM with random weights

within−0.5 to 0.5, for Telugu vowel data.

δ a i u e o

cluster1 46 11 2 7 40 0

cluster2 13 66 0 25 9 63

cluster3 0 0 146 0 52 0

cluster4 0 0 0 45 0 18

cluster5 11 0 24 0 101 1

cluster6 2 12 0 74 5 98

Let us now analyze the cluster wise results of FRGSOM, as compared to SOM and FSOM.

Cluster 1:

It can be observed from Fig. 1 that cluster 1, corresponding to class δ, has overlapping boundaries with the classes a, e and

o. This information is also preserved and reflected in our results for cluster 1 using FRGSOM, where, out of 100 data points

(see node 1 in Table 5), 43, 11 and 41 data points belong to the classes δ, a and e (see Table 6), respectively. In contrast,

using SOM, out of 104 data points at node 1 (see Table 7), 41, 14, 45 and 1 data points belong to the classes δ, a, e and o,

respectively, i.e., only 41 points belong to class δ. Using FSOM, out of 106 data points at node 1 (see Table 9), 46, 11 and

40 data points belong to the classes δ, a and e, respectively (see cluster 1 in Table 10), i.e., only 46 samples correspond to

class δ. Although the overlapping class information is reflected in the results for all the methods, the number of data points

(100, 104 and 106, respectively) allotted in cluster 1 for all the methods are higher than the actual number of points (72)

and FRGSOM is moderately better than related methods. The results for SOM and FSOM show that class δ does not have

overlapping information with class o, which is in contrast with the actual class information. Moreover, in SOM, the actual

number of points (diagonal entry) belonging to class δ is less than those points belonging to class e, whereas, for a confusion

matrix, the diagonal entry should be the dominant entry in each row.

Cluster 6:

Nowconsider cluster 6,where class ohas overlapping boundarieswith the classes δ, a,u and e (see Fig. 2). This information

is supported by FRGSOM (see Table 6), where, out of 204 data points at node 6 (see Table 5), 3, 12, 76, 5, and 108 data points

belong to the classes δ, a, u, e, and o, respectively. In contrast, while using SOM, 46 data points are obtained at node 6 (see

Table 7), and 8, 7, 3, 12, and 13 data points belong to the classes δ, a, u, e, and o, respectively (see Table 7). From the results

of FSOM, we can observe that 191 data points are obtained at node 6 (see Table 9), and 2, 12, 74, 5, and 98 data points

belong to the classes δ, a, u, e, and o. Here, FRGSOM performs better than SOM and FSOM in terms of the total number of

data points and actual data points. Moreover, this shows the effectiveness of incorporating fuzzy rough sets in extracting

domain knowledge. The results of SOM also show that the class o has an overlapping boundary with the class i, which is not

correct. Similar conclusions on the FRGSOM, SOM and FSOM can also be made, based on results for the remaining clusters.

5.2.2. Evaluation of clusters

In this section, we evaluate clusters, obtained by using SOM, FSOM and FRGSOM, based on the proposed fuzzy rough

entropy (FRE) for c = 4, 6 and 8. In addition, comparisons are provided using the β-index [31] and Davies–Bouldin index

(DB-index) [30]. A higher value of β-index indicates that the clustering solutions are compact whereas it is the opposite for

the FRE and DB-index. For a given c and a clustering method, all indices are computed on the resulting clustering solution

and the results are reported in Table 11.

From Table 11, for c = 4, 6 and 8, we find that the values of β-index and DB-index for FRGSOM are higher and lower,

respectively, than those of FSOM and SOM. The FRE values for FRGSOM are also lower than those of FSOM and SOM. This

signifies that the proposed FRGSOM performs the best in terms of all the indices. We can also observe that, for FRGSOM,

FSOM and SOM, the β-index and DB-index for c = 4 are higher and lower, respectively, than those values for c = 6 and

8. This means c = 4 is the best choice for Telugu vowel data according to the β-index and DB-index. In contrast, for all the

clustering methods, FRE values are seen to be the lowest for c = 6. Note that Telugu vowel data has 6 overlapping classes

(shown in Fig. 1) and this information is therefore truly reflected by FRE.
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Table 11

β-index, DB-index and FRE values of clustering methods for Telugu vowel data.

Algorithm No. of clusters c = 4 No. of clusters c = 6 No. of clusters c = 8

β-index DB index FRE β-index DB index FRE β-index DB index FRE

FRGSOM 1.3045 1.1366 0.1688 1.1541 1.4687 0.1651 1.1116 1.6006 0.2163

FSOM 1.2032 1.1670 0.3342 1.0753 1.5256 0.3228 0.9827 1.7704 0.4220

SOM 0.9488 3.5593 0.5681 0.9317 1.5330 0.4452 0.9206 1.8450 0.4508

Table 12

Comparison of CPU time in seconds for FRGSOM, FSOM

and SOM for Telugu vowel data.

Algorithm 4 clusters 6 clusters 8 clusters

FRGSOM 3.0490 3.074 3.164

FSOM 0.5070 0.6520 1.8360

SOM 0.4450 0.6410 1.5660

Table 13

Comparison of FRE values of SOM, FSOM and

FRGSOM for c = 6.

Clusters SOM FSOM FRGSOM

1 0.3950 0.6340 0.1818

2 0.5479 0.3563 0.3300

3 0.2250 0.0350 0.0308

4 0.7609 0.1847 0.0858

5 0.2754 0.5478 0.2922

6 0.4673 0.1790 0.0981

Avg. FRE 0.4452 0.3228 0.1698

Table 14

Alignment of patterns

at winning nodes in

the SOM’s output layer

of FRGSOM formedical

data.

1(141) 2(143)

3(124) 4(128)

Table 12 provides CPU time in seconds for the FRGSOM, FSOM and SOM, corresponding to results of the clusters shown

in Table 11, for Telugu vowel data. It is evident that the CPU time for FRGSOM, which has the highest time complexity, for

c = 4, 5 and 6 is higher than FSOM and SOM. However, the performance of FRGSOM shown in Table 11 is better than the

FSOM and SOM.

As a typical example, nowwe compare the values of FRE for clusters obtained by SOM, FSOM and FRGSOM for c = 6. The

results are shown in Table 13. The FRE values for cluster 1, obtained by SOM and FSOM, are 0.3950 and 0.6340, respectively.

In contrast, the same for cluster 1, obtained by FRGSOM, is 0.1818, and it indicates that cluster 1 for FRGSOM ismore compact

than SOM and FSOM. Similar results are observed for the remaining clusters, except cluster 5, where SOM performs the best

and FRGSOM is the second best. As per the average FRE, the proposed FRGSOM is therefore seen to be the best.

5.3. Results on medical data

For medical data [25], first, c is chosen as 4 as the actual number of clusters is four and the actual number of points in

each cluster (from 1 to 4) is 116, 178, 124 and 118, respectively. The number of nodes in the SOM’s input layer is set to 27

in the fuzzy rough granular self-organizing map (FRGSOM). The number of nodes in the SOM’s output layer is set to 4 and

these are arranged in a 2 × 2 grid. The dependency factors for medical data are determined by using fuzzy rough sets in a

similar way, as explained for Telugu vowel data in Section 5.2.

FRGSOM partitions the data into four clusters (see Table 14). The confusion matrix corresponding to these clusters is

shown in Table 15 and the number of data points in each cluster is 141, 143, 124 and 128. In contrast, the number of data

points in each cluster for SOM and FSOM, which are also set to partition the data into four clusters, is 169, 86, 112, 169 (see

Table 16) and 131, 126, 167, 112 (see Table 18), respectively. The confusion matrix corresponding to the clusters of SOM
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Table 15

Confusion matrix corresponding to data points at

the winning nodes of the FRGSOM for medical data.

class1 class2 class3 class4

cluster1 49 46 23 23

cluster2 19 56 37 31

cluster3 29 36 40 19

cluster4 19 40 24 45

Table 16

Alignment of patterns

at winning nodes in

the output layer of

SOM for medical data.

1(169) 2(86)

3(112) 4(169)

Table 17

Confusion matrix corresponding to data points at

the winning nodes in the output layer of the SOM

for medical data.

class1 class2 class3 class4

cluster1 50 33 39 47

cluster2 9 44 27 6

cluster3 12 67 22 11

cluster4 45 34 36 54

Table 18

Alignment of patterns

at winning nodes out-

put layer of FSOM, for

medical data.

1(131) 2(126)

3(167) 4(112)

Table 19

Confusion matrix corresponding to data points at

the winning nodes in the output layer of FSOM, for

medical data.

class1 class2 class3 class4

cluster1 48 39 27 17

cluster2 19 46 25 36

cluster3 24 57 57 29

cluster4 25 36 15 36

and FSOM is shown in Tables 17 and 19, respectively. From the results in the confusion matrix we can observe that the

overlapping information is preserved by all the clustering algorithms. The number of data points in cluster 2, obtained by

SOM and FSOM, is 86 and 126, respectively. In contrast, this is 143 for FRGSOM and is much closer to the actual number

of points. Additionally, for SOM, in cluster 3, the diagonal entry is not a dominant entry in that row. Similarly, comparison

between FRGSOM and the related clustering algorithms can be made from the remaining part of the experimental results

and it can be concluded that FRGSOM performs better for medical data.

5.3.1. Evaluation of clusters

Here, we evaluate clusters (for c = 2, 4 and 6) produced by SOM, FSOM and the proposed FRGSOM, based on fuzzy rough

entropy (FRE), β-index and DB index, and the results are depicted in Table 20.

From Table 20, it is clear that the value of β-index for FRGSOM is higher than the values of FSOM and SOM for c = 2, 4
and 6. The DB index and FRE values are also the lowest for FRGSOM for all the values of c . That means the proposedmethods

perform the best in terms of all three indices. Further, FRE, DB-index and β-index result in best performance when c = 4, 6
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Table 20

β-index, DB-index and FRE values of clustering methods for medical data.

Algorithm No. of clusters c = 2 No. of clusters c = 4 No. of clusters c = 6

β-index DB index FRE β-index DB index FRE β-index DB index FRE

FRGSOM 0.4840 13.6805 0.2837 0.2683 17.1123 0.2385 0.1934 11.2395 0.3007

FSOM 0.4801 24.0973 0.3699 0.2525 20.0444 0.3682 0.1648 13.7342 0.4182

SOM 0.4744 29.6839 0.3815 0.2167 27.9271 0.4228 0.1213 14.2989 0.4928

Table 21

Comparison of CPU time in seconds for FRGSOM, FSOM

and SOM for medical data.

Algorithm 2 clusters 4 clusters 6 clusters

FRGSOM 1.1930 1.5180 2.315

FSOM 0.8160 1.0210 1.2900

SOM 0.5180 0.7680 1.0430

Table 22

Comparison of fuzzy rough entropy (FRE)

values for all the algorithms.

Clusters SOM FSOM FRGSOM

1 0.5940 0.5790 0.3454

2 0.4284 0.4168 0.1773

3 0.2211 0.0444 0.0988

4 0.4474 0.4326 0.3327

Avg. FRE 0.4228 0.3682 0.2385

and 2 respectively. Considering the actual number of clusters in the medical data, which is four, it can be concluded that it

is only FRE which truly reflects the fact.

Table 21 provides CPU time in seconds for FRGSOM, FSOM and SOM, corresponding to the clustering solutions in terms

of indices in Table 20, for medical data. It is clear that the CPU time for the FRGSOM for all the clusters is higher than the

FSOM and the SOM. However, the performance of the FRGSOM, shown in Table 20, is better than the SOM and the FSOM.

Now, we compare the values of FRE for clusters obtained by SOM, FSOM and FRGSOM for c = 4, as a typical example.

The results are presented in Table 22. By observing FRE values of the clusters and the average FRE of them from Table 22,

we can say that, FRE values for FRGSOM are the lowest and it performs better than FSOM and SOM.

5.4. Results on microarray data sets

The performance of the proposed FRGSOM is also compared with SOM and FSOM, using gene expression microarray

data sets, like Cell Cycle, Yeast Complex and All Yeast. After clustering the genes, using the aforementioned algorithms, one

or several functional categories are assigned to each cluster by calculating the P-values for different functional categories

in Munich Information for Protein Sequences (MIPS) [29]. Using hypergeometric distribution, the probability (P-value) of

observing at leastm genes from a functional category within a cluster of size n is given by

P = 1−

m−1
∑

i=0

(

f

i

)(

N − f

n− i

)

(

N

n

) (31)

where f is the total number of genes within a functional category and N is the total number of genes within the genome. A

lower P-value for a functional category within a cluster indicates that the functionally related genes are grouped in a better

way by the clustering method. Experiments are performed for c = 16, 16 and 18 for Cell Cycle, Yeast Complex and All Yeast

data sets, respectively. All data sets are initially transformed into a 3-dimensional granular space, using Eq. (3). During the

learning of FRGSOM, the number of nodes in the SOM’s input layer is set to 279, 237, and 240 and the number of nodes in the

SOM’s output layer is set to 16, 16 and 18 for Cell Cycle, Yeast Complex and All Yeast data sets, respectively. After completion

of competitive learning of FRGSOM,microarray data sets are clustered corresponding to the number of user defined clusters.

The results of Cell Cycle, Yeast Complex and All Yeast data sets are presented in Tables 23–25, respectively. For each data

set, the cluster numbers, the number of genes in each cluster, the name of the functional category (obtained from the most
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Table 23

Results for Cell Cycle Microarray Data using FRGSOM.

Cluster

no.

No. of geneswithin

cluster

MIPS functional category Category related genes

within cluster

No. of geneswithin

genome

P-value

Phosphate metabolism 21 418 8.05e−06

1 102 Modification by phosphorylation, 18 186 2.29e−09

dephosphorylation, autophosphorylation

Cytoskeleton/structural proteins 22 252 2.20e−10

Fungal and other eukaryotic 27 452 7.67e−09

Cell type differentiation

Modification by phosphorylation, 8 186 9.62e−04

dephosphorylation, autophosphorylation

2 87 Microtubule cytoskeleton 9 47 1.44e−09

Fungal and other eukaryotic 16 452 2.39e−05

cell type differentiation

Phosphate metabolism 12 418 2.57e−04

3 65 Cell fate 9 273 6.32e−04

Fungal and other eukaryotic 13 452 1.32e−04

cell type differentiation

Modification by phosphorylation, 8 186 9.59e−05

dephosphorylation, autophosphorylation

4 49 Cell fate 11 273 7.19e−06

Cytoskeleton/structural proteins 11 252 3.31e−06

Budding, cell polarity and filament formation 13 313 6.21e−07

DNA damage response 5 77 3.08e−04

5 47 Cytoskeleton/structural proteins 8 252 6.60e−04

Development of asco-, basidio- or zygospore 9 167 4.49e−06

Kinase inhibitor 2 14 4.34e−03

6 36 Small GTPase mediated signal transduction 5 58 5.21e−05

Budding, cell polarity and filament formation 8 313 1.49e−03

Protein binding 8 392 1.33e−03

7 33 Microtubule cytoskeleton 4 47 1.33e−04

Phosphate metabolism 9 418 2.58e−04

8 33 Modification by phosphorylation, 8 186 4.48e−06

dephosphorylation, autophosphorylation

Fungal and other eukaryotic 12 452 1.90e−06

Cell type differentiation

Kinase inhibitor 2 14 2.17e−03

9 30 Pheromone response, mating-type 7 189 3.33e−05

determination

Fungal and other eukaryotic 11 452 6.78e−06

cell type differentiation

Mating (fertilization) 3 69 4.46e−03

10 29 Cytoskeleton/structural proteins 9 252 1.95e−06

Budding, cell polarity and filament formation 7 313 6.22e−04

Protein/peptide degradation 5 256 4.63e−03

11 28 Enzymatic activity regulation 7 180 9.05e−06

Cell aging 3 28 2.32e−04

Phosphate metabolism 7 418 8.15e−04

12 27 Modification by phosphorylation, 7 186 4.73e−06

dephosphorylation, autophosphorylation

Microtubule cytoskeleton 4 47 2.88e−05

Modification by acetylation, deacetylation 3 69 1.80e−03

13 20 Enzymatic activity regulation 4 180 3.47e−03

Cytoskeleton/structural proteins 5 252 1.67e−03

Vesicular cellular export 2 33 3.63e−03

14 18 Exocytosis 2 33 3.63e−03



A. Ganivada et al. / Theoretical Computer Science 466 (2012) 37–63 57

Table 23

(Continued.)

Cluster

no.

No. of geneswithin

cluster

MIPS functional category Category related genes

within cluster

No. of geneswithin

genome

P-value

Cell growth/morphogenesis 5 238 2.60e−04

15 18 Cytoskeleton/structural proteins 4 252 3.43e−03

Mitotic cell cycle 3 165 8.29e−03

16 12 Development of asco-, basidio- or zygospore 3 167 6.41e−04

significant P-value using Eq. (31)), the actual number of genes within the category, the actual number of genes within the

genome, and the functional category related P-values are also shown in the tables.
Using FRGSOM on Cell Cycle data, we found that every cluster shows functional enrichment in cell-cycle, mitotic cell

cycle, cell cycle control and mitotic cell cycle as the data is itself related with cell cycle. The lowest and highest P-values

involved in these functional categories are 2.38e−76 and 2.31e−03, respectively. The functional enrichment in other cate-

gories, other than Cell Cycle, are shown in Table 23. From Table 23, we can observe that 15 out of 16 clusters havemore than

15 genes and show functional enrichment in more than one category. As a typical example, cluster 1 have 102 genes and

shows functional enrichment in phosphatemetabolism,modification by phosphorylation dephosphorylation, autophospho-

rylation, cytoskeleton/structural proteins, and fungal and other eukaryotic cell type differentiation category with P-values

8.05e−06, 2.29e−09, 2.20e−10 and 7.67e−09, respectively. The functional enrichment results for SOM and FSOM are not pro-

vided here but, we present a comparison among different clusteringmethods in terms ofNP value, obtained from functional

enrichment of clustering solutions. The NP is defined as

NP =

n
∏

i=1

(1− Pi) (32)

where Pi represents the most significant P-value (lowest one) associated with the ith cluster, and n represents the total

number of clusters obtained using any clustering method. Here, (1 − Pi) gives the probability of not observing the related

functional enrichment in the ith cluster and NP represents the probability of not observing any functional enrichment in all

the clusters, found by any clustering method. So, a higher NP value for a clustering method indicates that the genes have

a better functional relationship in the clustering solutions. Using Cell Cycle data, the values of NP for FRGSOM, SOM and

FSOM are found to be 0.99, 0.94, and 0.95, respectively. The experimental results for Yeast Complex and All Yeast microar-

ray data sets, using FRGSOM, are presented in Tables 24 and 25, respectively. The NP values for Yeast Complex and All Yeast

microarray data sets are found to be 0.98 and 0.99 for FRGSOM, 0.96 and 0.97 for FSOM, and 0.96 and 0.95 for SOM. For all

of the gene expression data sets, the NP values for FRGSOM are found to be greater than the related methods and indicate

that FRGSOM groups the functionally related genes in a better fashion.

5.5. Evaluation of clusters

In this section, clustering solutions of the Cell-Cycle, Yeast Complex and All Yeast microarray data sets are also evaluated

in terms of β-index, DB-index and FRE. The values of indices are depicted in Table 26. It can be seen from Table 26 that the

values of DB-index and FRE are smallest for FRGSOM as compared to FSOM and SOM for all the gene expression microarray

data sets. The results signify that the proposed FRGSOM clusters microarray data sets and groups the functionally related

genes in a better fashion than the other two related clustering methods. The β-index is also seen to corroborate with FRE

and DB, except for the Yeast Complex data.
Table 27 provides CPU time in seconds for FRGSOM, FSOM and SOM, corresponding to clustering solutions in Table 26,

for gene expression data sets. It can be observed that FRGSOM takes more time than FSOM and SOM for all the data sets.

However, from Table 26, the performance of FRGSOM is seen to be better than the FSOM and SOM.

5.6. Comparison of FRGSOM with Rough SOM

So far we have demonstrated the performance of the proposedmethod (FRGSOM)with SOM and FSOM in detail. In a part

of the experiment, we also compared the performance of FRGSOMwith RSOM (Rough SOM) [4]. The methodology of Rough

SOM is described in [4] as follows:

Step 1. An n-dimensional input data is transformed into a 3n-dimensional linguistic data, using a π-membership function

with centers and scaling factors, corresponding to linguistic terms low,medium and high.
Step 2. Attributeswhich havemembership values≥ threshold value (0.5) are representedwith 1 and others are represented

with 0, in order to make a binary valued data.
Step 3. The most representative pattern, i.e., a pattern which is repeated a maximum number of times, is selected from

the resultant binary valued data to serve as an object. Let there bem sets of objects, O1,O2, . . . ,Om, in the attribute

valued table such that nk1 > nk2 >, . . . , nkm , where card(Oi) = nki and i = 1, 2, . . . ,m.



58 A. Ganivada et al. / Theoretical Computer Science 466 (2012) 37–63

Table 24

Results for Yeast Complex microarray data using FRGSOM.

Cluster

no.

No. of geneswithin

cluster

MIPS functional category Category related genes

within cluster

No. of genes within

genome

P-value

Protein synthesis 96 480 1.51e−104

1 108 Ribosome biogenesis 96 480 1.51e−104

Ribosomal proteins 91 246 1.15e−123

Transcription 52 1077 6.75e−13

2 92 RNA synthesis 37 634 3.02e−11

mRNA synthesis 35 576 4.05e−11

Transcription 44 1077 1.57e−10

3 87 RNA synthesis 26 634 3.30e−06

mRNA synthesis 25 576 1.92e−06

Protein/peptide degradation 28 256 1.07e−19

4 84 Cytoplasmic and nuclear 27 188 3.70e−22

protein degradation

Proteasomal degradation 27 128 6.98e−27

Transcription 38 1077 2.14e−10

5 83 RNA synthesis 20 634 8.86e−05

mRNA synthesis 16 576 6.06e−03

Protein synthesis 26 480 1.70e−11

6 66 Ribosome biogenesis 20 480 3.19e−10

Ribosomal proteins 20 246 4.63e−12

Transcription 27 1077 4.64e−6

7 66 RNA synthesis 19 634 1.83e−05

mRNA synthesis 17 576 6.98e−05

Transcription 21 1077 1.41e−03

8 62 RNA synthesis 16 634 4.10e−04

rRNA synthesis 6 576 3.49e−05

Transcription 24 1077 1.19e−05

9 56 RNA synthesis 16 634 3.78e−05

mRNA synthesis 15 576 1.72e−04

Energy 35 367 7.78e−31

10 56 Electron transport and membrane 16 61 1.46e−40

-associated energy conservation

Respiration 15 138 3.66e−28

Cell cycle 33 367 7.78e−31

11 46 Mitotic cell cycle and 28 61 1.46e−40

cell cycle control

Mitotic cell cycle 15 138 3.66e−28

Protein synthesis 14 480 1.84e−06

12 44 Ribosome biogenesis 11 310 4.85e−06

Ribosomal proteins 11 246 4.94e−07

General transcription activities 9 235 1.19e−05

13 42 Transcription initiation 6 46 3.45e−07

Protein with binding function 17 1049 9.49e−05

or cofactor requirement

Protein synthesis 18 480 1.39e−13

14 36 Ribosome biogenesis 11 310 5.42e−09

Ribosomal proteins 12 246 3.78e−10

Cytoskeleton/structural proteins 5 252 3.65e−03

15 35 Microtubule cytoskeleton 3 47 9.17e−03

Nucleus 4 149 3.30e−03

DNA synthesis and replication 10 138 3.68e−08

16 16 Ori recognition and 5 25 1.10e−08

priming complex formation

Extension/polymerization activity 5 37 8.79e−08
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Table 25

Results for All Yeast Microarray Data using FRGSOM.

Cluster

no.

No. of geneswithin

cluster

MIPS functional category Category related genes

within cluster

No. of geneswithin

genome

P-value

Transcription 237 1077 4.86e−13

1 540 RNA synthesis 144 634 6.73e−09

mRNA synthesis 139 576 1.66e−10

Metabolism of derivatives of 6 13 6.34e−04

dehydroquinic and chorismic acid

2 537 RNA synthesis 4 5 3.52e−04

Actin cytoskeleton 18 96 3.06e−03

3 500 Ribosome biogenesis 42 310 1.68e−05

Ribosomal proteins 38 246 1.91e−06

mitochondrion 41 171 7.04e−13

Transcriptional control 57 495 9.31e−05

4 495 Protein fate (fold., mod., dest.) 122 1154 3.47e−07

Protein modification 67 616 1.27e−04

Cell cycle and DNA processing 95 1012 2.07e−07

5 490 DNA processing 54 520 9.24e−06

Proteasomal degradation 24 128 1.87e−07

Modification by acetylation, deacetylation 11 69 1.21e−03

6 461 Cellular transport, transport 77 1038 2.47e−03

facilities and transport routes

Protein modification 4 616 1.36e−03

7 450 O-directed glycosylation, deglycosylation 4 15 4.23e−03

Cellular sensing and response 23 284 8.48e−04

to external stimulus

8 367 Chemoperception and response 21 240 5.23e−04

Pheromone response, mating-type 20 189 5.43e−05

determination, sex-specific proteins

C-compound and carbohdt. metabolism 48 505 1.26e−08

9 343 Energy 52 367 3.44e−16

Electron transport and membrane 20 61 9.88e−14

-associated energy conservation

Protein processing (proteolytic) 13 89 1.83e−05

10 290 Cyto. and nuclear prot. degrad. 17 188 4.96e−04

Proteasomal degradation 16 128 1.53e−05

Metabolism of the aspartate family 10 66 1.50e−04

11 264 Translation initiation 7 40 4.73e−04

Metabolism of cyclic nucleotides 4 17 2.66e−03

Protein synthesis 115 480 6.16e−76

12 238 Ribosome biogenesis 108 310 5.05e−90

Ribosomal proteins 93 246 1.05ee−79

Metabolism 73 1514 4.05e−05

13 210 Cellular signaling 16 199 1.17e−04

Enzyme mediated signal transduction 13 133 2.86e−04

RNA processing 39 436 1.82e−10

rRNA processing 36 205 6.39e−19

14 205 Protein synthesis 45 480 9.27e−13

Cell type differentiation 43 452 5.95e−13

15 195 Fungal/microorganismic cell 43 452 5.95e−13

type differentiation

Fungal and other eukaryotic cell 43 452 5.95e−13

type differentiation

Cell cycle and DNA processing 74 1012 4.72e−17

16 188 Cell cycle 67 653 2.75e−23

Mitotic cell cycle and cell cycle control 36 447 3.67e−09

Continued on next page
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Table 25

(Continued.)

Cluster

no.

No. of geneswithin

cluster

MIPS functional category Category related genes

within cluster

No. of geneswithin

genome

P-value

Energy 20 367 1.29e−03

17 156 Respiration 13 136 5.61e−05

Aerobic respiration 9 77 1.58e−04

Cell cycle and DNA processing 49 1012 2.00e−08

18 143 Cell cycle 38 653 1.16e−08

Mitotic cell cycle and cell cycle control 27 447 1.21e−06

Table 26

β-index, DB-index and FRE values of clustering methods for gene expression data sets.

Algorithm Cell Cycle Yeast Complex All Yeast

No. of clusters c = 16 No. of clusters c = 16 No. of clusters c = 18

β-index DB index FRE β-index DB FRE β-index DB FRE

FRGSOM 0.0663 13.2738 0.1278 0.0643 20.9827 0.1319 0.0561 41.7863 0.0364

FSOM 0.0631 14.6150 0.1864 0.0622 21.8147 0.1461 0.0548 42.3979 0.0564

SOM 0.0641 16.8528 0.2097 0.0648 24.7178 0.1525 0.0556 56.1796 0.0604

Table 27

Comparison of CPU time in seconds for the FRGSOM, FSOMand

SOM for gene expression data sets.

Algorithm Cell Cycle Yeast Complex All Yeast

16 clusters 16 clusters 18 clusters

FRGSOM 10.8330 16.6825 555.3600

FSOM 9.5170 13.5470 182.4230

SOM 5.8220 12.9230 176.351

Step 4. m objects, selected fromm different sets, are presented to the attribute value table of sizem×3n, wherem represents

the number of objects, and 3n represents the size of the 3n-dimensional binary valued attributes.

Step 5. Let n
′

k1
, n
′

k2
, . . . , n

′

km
denote the distant elements (cardinalities) among the nk1 , nk2 , . . . , nkm such that n

′

k1
> n

′

k2
>

· · · > n
′

km
.

Step 6. A heuristic threshold, Tr , is defined as

Tr =











∑m

i=1
1

n
′

ki
−n
′

k(i+1)

TH











(33)

where TH is a threshold chosen within 0 to 1. Now, the objects which have the cardinalities less than the threshold

value Tr are removed from the attribute valued table. The resulting attribute valued table is called a reduced attribute

valued table or information system, say S.
Step 7. Attribute reducts are generated from information system S based on the methodology explained in [4]. Let U =

{x1, . . . , xp} and A = {a1, a2, . . . , a3n} be the set of objects and the set of binary valued attributes, respectively,

appearing in S. A discernibility matrix, cij of S, of size p× p, is defined as

cij = {a ∈ A : a(xi) 6= a(xj), for i and j = 1, 2, . . . , p, (34)

where a(xi) and a(xj) represent the attribute values of the patterns xi and xj, respectively. For each object xi ∈ U , the

discernibility function f
xi
S (a1, . . . , a3n) is defined as

f
xi
S (a1, . . . , a3n) =

∧

{

∨

(cij) : 1 ≤ j < i ≤ p, cij 6= ∅
}

, (35)

where
∨

(cij) is the disjunction of all variables of a such that a ∈ cij.

In Rough SOM, the number of nodes in the input layer is determined corresponding to 3-dimensional features, and in the

SOM output layer, it is defined based on the number of reducts. Here, every node in the output layer is set corresponding to

a reduct. The initial connection weights, between nodes of the input layer and the output layer of Rough SOM, are defined

with large random numbers for the attributes appearing in the reducts and with small random numbers for the attributes

which did not appear in the reducts.
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Table 28

Comparison of FRGSOM with Rough SOM, in terms of β-index, DB index, proposed fuzzy rough entropy (FRE)

and fc , for Telugu vowel and Medical Data. The results are shown for 6 clusters as Rough SOM provides 6 clusters

for both the data sets.

Data set Algorithm Iterations β-index DB index FRE fc CPU time in s

Telugu vowel data FRGSOM 80 1.1541 1.4687 0.1690 513 3.0740

Rough SOM 132 0.9911 1.6644 0.1699 464 2.1177

Medical data FRGSOM 60 0.1934 11.2395 0.2287 – 1.5180

Rough SOM 111 0.1632 12.6948 0.2619 – 1.4340

Time complexity of Rough SOM:

Now, we discuss the time complexity of Rough SOM. The time complexity in computing 3-dimensional linguistic data

(see Step 1 Section 5.6) is O(s(3n)), where s is the number of patterns and 3n is the number of features. In computing a

binary valued data (see Step 2 in Section 5.6), the time complexity is O(s(3n)). The time complexity in finding the most

representative patterns (see Step 3 in Section 5.6), in sorting cardinalities of the most representative patterns of sets (m) in

increasing order (see Step 3 in Section 5.6), in computing the attribute valued table (see Step 4 in Section 5.6) and a heuristic

threshold (see Step 6 in Section 5.6) is O(s2(3n)), O(mlogm), O(m(3n)) and O(m − 1), respectively. The time complexity

of discernibility functions by using a reduced attribute valued table, considering disjunction of attributes (say clauses), and

disjunction of prime implicants (reducts), isO(p(3n)+p2(3n)+p(dpa+a2), where p is the number of patterns in the reduced

attribute valued table, dp is the total number of clauses determined corresponding to a discernibility function f
xp

S and a is

the number of attributes. Hence, the total time complexity in computing reducts is O(s(3n) + s(3n) + s2(3n) + mlogm +
m(3n) + (m − 1) + p(3n) + p2(3n) + p(dpa + a2)). Therefore, the asymptotic time complexity is O(s23n + p(dpa + a2)),

where s2 > s > m > p, and s2 > p2.

The time complexity in computing the initial connection weights of Rough SOM is O(r(3n)), where r is the number of

reducts and 3n is the number of features. Therefore, the time complexity of Rough SOM is O(s2(3n) + p(dp(a) + (a)2) +
r(3n)+ tsN(3n)), where the term O(tsN(3n)) is the time complexity of SOM. Here, 3n represents the number nodes in the

SOM’s input layer, which is set equal to a 3n-dimensional attributes.

Table 28 show the performance of FRGSOMand Rough SOM in terms ofβ-index, DB-index and fuzzy rough entropy (FRE).

For both the methods, the results are shown on Telugu vowel data and medical data for 6 clusters. The value corresponding

to fc in Table 28 represents the sum of diagonal elements in the confusion matrix for Telugu vowel data.

From the results in Table 28, we observe that FRGSOM performs better than Rough SOM for Telugu vowel data in terms

of β-index and DB-index, whereas, FRE values of FRGSOM and Rough SOM are seen to be almost the same. The fc values

for Telugu vowel data indicate that, the total number of points, correctly classified by FRGSOM is much higher than that of

RSOM (e.g., 513 vs. 464). Similar results are also found for medical data where FRGSOM performed better than the Rough

SOM in terms of all three indices. It can also be observed that the CPU time for FRGSOM is higher than Rough SOM for both

the data sets. Note that the fc is not computed for medical data as the actual number of clusters is 4 in contrast to 6 clusters,

obtained using FRGSOM and Rough SOM.

We obtain 6, 12 and 14 reducts for Cell-Cycle, Yeast Complex and All Yeast data sets, respectively, by using Rough SOM

where each reduct corresponds to one cluster. Hence, for the purpose of comparison the performance of FRGSOM, FSOM and

SOM is also tested on the same numbers of clusters (6, 12 and 14) for those data sets. The performances of all the clustering

methods in terms of β-index, DB-index and fuzzy rough entropy (FRE) for different data sets are shown in Tables 29–31.

From the results given in Table 29, it can be observed that the β-index for FRGSOM is higher than that of RSOM, FSOM, SOM,

and the DB index and FRE values for FRGSOM are less than that of RSOM, FSOM and SOM. It is also observed that the CPU

time for FRGSOM,which has the highest time complexity, is higher than all othermethods. It is less for RSOMas compared to

FSOM as FSOM converges slower than RSOM, where the initial connection weights are defined from the rough rules instead

of random values chosen within −0.5 to 0.5. However, the performance of FRGSOM in terms of indices is better than the

RSOM, FSOM and SOM for Cell Cycle data although it has the highest time complexity. Similar observations can also bemade

from the results shown in Tables 30 and 31 for Yeast Complex and All Yeast data sets, respectively.

The salient differences between the FRGSOM and the Rough SOM are as follows:

1. In Rough SOM, the network is mainly modeled by the integration of the fuzzy sets and rough sets with SOM. In contrast,

the proposed FRGSOM is developed by the integration of fuzzy set theory and fuzzy rough sets with SOM.

2. In Rough SOM, rough set theory is used to extract attribute reducts from data and further each reduct is used to generate

a set of rules. In contrast, fuzzy rough set theory is used in FRGSOM to generate rules in terms of dependency factors.

3. The number of nodes, in the output layer of Rough SOM, is based on the attribute reducts, whereas the number of nodes

in the output layer of the FRGSOM is set according to the class information of the data.

4. The initial connection weights, between nodes of the input and output layers of Rough SOM, are defined with large

random numbers for attributes which appeared in the rules, and for the attributes that did not appear in the rules, are

defined with small random numbers. In contrast, no such attribute reducts are generated using fuzzy rough sets for



62 A. Ganivada et al. / Theoretical Computer Science 466 (2012) 37–63

Table 29

β-index, DB-index and FRE values of clustering methods for Cell

Cycle data.

Algorithm Cell Cycle CPU time in s

No. of clusters c = 6

β-index DB index FRE

FRGSOM 0.1988 8.5903 0.1270 9.9282

RSOM 0.1845 10.5134 0.1302 8.4490

FSOM 0.1711 18.6188 0.1472 9.0630

SOM 0.1660 18.0185 0.1983 7.7760

Table 30

β-index, DB-index and FRE values of clustering methods for Yeast

Complex data.

Algorithm Yeast Complex CPU time in s

No. of clusters c = 12

β-index DB index FRE

FRGSOM 0.1308 6.1511 0.1263 18.6330

RSOM 0.1144 6.2012 0.1470 15.8870

FSOM 0.1150 6.9359 0.1482 16.2860

SOM 0.1092 8.4631 0.1501 12.5630

Table 31

β-index, DB-index and FRE values of clustering methods for All

Yeast data.

Algorithm All Yeast CPU time in s

No. of clusters c = 14

β-index DB index FRE

FRGSOM 0.0702 41.6047 0.0420 591.2700

RSOM 0.0678 46.6423 0.0443 300.0153

FSOM 0.0665 43.1818 0.0553 307.3360

SOM 0.0709 47.8397 0.0594 250.3710

defining the initial connection weights in the FRGSOM. Attribute dependency factors, determined using the concept of

fuzzy rough sets, are used in FRGSOM as initial connection weights.

6. Conclusion

In this study, we proposed a fuzzy rough granular neural network (FRGSOM) by integrating the concept of fuzzy rough

sets with SOM, to predict the underlying clusters in a data set and to handle the uncertainty that comes from patterns of

the overlapping regions. Fuzzy rough sets, based on a fuzzy reflexive relation, are used to extract the domain knowledge in

the form of dependency factors of conditional attributes. The dependency factors are encoded as the initial weights of the

network, and the input vector of the network is defined in terms of fuzzy granules low, medium and high. The superiority of

the FRGSOM, as compared to SOM, FSOM, and RSOM, is extensively demonstrated on Telugu vowel, medical, andmicroarray

gene expression data sets, with dimensions varying from 3 to 93.

A new fuzzy rough entropy measure (FRE) is also proposed using the concept of fuzzy rough sets, based on a fuzzy

reflexive relation. The uncertainty arising from overlapping regions is quantified based on this measure. The lower the value

of entropy of a cluster, the higher is its compactness. The FRE is seen to reflectwell the actual number of clusters for a data set

as compared to the β-value and DB-index. Apart from showing the superiority of FRGSOM, the investigation demonstrates

a way of integrating two different facets of natural computing, namely, granular computing, and self-organization in a soft

computing framework.
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